1
|
Dickerson B, Gonzalez DE, Sowinski R, Xing D, Leonard M, Kendra J, Jenkins V, Gopalakrishnan S, Yoo C, Ko J, Pillai SS, Bhamore JR, Patil BS, Wright GA, Rasmussen CJ, Kreider RB. Comparative Effectiveness of Ascorbic Acid vs. Calcium Ascorbate Ingestion on Pharmacokinetic Profiles and Immune Biomarkers in Healthy Adults: A Preliminary Study. Nutrients 2024; 16:3358. [PMID: 39408325 PMCID: PMC11479081 DOI: 10.3390/nu16193358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Previous trials have displayed augmented intracellular vitamin C concentrations in the leukocytes at 24 h after acute supplementation with 1000 mg calcium ascorbate (CA), compared to ascorbic acid (AA). OBJECTIVE The primary objective was to evaluate comparative leukocyte vitamin C accumulation kinetics over 32 h following acute 250 mg or 500 mg doses from the two sources. Secondary objectives were to evaluate neutrophil phagocytic function and lymphocyte differentiation between the two sources of vitamin C. METHODS Ninety-three healthy females (250 mg, n = 27; 500 mg, n = 24) and males (250 mg, n = 19; 500 mg, n = 23) were assigned to ingest a single dose of CA or AA providing 250 mg or 500 mg of vitamin C in two separate double-blind, randomized crossover trials. RESULTS There were no significant differences in the primary or secondary outcomes between the two treatments in the 250 mg low-dose study. Conversely, there was evidence that ingestion of 500 mg of CA increased DHA in plasma, increased neutrophil functionality during the first 8 h of the PK study, promoted increased natural killer cells, and altered weight-adjusted PK profiles, suggesting greater volume distribution and clearance from the blood. CONCLUSIONS These findings indicate that 500 mg of CA may promote some immune benefits compared to 500 mg of AA ingestion.
Collapse
Affiliation(s)
- Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Jacob Kendra
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Siddharth Gopalakrishnan
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Syamkumar Sivasankara Pillai
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| | - Jigna R. Bhamore
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| | - Bhimanagouda S. Patil
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| | - Gus A. Wright
- Flow Cytometry Facility, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA;
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| |
Collapse
|
2
|
Aguilar OA, Gonzalez-Hinojosa MD, Arakawa-Hoyt JS, Millan AJ, Gotthardt D, Nabekura T, Lanier LL. The CD16 and CD32b Fc-gamma receptors regulate antibody-mediated responses in mouse natural killer cells. J Leukoc Biol 2023; 113:27-40. [PMID: 36822164 PMCID: PMC10197019 DOI: 10.1093/jleuko/qiac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria D.R. Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Alberto J. Millan
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Present Address: Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
3
|
Delpire B, Van Loon E, Naesens M. The Role of Fc Gamma Receptors in Antibody-Mediated Rejection of Kidney Transplants. Transpl Int 2022; 35:10465. [PMID: 35935272 PMCID: PMC9346079 DOI: 10.3389/ti.2022.10465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
For the past decades, complement activation and complement-mediated destruction of allograft cells were considered to play a central role in anti-HLA antibody-mediated rejection (AMR) of kidney transplants. However, also complement-independent mechanisms are relevant in the downstream immune activation induced by donor-specific antibodies, such as Fc-gamma receptor (FcγR)-mediated direct cellular activation. This article reviews the literature regarding FcγR involvement in AMR, and the potential contribution of FcγR gene polymorphisms to the risk for antibody mediated rejection of kidney transplants. There is large heterogeneity between the studies, both in the definition of the clinical phenotypes and in the technical aspects. The study populations were generally quite small, except for two larger study cohorts, which obviates drawing firm conclusions regarding the associations between AMR and specific FcγR polymorphisms. Although FcγR are central in the pathophysiology of AMR, it remains difficult to identify genetic risk factors for AMR in the recipient’s genome, independent of clinical risk factors, independent of the donor-recipient genetic mismatch, and in the presence of powerful immunosuppressive agents. There is a need for larger, multi-center studies with standardised methods and endpoints to identify potentially relevant FcγR gene polymorphisms that represent an increased risk for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Boris Delpire
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Maarten Naesens,
| |
Collapse
|
4
|
Coënon L, Villalba M. From CD16a Biology to Antibody-Dependent Cell-Mediated Cytotoxicity Improvement. Front Immunol 2022; 13:913215. [PMID: 35720368 PMCID: PMC9203678 DOI: 10.3389/fimmu.2022.913215] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) is a potent cytotoxic mechanism that is mainly mediated in humans by natural killer (NK) cells. ADCC mediates the clinical benefit of several widely used cytolytic monoclonal antibodies (mAbs), and increasing its efficacy would improve cancer immunotherapy. CD16a is a receptor for the Fc portion of IgGs and is responsible to trigger NK cell-mediated ADCC. The knowledge of the mechanism of action of CD16a gave rise to several strategies to improve ADCC, by working on either the mAbs or the NK cell. In this review, we give an overview of CD16a biology and describe the latest strategies employed to improve antibody-dependent NK cell cytotoxicity.
Collapse
Affiliation(s)
- Loïs Coënon
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- *Correspondence: Loïs Coënon,
| | - Martin Villalba
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- Institute for Regenerative Medicine and Biotherapy, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Centre national de la recherche scientifique (CNRS), Centre hospitalier universitaire (CHU) Montpellier, Montpellier, France
| |
Collapse
|
5
|
Aguilar OA, Fong LK, Ishiyama K, DeGrado WF, Lanier LL. The CD3ζ adaptor structure determines functional differences between human and mouse CD16 Fc receptor signaling. J Exp Med 2022; 219:e20220022. [PMID: 35320345 PMCID: PMC8953085 DOI: 10.1084/jem.20220022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells can detect antibody-coated cells through recognition by the CD16 Fc receptor. The importance of CD16 in human NK cell biology has long been appreciated, but how CD16 functions in mouse NK cells remains poorly understood. Here, we report drastic differences between human and mouse CD16 functions in NK cells. We demonstrate that one of the adaptor molecules that CD16 associates with and signals through, CD3ζ, plays a critical role in these functional differences. Using a systematic approach, we demonstrate that residues in the transmembrane domain of the mouse CD3ζ molecule prevent efficient complex formation with mouse CD16, thereby dampening receptor function. Mutating these residues in mouse CD3ζ to those encoded by human CD3ζ resulted in rescue of CD16 receptor function. We reveal that the mouse CD3ζ transmembrane domain adopts a tightly packed confirmation, preventing association with CD16, whereas human CD3ζ adopts a versatile configuration that accommodates receptor assembly.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Lam-Kiu Fong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
6
|
Lebraud E, Eloudzeri M, Rabant M, Lamarthée B, Anglicheau D. Microvascular Inflammation of the Renal Allograft: A Reappraisal of the Underlying Mechanisms. Front Immunol 2022; 13:864730. [PMID: 35392097 PMCID: PMC8980419 DOI: 10.3389/fimmu.2022.864730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Antibody-mediated rejection (ABMR) is associated with poor transplant outcomes and was identified as a leading cause of graft failure after kidney transplantation. Although the hallmark histological features of ABMR (ABMRh), i.e., microvascular inflammation (MVI), usually correlate with the presence of anti-human leukocyte antigen donor-specific antibodies (HLA-DSAs), it is increasingly recognized that kidney transplant recipients can develop ABMRh in the absence of HLA-DSAs. In fact, 40-60% of patients with overt MVI have no circulating HLA-DSAs, suggesting that other mechanisms could be involved. In this review, we provide an update on the current understanding of the different pathogenic processes underpinning MVI. These processes include both antibody-independent and antibody-dependent mechanisms of endothelial injury and ensuing MVI. Specific emphasis is placed on non-HLA antibodies, for which we discuss the ontogeny, putative targets, and mechanisms underlying endothelial toxicity in connection with their clinical impact. A better understanding of these emerging mechanisms of allograft injury and all the effector cells involved in these processes may provide important insights that pave the way for innovative diagnostic tools and highly tailored therapeutic strategies.
