1
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
2
|
Du Bruyn E, Ruzive S, Lindestam Arlehamn CS, Sette A, Sher A, Barber DL, Wilkinson RJ, Riou C. Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunol 2021; 14:491-499. [PMID: 32678272 PMCID: PMC7855386 DOI: 10.1038/s41385-020-0322-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023]
Abstract
Recent data from mice and non-human primate models of tuberculosis suggested that CD153, a TNF super family member, plays an important role in Mycobacterium tuberculosis (Mtb) control. However, this molecule has not been comprehensively evaluated in humans. Here, we show that the proportion of Mtb-specific CD4 T cells expressing CD153 was significantly reduced in active TB patients compared to latently infected persons. Importantly, the CD153+ Mtb-specific CD4 response inversely correlated with lung bacterial load, inferred by Xpert cycle threshold, irrespective of HIV status. Antitubercular treatment partially restored CD153 expression on Mtb-specific CD4 T cells. This is the first report of a subset of Mtb-specific CD4 T cells showing strong negative correlation with bacterial burden. Building on substantial evidence from animal models implicating CD153 as a mediator of host protection, our findings suggest it may play a similar role in humans and its measurement may be useful to evaluate TB vaccine efficacy.
Collapse
Affiliation(s)
- Elsa Du Bruyn
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Sheena Ruzive
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | | | - Alessandro Sette
- grid.185006.a0000 0004 0461 3162Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Alan Sher
- grid.419681.30000 0001 2164 9667Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Daniel L. Barber
- grid.419681.30000 0001 2164 9667T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Robert J. Wilkinson
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa ,grid.7445.20000 0001 2113 8111Department of Infectious Diseases, Imperial College London, London, W2 1PG UK ,grid.7836.a0000 0004 1937 1151Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, NW1 1AT UK
| | - Catherine Riou
- grid.7836.a0000 0004 1937 1151Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925 South Africa ,grid.7836.a0000 0004 1937 1151Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Nakayama H, Yamazaki R, Kato J, Koda Y, Sakurai M, Abe R, Watanuki S, Sumiya C, Shiroshita K, Fujita S, Yamaguchi K, Okamoto S, Mori T. Human Herpesvirus 6 Reactivation Evaluated by Digital Polymerase Chain Reaction and Its Association With Dynamics of CD134-Positive T Cells After Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 2019; 220:1001-1007. [DOI: 10.1093/infdis/jiz237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractBackgroundHuman herpesvirus 6 (HHV-6) causes life-threatening central nervous system disorders after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent studies implicated CD134 as a specific receptor of HHV-6B and demonstrated that its expression levels in CD4-positive T cells after allo-HSCT could be related to the reactivation of HHV-6. We prospectively evaluated the relationship between HHV-6 reactivation and CD134+ T cells in the recipients of allo-HSCT.MethodsHHV-6 viral load in plasma was quantitatively measured weekly after allo-HSCT by digital polymerase chain reaction in 34 patients. The ratio of CD134 in CD4+ T cells (CD134/CD4 ratio) was serially measured by flow cytometry before and after transplantation.ResultsHHV-6 reactivation was detected in 23 patients (68%). The CD134/CD4 ratio before conditioning was significantly higher in patients with HHV-6 reactivation than in those without (median, 3.8% vs 1.5%, P < .01). In multivariate analysis, a higher CD134/CD4 ratio before conditioning was significantly associated with the incidence of HHV-6 reactivation (odds ratio, 10.5 [95% confidence interval, 1.3–85.1], P = .03).ConclusionsA higher CD134/CD4 ratio before conditioning was associated with a higher risk of HHV-6 reactivation, suggesting that the rate may be a promising marker for predicting HHV-6 reactivation after allo-HSCT.
Collapse
Affiliation(s)
- Hitomi Nakayama
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | - Rie Yamazaki
- Division of Hematology, Department of Medicine, Tokyo, Japan
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kato
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | - Yuya Koda
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | - Ryohei Abe
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | - Chieko Sumiya
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | - Shinya Fujita
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | | | - Takehiko Mori
- Division of Hematology, Department of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Sun G, Sun X, Li W, Liu K, Tian D, Dong Y, Sun X, Xu H, Zhang D. Critical role of OX40 in the expansion and survival of CD4 T-cell-derived double-negative T cells. Cell Death Dis 2018; 9:616. [PMID: 29795285 PMCID: PMC5966453 DOI: 10.1038/s41419-018-0659-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/19/2023]
Abstract
CD4+ T-cell-converted CD4−CD8− double negative (cDNT) have strong suppressive activity in the maintenance of immune tolerance, whereas IL-2 promotes cDNT proliferation and enhances cDNT resistance to apoptosis. However, the intrinsic mechanisms that regulate the survival of cDNT are still unknown. Here we demonstrate that the OX40 molecule was highly expressed on cDNT. The expression of OX40 was necessary to promote proliferation and inhibit apoptosis of cDNT in vivo and in vitro. OX40 promoted the survival of cDNT by regulating the expression of Bcl-2, Bcl-xL, Survivin, and BCL2L11. Canonical NF-κB cell signaling played an important role in the transmission of essential division and survival signals through OX40 in cDNT. IL-2 promoted the survival of cDNT in part via elevating the expression of the OX40 molecule. IL-2 promoted OX40 expression via downregulating the PPARα expression. In conclusion, we elucidated that OX40 is a key molecule that regulates cDNT proliferation and survival. IL-2 promoted OX40 expression by downregulating the PPARα binding to the OX40 promoter, leading to the elevated expression of Bcl-2, Bcl-xL, and Survivin in cDNT, which finally resulted in the promoted proliferation and decreased apoptosis of cDNT.
Collapse
Affiliation(s)
- Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Xiaojing Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Wei Li
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Dan Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Yiran Dong
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Xuelian Sun
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hufeng Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,Beijing Clinical Research Institute, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China.
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,Beijing Clinical Research Institute, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China. .,National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
5
|
Bakos E, Thaiss CA, Kramer MP, Cohen S, Radomir L, Orr I, Kaushansky N, Ben-Nun A, Becker-Herman S, Shachar I. CCR2 Regulates the Immune Response by Modulating the Interconversion and Function of Effector and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4659-4671. [PMID: 28507030 DOI: 10.4049/jimmunol.1601458] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/14/2017] [Indexed: 11/19/2022]
Abstract
Chemokines and chemokine receptors establish a complex network modulating immune cell migration and localization. These molecules were also suggested to mediate the differentiation of leukocytes; however, their intrinsic, direct regulation of lymphocyte fate remained unclear. CCR2 is the main chemokine receptor inducing macrophage and monocyte recruitment to sites of inflammation, and it is also expressed on T cells. To assess whether CCR2 directly regulates T cell responses, we followed the fates of CCR2-/- T cells in T cell-specific inflammatory models. Our in vitro and in vivo results show that CCR2 intrinsically mediates the expression of inflammatory T cell cytokines, and its absence on T cells results in attenuated colitis progression. Moreover, CCR2 deficiency in T cells promoted a program inducing the accumulation of Foxp3+ regulatory T cells, while decreasing the levels of Th17 cells in vivo, indicating that CCR2 regulates the immune response by modulating the effector/regulatory T ratio.
Collapse
Affiliation(s)
- Eszter Bakos
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Irit Orr
- Life Sciences Core Facilities, Department of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Shirly Becker-Herman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| |
Collapse
|
6
|
Mokada-Gopal L, Boeser A, Lehmann CHK, Drepper F, Dudziak D, Warscheid B, Voehringer D. Identification of Novel STAT6-Regulated Proteins in Mouse B Cells by Comparative Transcriptome and Proteome Analysis. THE JOURNAL OF IMMUNOLOGY 2017; 198:3737-3745. [DOI: 10.4049/jimmunol.1601838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022]
|
7
|
Hombach AA, Abken H. Targeting two co-operating cytokines efficiently shapes immune responses. Oncoimmunology 2014; 2:e23205. [PMID: 23802072 PMCID: PMC3661157 DOI: 10.4161/onci.23205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 12/15/2022] Open
Abstract
For simultaneously mobilizing the adaptive and innate immune system against cancer, we fused interleukin (IL)-2 and IL-12 to generate a dual cytokine moiety that is targeted to neoplastic lesions by an antibody-binding domain. This approach elicits a broader attack of the immune system against cancer than the use of each cytokine alone.