Collapse
Affiliation(s)
- Emilie Lebraud
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Maëva Eloudzeri
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Marion Rabant
- Department of Renal Pathology, Necker Hospital, AP-HP, Paris, France
| | - Baptiste Lamarthée
- Université Bourgogne Franche-Comté, EFS BFC, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| |
Collapse
|
7
|
Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F, Pegram MD. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer 2022; 10:jitc-2021-003171. [PMID: 34992090 PMCID: PMC8739678 DOI: 10.1136/jitc-2021-003171] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Several therapeutic monoclonal antibodies (mAbs), including those targeting epidermal growth factor receptor, human epidermal growth factor receptor 2 (HER2), and CD20, mediate fragment crystallizable gamma receptor (FcγR)–dependent activities as part of their mechanism of action. These activities include induction of antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), which are innate immune mechanisms of cancer cell elimination. FcγRs are distinguished by their affinity for the Fc fragment, cell distribution, and type of immune response they induce. Activating FcγRIIIa (CD16A) on natural killer cells plays a crucial role in mediating ADCC, and activating FcγRIIa (CD32A) and FcγRIIIa on macrophages are important for mediating ADCP. Polymorphisms in FcγRIIIa and FcγRIIa generate variants that bind to the Fc portion of antibodies with different affinities. This results in differential FcγR-mediated activities associated with differential therapeutic outcomes across multiple clinical settings, from early stage to metastatic disease, in patients with HER2+ breast cancer treated with the anti-HER2 mAb trastuzumab. Trastuzumab has, nonetheless, revolutionized HER2+ breast cancer treatment, and several HER2-directed mAbs have been developed using Fc glyco-engineering or Fc protein-engineering to enhance FcγR-mediated functions. An example of an approved anti-HER2 Fc-engineered chimeric mAb is margetuximab, which targets the same epitope as trastuzumab, but features five amino acid substitutions in the IgG 1 Fc domain that were deliberately introduced to increase binding to activating FcγRIIIa and decrease binding to inhibitory FcγRIIb (CD32B). Margetuximab enhances Fc-dependent ADCC in vitro more potently than the combination of pertuzumab (another approved mAb directed against an alternate HER2 epitope) and trastuzumab. Margetuximab administration also enhances HER2-specific B cell and T cell–mediated responses ex vivo in samples from patients treated with prior lines of HER2 antibody-based therapies. Stemming from these observations, a worthwhile future goal in the treatment of HER2+ breast cancer is to promote combinatorial approaches that better eradicate HER2+ cancer cells via enhanced immunological mechanisms.
Collapse
Affiliation(s)
- Antonino Musolino
- Department of Medicine and Surgery, University Hospital of Parma, Medical Oncology and Breast Unit, Parma, Italy
| | - William J Gradishar
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, Breast Oncology and Clinical Trials Education, University of California San Francisco, San Francisco, California, USA
| | | | | | | | - Mark D Pegram
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Wu L, Xu Y, Zhao H, Zhou Y, Chen Y, Yang S, Lei J, Zhang J, Wang J, Wu Y, Li Y. FcγRIIB potentiates differentiation of myeloid-derived suppressor cells to mediate tumor immunoescape. Am J Cancer Res 2022; 12:842-858. [PMID: 34976216 PMCID: PMC8692894 DOI: 10.7150/thno.66575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 11/05/2022] Open
Abstract
Background: FcγRIIB, the sole inhibitory receptor of the Fc gamma receptor family, plays pivotal roles in innate and adaptive immune responses. However, the expression and function of FcγRIIB in myeloid-derived suppressor cells (MDSCs) remains unknown. This study aimed to investigate whether and how FcγRIIB regulates the immunosuppressive activity of MDSCs during cancer development. Methods: The MC38 and B16-F10 tumor-bearing mouse models were established to investigate the role of FcγRIIB during tumor progression. FcγRIIB-deficient mice, adoptive cell transfer, mRNA-sequencing and flow cytometry analysis were used to assess the role of FcγRIIB on immunosuppressive activity and differentiation of MDSCs. Results: Here we show that FcγRIIB was upregulated in tumor-infiltrated MDSCs. FcγRIIB-deficient mice showed decreased accumulation of MDSCs in the tumor microenvironment (TME) compared with wild-type mice. FcγRIIB was required for the differentiation and immunosuppressive activity of MDSCs. Mechanistically, tumor cell-derived granulocyte-macrophage colony stimulating factor (GM-CSF) increased the expression of FcγRIIB on hematopoietic progenitor cells (HPCs) by activating specificity protein 1 (Sp1), subsequently FcγRIIB promoted the generation of MDSCs from HPCs via Stat3 signaling. Furthermore, blockade of Sp1 dampened MDSC differentiation and infiltration in the TME and enhanced the anti-tumor therapeutic efficacy of gemcitabine. Conclusion: These results uncover an unrecognized regulatory role of the FcγRIIB in abnormal differentiation of MDSCs during cancer development and suggest a potential therapeutic target for anti-tumor therapy.