Collapse
Affiliation(s)
- Andreas A Hombach
- Department I of Internal Medicine; Center for Molecular Medicine Cologne (CMMC); University Hospital Cologne; University of Cologne; Cologne, Germany
| | | |
Collapse
|
8
|
An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack. PLoS One 2012; 7:e44482. [PMID: 23028547 PMCID: PMC3445545 DOI: 10.1371/journal.pone.0044482] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/08/2012] [Indexed: 11/23/2022] Open
Abstract
Successful immunotherapy of Hodgkin's disease is so far hampered by the striking unresponsiveness of lymphoma infiltrating immune cells. To mobilize both adoptive and innate immune cells for an anti-tumor attack we fused the pro-inflammatory cytokines IL2 and IL12 to an anti-CD30 scFv antibody in a dual cytokine fusion protein to accumulate both cytokines at the malignant CD30+ Hodgkin/Reed-Sternberg cells in the lymphoma lesion. The tumor-targeted IL12-IL2 fusion protein was superior in activating resting T cells to amplify and secrete pro-inflammatory cytokines compared to targeted IL2 or IL12 alone. NK cells were also activated by the dual cytokine protein to secrete IFN-γ and to lyse target cells. The tumor-targeted IL12-IL2, when applied by i.v. injection to immune-competent mice with established antigen-positive tumors, accumulated at the tumor site and induced tumor regression. Data demonstrate that simultaneous targeting of two cytokines in a spatial and temporal simultaneous fashion to pre-defined tissues is feasible by a dual-cytokine antibody fusion protein. In the case of IL12 and IL2, this produced superior anti-tumor efficacy implying the strategy to muster a broader immune cell response in the combat against cancer.
Collapse
|
9
|
Redmond WL, Triplett T, Floyd K, Weinberg AD. Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression. PLoS One 2012; 7:e34467. [PMID: 22496812 PMCID: PMC3319580 DOI: 10.1371/journal.pone.0034467] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/02/2012] [Indexed: 12/19/2022] Open
Abstract
The provision of T cell co-stimulation via members of the TNFR super-family, including OX40 (CD134) and 4-1BB (CD137), provides critical signals that promote T cell survival and differentiation. Recent studies have demonstrated that ligation of OX40 can augment T cell-mediated anti-tumor immunity in pre-clinical models and more importantly, OX40 agonists are under clinical development for cancer immunotherapy. OX40 is of particular interest as a therapeutic target as it is not expressed on naïve T cells but rather, is transiently up-regulated following TCR stimulation. Although TCR engagement is necessary for inducing OX40 expression, the downstream signals that regulate OX40 itself remain unclear. In this study, we demonstrate that OX40 expression is regulated through a TCR and common gamma chain cytokine-dependent signaling cascade that requires JAK3-mediated activation of the downstream transcription factors STAT3 and STAT5. Furthermore, combined treatment with an agonist anti-OX40 mAb and IL-2 augmented tumor immunotherapy against multiple tumor types. Dual therapy was also able to restore the function of anergic tumor-reactive CD8 T cells in mice with long-term well-established (>5 wks) tumors, leading to increased survival of the tumor-bearing hosts. Together, these data reveal the ability of TCR/common gamma chain cytokine signaling to regulate OX40 expression and demonstrate a novel means of augmenting cancer immunotherapy by providing dual anti-OX40/common gamma chain cytokine-directed therapy.
Collapse
MESH Headings
- Animals
- Blotting, Western
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation
- Cytokines/metabolism
- Drug Therapy, Combination
- Female
- Flow Cytometry
- Immunotherapy
- Interleukin-2/therapeutic use
- Interleukin-2 Receptor alpha Subunit/metabolism
- Janus Kinase 3/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, OX40/physiology
- STAT3 Transcription Factor/physiology
- STAT5 Transcription Factor/physiology
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/metabolism
- Sarcoma, Experimental/therapy
- Signal Transduction
- T-Lymphocytes, Cytotoxic
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, United States of America.
| | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The nonimmune effects of currently used immunosuppressive drugs result in a high incidence of late graft loss due to nephrotoxicity and death. As an immune-specific alternative to conventional immunosuppressants, new biotechnology tools can be used to block the costimulation signal of T-cell activation. RECENT FINDINGS Many experimental studies, particularly preclinical studies in nonhuman primates, have focused on blocking 'classical' B7/CD28 and CD40/CD40L pathways, which are critical in primary T-cell activation, but also on new B7/CD28 and TNF/TNF-R pathways families of costimulatory molecules that can deliver positive or negative costimulation signals to regulate the alloimmune response. SUMMARY Belatacept is a new fusion protein derived from CTLA4-Ig that can be used to prevent acute rejection in renal transplantation instead of calcineurin inhibitors. Belatacept can also prevent acute rejection efficiently in humans and, more interestingly, can improve renal function and cardiovascular risk factors in this population.