Collapse
|
9
|
Binder C, Sellberg F, Cvetkovski F, Berg S, Berglund E, Berglund D. Siplizumab Induces NK Cell Fratricide Through Antibody-Dependent Cell-Mediated Cytotoxicity. Front Immunol 2021; 12:599526. [PMID: 33643309 PMCID: PMC7904868 DOI: 10.3389/fimmu.2021.599526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
The glycoprotein CD2 is expressed on T and NK cells and contributes to cell-cell conjugation, agonistic signaling and actin cytoskeleton rearrangement. CD2 has previously been shown to have an important function in natural NK cell cytotoxicity but to be expendable in antibody-mediated cytotoxicity. Siplizumab is a monoclonal anti-CD2 IgG1 antibody that is currently undergoing clinical trials in the field of transplantation. This study investigated the effect of CD2 binding and Fc γ receptor binding by siplizumab (Fc-active) and Fc-silent anti-CD2 monoclonal antibodies in allogeneic mixed lymphocyte reaction and autologous lymphocyte culture. Further, induction of NK cell fratricide and inhibition of natural cytotoxicity as well as antibody-dependent cytotoxicity by these agents were assessed. Blockade of CD2 via monoclonal antibodies in the absence of Fc γ receptor binding inhibited NK cell activation in allogeneic mixed lymphocyte reaction. In contrast, siplizumab increased NK cell activation in both mixed lymphocyte reaction and autologous lymphocyte culture due to FcγRIIIA binding. However, experiments using purified NK cells did not show an inhibitory effect of CD2 blockade on natural cytotoxicity or antibody-dependent cytotoxicity. Lastly, it was shown that siplizumab induces NK cell fratricide. Concluding, siplizumab is a promising biopharmaceutical drug candidate for depletion of T and NK cells with minimal off-target effects.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
10
|
Chu SY, Pong E, Bonzon C, Yu N, Jacob CO, Chalmers SA, Putterman C, Szymkowski DE, Stohl W. Inhibition of B cell activation following in vivo co-engagement of B cell antigen receptor and Fcγ receptor IIb in non-autoimmune-prone and SLE-prone mice. J Transl Autoimmun 2021; 4:100075. [PMID: 33409482 PMCID: PMC7773957 DOI: 10.1016/j.jtauto.2020.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
Engagement of Fcγ receptor IIb (FcγRIIb) suppresses B cell activation and represents a promising target for therapy in autoimmunity. Obexelimab is a non-depleting anti-human CD19 mAb with an Fc region engineered to have high affinity for human FcγRIIb, thereby co-engaging BCR and FcγRIIb. To assess its ability to suppress B cell activation in vivo, we generated non-autoimmune-prone C57BL/6 (B6) and SLE-prone NZM 2328 (NZM) mice in which the human FcγRIIb extracellular domain was knocked into the mouse Fcgr2b locus (B6.hRIIb and NZM.hRIIb mice, respectively, the latter retaining features of SLE). XENP8206, a mAb which bears the same FcγRIIb-enhanced human Fc domain as does obexelimab but which recognizes murine CD19 rather than human CD19, inhibited in vitro BCR-triggered activation of B cells from both B6.hRIIb and NZM.hRIIb mice. Following administration of XENP8206 to B6.hRIIb or NZM.hRIIb mice, B cell numbers in the spleen and lymph nodes remained stable but became hyporesponsive to BCR-triggered activation for at least 14 days. These findings demonstrate proof-of-principle that pharmacologic co-engagement of BCR and human FcγRIIb inhibits B cell activation in non-autoimmune and SLE-prone hosts while preserving B cell numbers. These observations lay a strong foundation for clinical trials in human SLE with agents that co-engage BCR and FcγRIIb. Moreover, B6.hRIIb and NZM.hRIIb should serve as powerful in vivo models in the elucidation of the cellular and molecular underpinnings of the changes induced by BCR/FcγRIIb co-engagement. We generated non-autoimmune B6.hRIIb and SLE-prone NZM.hRIIb knockin mice for the human FcγRIIb extracellular domain. XENP8206 is an anti-murine CD19 mAb engineered to have high affinity for human FcγRIIb. XENP8206 inhibited in vitro BCR-triggered activation of B cells from both B6.hRIIb and NZM.hRIIb mice. XENP8206 inhibited in vivo BCR-triggered activation of B cells while preserving B cell numbers. These observations lay a strong foundation for clinical trials in human SLE with agents that co-engage BCR and FcγRIIb.
Collapse
Affiliation(s)
| | - Erik Pong
- Xencor, Inc., Monrovia, CA, 91016, USA
| | | | - Ning Yu
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Chaim O Jacob
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Samantha A Chalmers
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein School of Medicine, Bronx, NY, 10461, USA
| | - Chaim Putterman
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein School of Medicine, Bronx, NY, 10461, USA
| | | | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| |
Collapse
|
11
|
Krijgsman D, Roelands J, Andersen MN, Wieringa CHLA, Tollenaar RAEM, Hendrickx W, Bedognetti D, Hokland M, Kuppen PJK. Expression of NK cell receptor ligands in primary colorectal cancer tissue in relation to the phenotype of circulating NK- and NKT cells, and clinical outcome. Mol Immunol 2020; 128:205-218. [PMID: 33142138 DOI: 10.1016/j.molimm.2020.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Natural killer (NK) cells and natural killer T (NKT) cells are implicated in the development and progression of colorectal cancer (CRC). Tumor cells express NK cell receptor ligands that modulate their function. This study aimed to investigate the expression of such ligands in CRC in relation to the phenotype of circulating NK- and NKT cells, and clinical outcome. METHODS Primary tumor tissues were analyzed for protein expression of NK cell ligands using immunohistochemistry with automated image analysis in a cohort of 78 CRC patients. For 24 of the 78 patients, RNA expression of NK cell ligands was analyzed in primary tumor tissue using RNA sequencing. Receptor expression on circulating NK- and NKT cells was previously measured by us in 71 of the 78 patients using flow cytometry. RESULTS High Proliferating Cell Nuclear Antigen (PCNA) protein expression in the primary tumor associated with shorter disease-free survival (DFS) of CRC patients (P = 0.026). A trend was observed towards shorter DFS in CRC patients with above-median galectin-3 protein expression in the primary tumor (P = 0.055). High protein expression of galectin-3, CD1d, and human leukocyte antigen (HLA) class I, and high RNA expression of UL16-binding protein (ULBP)-1, -2, and -5, and HLA-E in the tumor tissue correlated with low expression of the corresponding receptors on circulating NK- or NKT cells (P < 0.05). CONCLUSIONS Galectin-3 and PCNA expression in the primary tumor may be prognostic biomarkers in CRC patients. Furthermore, our results suggest that NK cell receptor ligands expressed by tumor cells may modulate the phenotype of circulating NK- and NKT cells, and facilitate immune escape of metastasizing cells.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica Roelands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Morten N Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Hematology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | | | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter Hendrickx
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Krijgsman D, De Vries NL, Andersen MN, Skovbo A, Tollenaar RAEM, Bastiaannet E, Kuppen PJK, Hokland M. The effects of tumor resection and adjuvant therapy on the peripheral blood immune cell profile in patients with colon carcinoma. Cancer Immunol Immunother 2020; 69:2009-2020. [PMID: 32399587 PMCID: PMC7511291 DOI: 10.1007/s00262-020-02590-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The subset distribution and immunophenotype of circulating immune cells ("peripheral blood immune cell profile") may reflect tumor development and response to cancer treatment. In order to use the peripheral blood immune cell profile as biomarker to monitor patients over time, it is crucial to know how immune cell subsets respond to therapeutic interventions. In this study, we investigated the effects of tumor resection and adjuvant therapy on the peripheral blood immune cell profile in patients with colon carcinoma (CC). METHODS The subset distribution and immunophenotype of T cells (CD3+CD56-), CD56dim NK cells (CD3-CD56dim), CD56bright NK cells (CD3-CD56bright) and NKT-like cells (CD3+CD56+) were studied in preoperative and postoperative peripheral blood mononuclear cell (PBMC) samples of 24 patients with CC by multiparameter flow cytometry. Changes in immunophenotype of circulating immune cells after tumor resection were studied in patients treated with and without (capecitabine-based) adjuvant therapy. RESULTS The NKT-like cell (% of total PBMCs) and CD8+ T cell (% of total T cells) populations expanded in the peripheral blood of non-adjuvant-treated CC patients after surgery. NK- and NKT-like cells showed upregulation of activating receptors and downregulation of inhibitory receptors in non-adjuvant-treated CC patients after surgery. These changes were not observed in the peripheral blood of adjuvant-treated CC patients. CONCLUSIONS Our results suggest tumor-induced suppression of NK- and NKT-like cells in CC patients, an effect that could not be detected after tumor resection. In contrast, adjuvant therapy maintained tumor-induced immunosuppression of NK- and NKT-like cells in CC patients.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Natasja L De Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Morten N Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anni Skovbo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,FACS Core Facility, Aarhus University, Aarhus, Denmark
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Esther Bastiaannet
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | | |
Collapse
|
13
|
The Role of Circulating CD16+CD56+ Natural Killer Cells in the Screening, Diagnosis, and Staging of Colorectal Cancer before Initial Treatment. DISEASE MARKERS 2019; 2019:7152183. [PMID: 31636738 PMCID: PMC6766087 DOI: 10.1155/2019/7152183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Background and Objective A reliable noninvasive prediction tool for the screening, diagnosis, and/or staging of colorectal cancer (CRC) before surgery is critical for the choice of treatment and prognosis. Methods Patients admitted for initial treatment of CRC between January 1, 2015, and December 31, 2018, were retrieved and reviewed. Records of CD16+CD56+ natural killer (NK) cells were analyzed according to the stages of CRC. Results The number of qualified participants in the healthy, stage I, stage II, stage III, and stage IV CRC patients were 60, 66, 60, 70, and 68, respectively. There was a significant difference in circulating CD16+CD56+ NK cells between the healthy group and the CRC group (p < 0.01), as well as between the healthy group and stage III or IV CRC group (p < 0.01 and 0.001, respectively). The percentage of circulating CD16+CD56+ NK cells in lymphocytes was negatively correlated with the occurrence of CRC. When comparing the pool of stage I and II CRC cases with the pool of stage III and IV CRC cases using circulating CD16+CD56+ NK cells, the area under the Receiver Operating Characteristic curve was 0.878. Using an optimal cutoff value of 15.6%, the OR was 0.06 (0.03, 0.11), p < 0.001, sensitivity was 86.5%, specificity was 72.5%, positive predictive value was 74.2%, and negative predictive value was 85.5%. Conclusions Circulating CD16+CD56+ NK cells can be used as a screening and diagnostic/staging tool for CRC.
Collapse
|
14
|
Cui F, Qu D, Sun R, Nan K. Circulating CD16+CD56+ nature killer cells indicate the prognosis of colorectal cancer after initial chemotherapy. Med Oncol 2019; 36:84. [PMID: 31493232 DOI: 10.1007/s12032-019-1307-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
As the prognosis of colorectal cancer (CRC) does not always coincide with the pathology and/or surgical findings, a reliable noninvasive prediction tool for the prognosis of CRC is needed. Patients admitted for initial treatment of CRC between January 1, 2015 and December 31, 2015 were retrieved and reviewed. Records of circulating CD16+ CD56+ natural killer (NK) cells were analyzed before and after the initial chemotherapy of FOLFOX plan. Patients were followed up until June 30, 2019. One hundred and twenty-four cases after the FOLFOX chemotherapy were enrolled into this study. There were no significant differences in gender, age, or number of metastasis cases between the survival group and the nonsurvival group (p > 0.05), but significant differences in pre-chemotherapy, post-chemotherapy, and the differences between pre- and post-chemotherapy circulating CD16+ CD56+ NK cells between the survival group and the nonsurvival group (p < 0.01, p < 0.01, and p < 0.05, respectively) were observed. For the prediction of survival and nonsurvival CRC cases, the Areas Under the Curve were 0.626 and 0.759 in the Receiver-Operating Characteristic curves for the pre- and post-chemotherapy circulating CD16+ CD56+NK cells, respectively. Using an optimal cutoff value of 11.8% in post-chemotherapy circulating CD16+CD56+NK cells to differentiate survival and nonsurvival cases, the odds ratio was 0.12 (0.05, 0.27), p < 0.001. The percentages of both pre-chemotherapy and post-chemotherapy circulating CD16+CD56+NK cells were negatively correlated with the prognosis of CRC. The percentage of post-chemotherapy circulating CD16+CD56+NK cells was able to effectively predict the prognosis of CRC cases.