Collapse
|
11
|
Deppong CM, Parulekar A, Boomer JS, Bricker TL, Green JM. CTLA4-Ig inhibits allergic airway inflammation by a novel CD28-independent, nitric oxide synthase-dependent mechanism. Eur J Immunol 2010; 40:1985-94. [PMID: 20443189 PMCID: PMC3039706 DOI: 10.1002/eji.200940282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The T-cell response to antigen depends upon coordinate signaling between costimulatory and inhibitory receptors. Altered function of either may underlie the pathophysiology of autoimmune and/or chronic inflammatory diseases and manipulation of these pathways is an important emerging area of therapeutics. We report here that the immunosuppressant drug CTLA4-Ig inhibits the effector phase of allergic airway inflammation through a CD28-independent, nitric oxide synthase dependent mechanism. Using mice deficient in both B and T lymphocyte attenuator (BTLA) and CD28, we demonstrate that simultaneous deficiency of an inhibitory receptor can rescue the in vivo but not the in vitro CD28-deficient phenotype. Furthermore, we demonstrate that inflammation in the CD28/BTLA-double-deficient mice is suppressed by CTLA4-Ig. This suppression is reversed by treatment with the Nitric Oxide Synthase (NOS) inhibitor, N(6)-methyl-L-arginine acetate (L-NMMA). In addition CTLA4-Ig was ineffective at inhibiting inflammation in NOS2-deficient mice when given at the effector phase. Thus, CD28 and BTLA coordinately regulate the in vivo response to inhaled allergen, and CTLA4-Ig binding to B7-proteins inhibits the effector phase of inflammation by a CD28-independent, NOS-dependent mechanism.
Collapse
Affiliation(s)
- Christine M Deppong
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
12
|
Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit Rev Immunol 2009; 29:187-201. [PMID: 19538134 DOI: 10.1615/critrevimmunol.v29.i3.10] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extent of T-cell activation, proliferation, and survival that follows T-cell receptor (TCR) ligation is controlled by several factors, including the strength of TCR stimulation, the availability of prosurvival cytokines, and the presence or absence of co-stimulatory signals. In addition to engagement of the CD28 co-stimulatory receptor by its natural ligands, B7.1 (CD80) and B7.2 (CD86), recent work has begun to elucidate the mechanisms by which signaling through the OX40 (CD134) co-stimulatory receptor, a member of the tumor necrosis factor receptor (TNFR) superfamily, affects T-cell responses. Importantly, OX40 ligation has been shown to augment CD4 and CD8 T-cell clonal expansion, effector differentiation, survival, and in some cases, abrogate the suppressive activity of regulatory FoxP3+CD25+CD4+ T cells. In this review, we focus on the mechanisms regulating OX40 expression on activated T cells as well as the role of OX40-mediated co-stimulation in boosting T-cell clonal expansion, effector differentiation, and survival.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Medical Center, 4805 NE Glisan St., No. 5F37, Portland, OR 97213, USA
| | | | | |
Collapse
|
13
|
Abstract
Tumor immunotherapy harnesses the potential of the host immune system to recognize and eradicate neoplastic tissue. The efficiency of the immune system in mediating tumor regression depends on the induction of antigen-specific T-cell responses through physiologic immune surveillance, priming by vaccination, or following adoptive transfer of T-cells. Although a variety of tumor-associated antigens have been identified and many immunotherapeutic strategies have been tested, objective clinical responses are rare. The reasons for this include the inability of current immunotherapy approaches to generate efficient T-cell responses, the presence of regulatory cells that inhibit T-cell responses, and other tumor escape mechanisms. The activation of effector T-cells depends on interactions between the T-cell receptor (TCR) and cognate antigen presented as peptides within the major histocompatibility complex (MHC) and costimulatory signals delivered by CD28, which binds to B7.1 and B7.2. More recently, several new molecular receptors and ligands have been identified that integrate into stimulatory or inhibitory activity for T-cells. These signals have been loosely associated with the costimulatory molecules but actually represent a diverse group of molecular pathways that have unique and overlapping functions. This review will focus on these pathways and emphasize their role in mediating T-cell activation for the purpose of enhancing tumor immunotherapy. As we gain a better understanding of the molecular and cellular consequences of T-cell signaling through the costimulatory pathways, a more rational approach to the activation or inhibition of T-cell responses can be developed for the treatment of cancer and other immune-mediated diseases.
Collapse
Affiliation(s)
- Robert C Ward
- The Tumor Immunology Laboratory, Division of Surgical Oncology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
14
|
OX40–OX40 ligand interaction may activate phospholipase C signal transduction pathway in human umbilical vein endothelial cells. Chem Biol Interact 2009; 180:460-4. [DOI: 10.1016/j.cbi.2009.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/26/2009] [Accepted: 04/27/2009] [Indexed: 11/20/2022]
|
15
|
Gough MJ, Weinberg AD. OX40 (CD134) and OX40L. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 647:94-107. [PMID: 19760068 DOI: 10.1007/978-0-387-89520-8_6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction between OX40 and OX40L plays an important role in antigen-specific T-cell expansion and survival. While OX40 is expressed predominantly on T-lymphocytes early after antigen activation, OX40L is expressed on activated antigen presenting cells and endothelial cells within acute inflammatory environments. We discuss here how ligation of OX40 by OX40L leads to enhanced T-cell survival, along with local inflammatory responses that appear critical for both effective T-cell mediated responses and chronic immune pathologies. We describe how interventions that block or mimic the OX40-OX40L interaction can be applied to treat autoimmune diseases or enhance anti-tumor immune responses. The clinically relevant properties of these agents emphasize the importance of this particular TNFSF-TNFSF in health and disease.