Collapse
Affiliation(s)
- Feng Cui
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Qu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruya Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
15
|
Characterization of circulating T-, NK-, and NKT cell subsets in patients with colorectal cancer: the peripheral blood immune cell profile. Cancer Immunol Immunother 2019; 68:1011-1024. [PMID: 31053876 PMCID: PMC6529387 DOI: 10.1007/s00262-019-02343-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Objective As the development and progression of colorectal cancer (CRC) are known to be affected by the immune system, cell subsets such as T cells, natural killer (NK) cells, and natural killer T (NKT) cells are considered interesting targets for immunotherapy and clinical biomarker research. Until now, the role of systemic immune profiles in tumor progression remains unclear. In this study, we aimed to characterize the immunophenotype of circulating T cells, NK cells, and NKT-like cells in patients with CRC, and to subsequently correlate these immunophenotypes to clinical follow-up data. Methods Using multiparameter flow cytometry, the subset distribution and immunophenotype of T cells (CD3+CD56−), CD56dim NK cells (CD3−CD56dim), CD56bright NK cells (CD3−CD56bright), and NKT-like (CD3+CD56+) cells were investigated in peripheral blood mononuclear cell (PBMC) samples from 71 CRC patients and 19 healthy donors. Results CRC patients showed profound differences in immune cell subset distribution and their immunophenotype compared to healthy donors, as characterized by increased percentage of regulatory T cells, and reduced expression level of the natural cytotoxicity receptors NKp44 and NKp46 on both CD56dim NK cells and NKT-like cells. Finally, we showed in a multivariate analysis that above-median percentage of CD16+ NKT-like cells was independently associated with shorter disease-free survival in CRC patients. Conclusion The altered phenotype of circulating immune cell subsets in CRC and its association with clinical outcome highlight the potential use of PBMC subsets as prognostic biomarkers in CRC, thereby contributing to better insight into the role of systemic immune profiles in tumor progression. Electronic supplementary material The online version of this article (10.1007/s00262-019-02343-7) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Krijgsman D, Hokland M, Kuppen PJK. The Role of Natural Killer T Cells in Cancer-A Phenotypical and Functional Approach. Front Immunol 2018. [PMID: 29535734 PMCID: PMC5835336 DOI: 10.3389/fimmu.2018.00367] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer T (NKT) cells are a subset of CD1d-restricted T cells at the interface between the innate and adaptive immune system. NKT cells can be subdivided into functional subsets that respond rapidly to a wide variety of glycolipids and stress-related proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their major modulating effects on immune responses via secretion of cytokines, NKT cells are also considered important players in tumor immunosurveillance. During early tumor development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimulate tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case of tumor progression, NKT cells may become overstimulated and anergic leading to deletion of a part of the NKT cell population in patients via activation-induced cell death. In addition, the remaining NKT cells become hyporesponsive, or switch to immunosuppressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression and immune escape. In this review, we discuss this important role of NKT cells in tumor development and we conclude that there should be three important focuses of future research in cancer patients in relation with NKT cells: (1) expansion of the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells toward TH1-like subsets with antitumor activity.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Gordan S, Biburger M, Nimmerjahn F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol Rev 2016; 268:52-65. [PMID: 26497512 DOI: 10.1111/imr.12347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytic system consists of a great variety of cell subsets localized throughout the body in immunological and non-immunological tissues. While one of their prime tasks is to detect, phagocytose, and kill intruding microorganisms, they are also involved in maintaining tissue homeostasis and immune tolerance toward self through removal of dying cells. Furthermore, monocytes and macrophages have been recognized to play a critical role for mediating immunoglobulin G (IgG)-dependent effector functions, including target cell depletion, tissue inflammation, and immunomodulation. For this, monocyte and macrophage populations are equipped with a complex set of Fc-receptors, enabling them to directly interact with pro- or anti-inflammatory IgG preparations. In this review, we will summarize the most recent findings, supporting a central role of monocytes and macrophages for pro- and anti-inflammatory IgG activity.
Collapse
Affiliation(s)
- Sina Gordan
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Biburger
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
19
|
Moraru M, Black LE, Muntasell A, Portero F, López-Botet M, Reyburn HT, Pandey JP, Vilches C. NK Cell and Ig Interplay in Defense against Herpes Simplex Virus Type 1: Epistatic Interaction of CD16A and IgG1 Allotypes of Variable Affinities Modulates Antibody-Dependent Cellular Cytotoxicity and Susceptibility to Clinical Reactivation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1676-84. [PMID: 26179905 DOI: 10.4049/jimmunol.1500872] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022]
Abstract
HSV-1 latently infects most humans, causing a variable clinical picture that depends, in part, on host genetic factors. Both IgG and its cellular FcRs, CD16A and CD32A-C (encoded by FCGR3A and FCGR2A-C, respectively, on chromosome 1), display polymorphisms that could affect their defensive function. Of potential relevance are a FCGR3A dimorphism resulting in CD16A-valine/phenylalanine-158 allotypes with different IgG affinity, variations conditioning NK cell expression of CD32B or CD32C, and IgG1 H chain (IGHG1) and kappa-chain (IGKC) polymorphisms determining allotypes designated G1m and Km. In this study, we assessed the contribution of Ig genetic variations and their interaction with FcR polymorphism to HSV-1 susceptibility, as well as their impact on NK cell-mediated Ab-dependent cellular cytotoxicity (ADCC). Our results show an epistatic interaction between IGHG1 and FCGR3A such that the higher affinity CD16A-158V/V genotype associates with an asymptomatic course of HSV-1 infection only in homozygotes for G1m3. Furthermore, CD16A-158V and G1m3 allotypes enhanced ADCC against opsonized HSV-1-infected fibroblasts. Conversely, Km allotypes and CD32B or CD32C expression on NK cells did not significantly influence HSV-1 susceptibility or ADCC. NK cells degranulating against immune serum-opsonized HSV-1-infected fibroblasts had heterogeneous phenotypes. Yet, enhanced ADCC was observed among NK cells showing a differentiated, memory-like phenotype (NKG2C(bright)NKG2A(-)CD57(+)FcRγ(-)), which expand in response to human CMV. These results extend our knowledge on the importance of immunogenetic polymorphisms and NK cell-Ab interplay in the host response against HSV-1 and point to the relevance of interactions between immune responses elicited during chronic coinfection by multiple herpesviruses.
Collapse
Affiliation(s)
- Manuela Moraru
- Inmunogenética e Histocompatibilidad, Instituto de Investigación Sanitaria Puerta de Hierro, 28222 Majadahonda, Madrid, Spain
| | - Laurel E Black
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Aura Muntasell
- Institut Hospital del Mar d'Investigaciones Médiques, 08002 Barcelona, Spain
| | - Francisca Portero
- Servicio de Microbiología, Instituto de Investigación Sanitaria Puerta de Hierro, 28222 Majadahonda, Madrid, Spain; and
| | - Miguel López-Botet
- Institut Hospital del Mar d'Investigaciones Médiques, 08002 Barcelona, Spain
| | - Hugh T Reyburn
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Carlos Vilches
- Inmunogenética e Histocompatibilidad, Instituto de Investigación Sanitaria Puerta de Hierro, 28222 Majadahonda, Madrid, Spain;
| |
Collapse
|
20
|
Abstract
The capacity of immunoglobulin G (IgG) antibodies to eliminate virtually any target cell has resulted in the widespread introduction of cytotoxic antibodies into the clinic in settings of cancer therapy, autoimmunity, and transplantation, for example. More recently, it has become apparent that also the protection from viral infection via IgG antibodies may require cytotoxic effector functions, suggesting that antibody-dependent cellular cytotoxicity (ADCC) directed against malignant or virally infected cells is one of the most essential effector mechanisms triggered by IgG antibodies to protect the host. A detailed understanding of the underlying molecular and cellular pathways is critical, therefore, to make full use of this antibody effector function. Several studies over the last years have provided novel insights into the effector pathways and innate immune effector cells responsible for ADCC reactions. One of the most notable outcomes of many of these reports is that cells of the mononuclear phagocytic system rather than natural killer cells are critical for removal of IgG opsonized target cells in vivo.
Collapse
|
21
|
Nimmerjahn F, Gordan S, Lux A. FcγR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol 2015; 36:325-36. [PMID: 25981969 DOI: 10.1016/j.it.2015.04.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
Given the widespread use of antibodies of the immunoglobulin G (IgG) class as cytotoxic, immunomodulatory, and neutralizing agents in the therapy of malignant, infectious, and autoimmune diseases, understanding the molecular and cellular mechanisms responsible for their therapeutic activity is of major importance. While Fcγ receptors (FcγR) have well-appreciated roles as effectors of cytotoxic IgG activity, it has only recently become clear that the functionality of immunomodulatory and neutralizing IgG preparations also depends on cellular FcγRs. Here, we review current models of IgG activity in infectious and inflammatory settings, and examine the importance of cell type-specific expression of FcγRs in determining functional outcome. We discuss how this knowledge may be used to improve the activity of therapeutic antibody preparations and outline important areas of focus for future research.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Institute of Genetics at the Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany.
| | - Sina Gordan
- Institute of Genetics at the Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany
| | - Anja Lux
- Institute of Genetics at the Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
22
|
Abstract
Antibodies against surface molecules of human tumors are now frequently administered in combination with strong chemotherapy, increasing therapeutic efficacy but making the task of elucidating immunological events more difficult. Experiments on genetically manipulated mice indicate that antibody efficacy is greatest when IgG antibody coating tumor cells is engaged by the Fcγ-receptors of effector cells, chiefly the monocyte/macrophage lineage. Evidence suggests lesser roles for NK cells, neutrophils, receptor-mediated cytotoxicity and complement-mediated cytotoxicity. The classical mode of killing employed by macrophages is phagocytosis, but much has to be learned about optimally activating macrophages for this task, and about any other modes of cytotoxicity used. There is renewed interest in antigenic modulation, which implies removal of therapeutic antibody linked with antigen from target-cell surfaces. It is now apparent that this removal of immune complexes can be achieved either by internalization by the target cell, or by transfer of the complexes to another cell by trogocytosis. In trials, anti-idiotype antibodies surprisingly proved therapeutically more effective than anti-CD20, despite anti-idiotype being more effectively removed from target-cell surfaces by antigenic modulation. This anomalous result might reflect the fact that persistence of anti-CD20 immune complexes in large amounts induces serious effector modulation, which paralyzes macrophage attacks on antibody-coated cells. The case for effector modulation is argued by analogy with the therapeutic suppression of autoimmune inflammation by effector modulation, achieved by infusion either of normal IgG in large amounts, or of anti-red cell IgG in relatively small amounts.
Collapse
Affiliation(s)
- George T Stevenson
- University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
23
|
Bhatnagar N, Ahmad F, Hong HS, Eberhard J, Lu IN, Ballmaier M, Schmidt RE, Jacobs R, Meyer-Olson D. FcγRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcγRII (CD32). Eur J Immunol 2014; 44:3368-79. [PMID: 25100508 DOI: 10.1002/eji.201444515] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/07/2014] [Accepted: 08/04/2014] [Indexed: 01/01/2023]
Abstract
Monocytes are known to engage in reciprocal crosstalk with NK cells but their influence on NK-cell-associated antibody-dependent cellular cytotoxicity (ADCC) is not well understood. We demonstrate that in humans FcγRIII (CD16)-dependent ADCC by NK cells is considerably enhanced by monocytes, and that this effect is regulated by FcγRII (CD32) crosslinking in healthy individuals. It is known that during HIV-1 infection, NK cells are known to express low levels of CD16 and exhibit reduced ADCC. We show that immune regulation of CD16-mediated NK-cell cytotoxicity by monocytes through CD32 engagement is substantially disturbed in chronic progressive HIV-1 infection. Expression of activating isoform of CD32 represented a compensatory mechanism for reduced expression of CD16 on NK cells during HIV-1 infection. As a result, the regulation of NK-cell-associated ADCC by monocytes is skewed and eventually constitutes a novel factor that contributes to HIV-1-associated immune deficiency, dysregulation and pathogenesis. Our data therefore provide evidence, for the first time, that in humans monocytes act as a rheostat for FcγRIII-mediated NK-cell functions maintaining a well-balanced immune response.
Collapse
Affiliation(s)
- Nupur Bhatnagar
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li X, Wu J, Ptacek T, Redden DT, Brown EE, Alarcón GS, Ramsey-Goldman R, Petri MA, Reveille JD, Kaslow RA, Kimberly RP, Edberg JC. Allelic-dependent expression of an activating Fc receptor on B cells enhances humoral immune responses. Sci Transl Med 2014; 5:216ra175. [PMID: 24353158 DOI: 10.1126/scitranslmed.3007097] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
B cells are pivotal regulators of acquired immune responses, and recent work in both experimental murine models and humans has demonstrated that subtle changes in the regulation of B cell function can substantially alter immunological responses. The balance of negative and positive signals in maintaining an appropriate B cell activation threshold is critical in B lymphocyte immune tolerance and autoreactivity. FcγRIIb (CD32B), the only recognized Fcγ receptor on B cells, provides immunoglobulin G (IgG)-mediated negative modulation through a tyrosine-based inhibition motif, which down-regulates B cell receptor-initiated signaling. These properties make FcγRIIb a promising target for antibody-based therapy. We report the discovery of allele-dependent expression of the activating FcγRIIc on B cells. Identical to FcγRIIb in the extracellular domain, FcγRIIc has a tyrosine-based activation motif in its cytoplasmic domain. In both human B cells and B cells from mice transgenic for human FcγRIIc, FcγRIIc expression counterbalances the negative feedback of FcγRIIb and enhances humoral responses to immunization in mice and to BioThrax vaccination in a human anthrax vaccine trial. Moreover, the FCGR2C-ORF allele is associated with the risk of development of autoimmunity in humans. FcγRIIc expression on B cells challenges the prevailing paradigm of unidirectional negative feedback by IgG immune complexes via the inhibitory FcγRIIb, is a previously unrecognized determinant in human antibody/autoantibody responses, and opens the opportunity for more precise personalized use of B cell-targeted antibody-based therapy.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jans J, Vissers M, Heldens JGM, de Jonge MI, Levy O, Ferwerda G. Fc gamma receptors in respiratory syncytial virus infections: implications for innate immunity. Rev Med Virol 2013; 24:55-70. [PMID: 24227634 DOI: 10.1002/rmv.1773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/30/2022]
Abstract
RSV infections are a major burden in infants less than 3 months of age. Newborns and infants express a distinct immune system that is largely dependent on innate immunity and passive immunity from maternal antibodies. Antibodies can regulate immune responses against viruses through interaction with Fc gamma receptors leading to enhancement or neutralization of viral infections. The mechanisms underlying the immunomodulatory effect of Fc gamma receptors on viral infections have yet to be elucidated in infants. Herein, we will discuss current knowledge of the effects of antibodies and Fc gamma receptors on infant innate immunity to RSV. A better understanding of the pathogenesis of RSV infections in young infants may provide insight into novel therapeutic strategies such as vaccination.
Collapse
Affiliation(s)
- Jop Jans
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands; Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
He X, Li D, Luo Z, Liang H, Peng H, Zhao Y, Wang N, Liu D, Qin C, Wei Q, Yan H, Shao Y. Compromised NK cell-mediated antibody-dependent cellular cytotoxicity in chronic SIV/SHIV infection. PLoS One 2013; 8:e56309. [PMID: 23424655 PMCID: PMC3570461 DOI: 10.1371/journal.pone.0056309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence indicates that antibody-dependent cellular cytotoxicity (ADCC) contributes to the control of HIV/SIV infection. However, little is known about the ADCC function of natural killer (NK) cells in non-human primate model. Here we demonstrated that ADCC function of NK cells was significantly compromised in chronic SIV/SHIV infection, correlating closely with the expression of FcγRIIIa receptor (CD16) on NK cells. CD32, another class of IgG Fc receptors, was identified on NK cells with higher expression in the infected macaques and the blockade of CD32 impacted the ability of NK cells to respond to antibody-coated target cells. The inhibition of matrix metalloproteases (MMPs), a group of enzymes normally involved in tissue/receptor remodeling, could restore NK cell-mediated ADCC with increased CD16 expression on macaque NK cells. These data offer a clearer understanding of NK cell-mediated ADCC in rhesus macaques, which will allow us to evaluate the ADCC repertoire arising from preclinical vaccination studies in non-human primates and inform us in the future design of effective HIV vaccination strategies.
Collapse
Affiliation(s)
- Xuan He
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenwu Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Peng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yangyang Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nidan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Donghua Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huimin Yan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HMY); (YMS)
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (HMY); (YMS)
| |
Collapse
|
27
|
Mueller M, Barros P, Witherden A, Roberts A, Zhang Z, Schaschl H, Yu CY, Hurles M, Schaffner C, Floto R, Game L, Steinberg K, Wilson R, Graves T, Eichler E, Cook H, Vyse T, Aitman T. Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus. Am J Hum Genet 2013; 92:28-40. [PMID: 23261299 PMCID: PMC3542466 DOI: 10.1016/j.ajhg.2012.11.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/12/2012] [Accepted: 11/26/2012] [Indexed: 01/18/2023] Open
Abstract
Reduced FCGR3B copy number is associated with increased risk of systemic lupus erythematosus (SLE). The five FCGR2/FCGR3 genes are arranged across two highly paralogous genomic segments on chromosome 1q23. Previous studies have suggested mechanisms for structural rearrangements at the FCGR2/FCGR3 locus and have proposed mechanisms whereby altered FCGR3B copy number predisposes to autoimmunity, but the high degree of sequence similarity between paralogous segments has prevented precise definition of the molecular events and their functional consequences. To pursue the genomic pathology associated with FCGR3B copy-number variation, we integrated sequencing data from fosmid and bacterial artificial chromosome clones and sequence-captured DNA from FCGR3B-deleted genomes to establish a detailed map of allelic and paralogous sequence variation across the FCGR2/FCGR3 locus. This analysis identified two highly paralogous 24.5 kb blocks within the FCGR2C/FCGR3B/FCGR2B locus that are devoid of nonpolymorphic paralogous sequence variations and that define the limits of the genomic regions in which nonallelic homologous recombination leads to FCGR2C/FCGR3B copy-number variation. Further, the data showed evidence of swapping of haplotype blocks between these highly paralogous blocks that most likely arose from sequential ancestral recombination events across the region. Functionally, we found by flow cytometry, immunoblotting and cDNA sequencing that individuals with FCGR3B-deleted alleles show ectopic presence of FcγRIIb on natural killer (NK) cells. We conclude that FCGR3B deletion juxtaposes the 5'-regulatory sequences of FCGR2C with the coding sequence of FCGR2B, creating a chimeric gene that results in an ectopic accumulation of FcγRIIb on NK cells and provides an explanation for SLE risk associated with reduced FCGR3B gene copy number.
Collapse
Affiliation(s)
- Michael Mueller
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Paula Barros
- Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Abigail S. Witherden
- Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Amy L. Roberts
- Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Zhou Zhang
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Helmut Schaschl
- Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Chack-Yung Yu
- Center for Molecular and Human Genetics, Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Matthew E. Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Catherine Schaffner
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - R. Andres Floto
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Laurence Game
- Genomics Core Laboratory, MRC Clinical Sciences Centre, London W12 0NN, UK
| | - Karyn Meltz Steinberg
- Department of Genome Sciences, University of Washington School of Medicine and the Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Richard K. Wilson
- The Genome Institute at Washington University, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tina A. Graves
- The Genome Institute at Washington University, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine and the Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - H. Terence Cook
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Timothy J. Vyse
- Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Timothy J. Aitman
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
28
|
Rocca YS, Roberti MP, Arriaga JM, Amat M, Bruno L, Pampena MB, Huertas E, Loria FS, Pairola A, Bianchini M, Mordoh J, Levy EM. Altered phenotype in peripheral blood and tumor-associated NK cells from colorectal cancer patients. Innate Immun 2012; 19:76-85. [PMID: 22781631 DOI: 10.1177/1753425912453187] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite NK cells being originally identified because of their ability to kill tumor cells in vitro, only limited information is available on NK cells infiltration of malignant tumors, especially in humans. NK cells infiltrating human colorectal carcinomas (CRCs) were analyzed to identify their potential protective role in an antitumor immune response. The expression and function of relevant molecules were analyzed from different sources, comparing tumor-associated NK cells (TANKs) with autologous peripheral blood NK cells (PB-NKs) from CRC patients-the latter in comparison with PB-NKs from normal donors. TANKs displayed a profound alteration of their phenotype with a drastic reduction of NK cell receptor expression. Co-culture experiments showed that CRC cells produce modulation in NK phenotype and functionality. Moreover, PB-NKs from CRC patients also exhibited an altered phenotype and profound defects in the ability to activate degranulation and IFN-γ production. For the first time, TANK and PB-NK cells from CRC patients have been characterized. It is shown that they are not capable of producing relevant cytokines and degranulate. Taken together, our results suggest that NK cells from CRC patients present alterations of phenotype and function therefore supporting the progression of cancer.
Collapse
Affiliation(s)
- Yamila S Rocca
- Centro de Investigaciones Oncológicas CIO-FUCA, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kelley RF, Meng YG. Methods to engineer and identify IgG1 variants with improved FcRn binding or effector function. Methods Mol Biol 2012; 901:277-293. [PMID: 22723108 DOI: 10.1007/978-1-61779-931-0_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Antibodies as therapeutic agents have gained broad acceptance as shown by the number of antibodies in clinical use and many more in clinical development. This utility is an outcome of the high specificity and affinity of the antigen-binding site comprised of the heavy and light chain variable domains. In addition, the Fc portion of human or humanized IgG(1) antibodies promotes long half-life through interaction with the recycling FcRn receptor and effects killing functions through interaction with complement and Fcγ receptors. Engineering the Fc portion to increase half-life through stronger binding to FcRn, or to increase complement or cell-mediated killing may lead to improved therapeutic antibodies. These improvements may benefit the patients through convenience in dosing or increased efficacy. Here we describe protocols for generating Fc-engineered IgG(1) antibodies and assays to measure Fc receptor binding, antibody dependent cellular cytotoxicity activity, and complement dependent cytotoxicity activity to identify variants with improved FcRn binding or effector function.
Collapse
Affiliation(s)
- Robert F Kelley
- Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
| | | |
Collapse
|
30
|
Wang LH, Wang N, Lu XY, Liu BC, Yanda MK, Song JZ, Dai HM, Sun YL, Bao HF, Eaton DC, Ma HP. Rituximab inhibits Kv1.3 channels in human B lymphoma cells via activation of FcγRIIB receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:505-13. [PMID: 22192444 DOI: 10.1016/j.bbamcr.2011.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/17/2011] [Accepted: 11/29/2011] [Indexed: 01/08/2023]
Abstract
Kv1.3 channels play an important role in modulating lymphocyte proliferation and apoptosis. We hypothesized that Kv1.3 channels in B lymphocytes might be regulated by rituximab, an antibody to CD20, a drug for treatments of B-cell lymphomas and autoimmune diseases. Using both whole-cell and cell-attached patch-clamp techniques, we found that rituximab inhibited Kv1.3 channels in Daudi human B lymphoma cells by promoting the channel inactivation at a concentration which was much greater than that required for activation of CD20. The effect of rituximab on Kv1.3 channels was abolished after selective blockade of FcγRIIB receptors with anti-FcγRIIB antibody. Western blot experiments showed that Daudi B cells expressed both Kv1.3 channel and the low affinity Fc receptor, FcγRIIB, which could be activated by the Fc region of rituximab. In contrast, normal lymphocytes expressed less Kv1.3 channels with faster inactivation. Confocal microscopy and flow cytometry data showed that rituximab induced apoptosis of Daudi B cells and that the effect was attenuated by blockade of FcγRIIB receptors and partially mimicked by inhibition of Kv1.3 channels. These results suggest that in addition to previously described complement-dependent cytotoxicity, rituximab also induces apoptosis of malignant B lymphocyte by stimulating FcγRIIB receptors and inhibiting Kv1.3 channels.
Collapse
Affiliation(s)
- Li-Hua Wang
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nahmias AJ, Schollin J, Abramowsky C. Evolutionary-developmental perspectives on immune system interactions among the pregnant woman, placenta, and fetus, and responses to sexually transmitted infectious agents. Ann N Y Acad Sci 2011; 1230:25-47. [PMID: 21824164 DOI: 10.1111/j.1749-6632.2011.06137.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A balance has evolved over deep time between the various immune systems of the "triad" that is linked together for a short period: the pregnant woman, the fetus, and the placenta. This balance is affected by, and helps to determine, the immune responses to maternal infectious agents that may be transmitted to the fetus/infant transplacentally, intrapartum, or via breast milk. This review identifies newer evolutionary concepts and processes related particularly to the human placenta, innate and adaptive immune systems involved in tolerance, and in responses to sexually transmitted infectious (STI) agents that may be pathogenic to the fetus/infant at different gestational periods and in the first year of life. An evolutionary-developmental (EVO-DEVO) perspective has been applied to the complexities within, and among, the different actors and their beneficial or deleterious outcomes. Such a phylogenetic and ontogenic approach has helped to stimulate several basic questions and suggested possible explanations and novel practical interventions.
Collapse
|
32
|
Abès R, Dutertre CA, Agnelli L, Teillaud JL. Activating and inhibitory Fcgamma receptors in immunotherapy: being the actor or being the target. Expert Rev Clin Immunol 2010; 5:735-47. [PMID: 20477693 DOI: 10.1586/eci.09.57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane Fcgamma receptors (FcgammaRs) can act either as potent activators of effector cell functions or as inhibitors of receptor-mediated cell activation following engagement by IgG antibodies bound to their target molecules. The remarkable ability of activating FcgammaRs to trigger antibody-dependent cellular cytotoxicity, cytokine release and phagocytosis/endocytosis followed by antigen presentation has stimulated the development of a number of therapeutic monoclonal antibodies whose Fc regions have been engineered to optimize their effector functions, mostly their killing activities. Conversely, the demonstration that inhibitory FcgammaRs can block or downmodulate effector functions has led to the concept that targeting these receptors is of interest in a number of pathologies. The use of bispecific antibodies leading to the crosslinking of FcgammaRIIB with activating receptors could induce immunomodulation in autoimmune or allergic diseases. Alternatively, the use of cytotoxic/antagonist anti-FcgammaRIIB antibodies could kill FcgammaRIIB-positive tumor cells or prevent the downmodulation of activating receptors. Thus, antibodies engineered to preferentially target activating or inhibitory FcgammaRs are currently being designed for therapeutic use.
Collapse
Affiliation(s)
- Riad Abès
- INSERM UMRS 872, Cordeliers Research Center, Pierre & Marie Curie University and Paris-Descartes University, Paris, France.
| | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
Genetic defects affecting the humoral immune response and especially the production of antibodies of the immunoglobulin G (IgG) isotype result in a heightened susceptibility to infections. Studies over the last years have demonstrated the crucial role of Fc-receptors for IgG (FcγRs) widely expressed on innate immune effector cells in mediating the protective function of IgG. During the last years, additional ligands interacting with FcγRs as well as additional receptors binding to IgG glycosylation variants have been identified. In this review, we discuss how the interaction of these different ligands with classical and novel Fcγ-receptors influences the immune response and which strategies microorganisms have developed to prevent them.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, University of Erlangen-Nuremberg, Staudtstr. 5, 91054, Erlangen, Germany.
| | | |
Collapse
|