Collapse
Affiliation(s)
- Michael J Gough
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA
| | | |
Collapse
|
16
|
Tone Y, Kojima Y, Furuuchi K, Brady M, Yashiro-Ohtani Y, Tykocinski ML, Tone M. OX40 gene expression is up-regulated by chromatin remodeling in its promoter region containing Sp1/Sp3, YY1, and NF-kappa B binding sites. THE JOURNAL OF IMMUNOLOGY 2007; 179:1760-7. [PMID: 17641042 DOI: 10.4049/jimmunol.179.3.1760] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OX40 is a member of the TNFR superfamily (CD134; TNFRSF4) that is expressed on activated T cells and regulates T cell-mediated immune responses. In this study, we have examined the regulation of OX40 gene expression in T cells. Low-level OX40 mRNA expression was detected in both resting T cells and the nonactivated EL4 T cell line, and was up-regulated in both types of T cells upon activation with anti-CD3 Ab. We have shown in this study that basal OX40 promoter activity is regulated by constitutively expressed Sp1/Sp3 and YY1 transcription factors. NF-kappaB (p50 and p65) also binds to the OX40 promoter region, but the level of direct enhancement of the OX40 promoter activity by this transcription factor is not sufficient to account for the observed up-regulation of OX40 mRNA expression associated with activation. We have detected by chromatin immunoprecipitation that histone H4 molecules in the OX40 promoter region are highly acetylated by activation and NF-kappaB binds to the OX40 promoter in vivo. These findings suggest that OX40 gene expression is regulated by chromatin remodeling, and that NF-kappaB might be involved in initiation of chromatin remodeling in the OX40 promoter region in activated T cells. CD4(+)CD25(+) regulatory T (Treg) cells also express OX40 at high levels, and signaling through this receptor can neutralize suppressive activity of this Treg cell. In CD4(+)CD25(+) Treg cells, histone H4 molecules in the OX40 promoter region are also highly acetylated, even in the absence of in vitro activation.
Collapse
Affiliation(s)
- Yukiko Tone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Effector cells play a crucial role in the immune system of higher vertebrates in eliminating invading pathogens and transformed cells that could cause disease or death of the individual. To be effective and specific, immune responses have to distinguish between self and nonself. Mechanisms of central and peripheral tolerance have evolved to control effector cells that could respond to autoantigens. Regulatory T-cells (Treg cells) are critical modulators of effector cells in the periphery that suppress autoreactive T-cells but are also involved in modulating immune responses against invading pathogens. Identification of surface markers of Treg cells and the development of in vitro systems to study the suppressive function of Treg cells have revealed distinct phenotypic and functional subsets of Treg cells. Several tumor necrosis factor receptor (TNFR) family members have been shown to play a role in the development, homeostasis, and suppressor function of Treg cells. Recent findings suggest that TNFRs and other cell-surface molecules of Treg cells can be explored for therapeutic strategies targeting autoimmune disorders, cancer, and immune responses against pathogens.
Collapse
Affiliation(s)
- Robert H Arch
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Garfias Y, Ortiz B, Hernández J, Magaña D, Becerril-Angeles M, Zenteno E, Lascurain R. CD4+ CD30+ T cells perpetuate IL-5 production in Dermatophagoides pteronyssinus allergic patients. Allergy 2006; 61:27-34. [PMID: 16364153 DOI: 10.1111/j.1398-9995.2005.00951.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Airway allergic diseases are regulated by interleukin (IL)-5, which causes infiltration of eosinophils into the bronchial epithelium, and by IL-4 which increases serum immunoglobulin E (IgE) production and promotes CD30 expression on Th cells. CD30 generates a costimulatory signal involved in apoptosis or cell proliferation, depending on the microenvironment. Our aims were: (i) to analyze if CD4+ CD30+ T cells from allergic patients proliferate in response to Dermatophagoides pteronyssinus, and (ii) if upon stimulation this cell population produces IL-4 and IL-5. METHODS Peripheral blood mononuclear cell (PBMC) from 17 allergic rhinitis and mild allergic asthma patients and 12 healthy nonallergic individuals were stimulated with allergen in the presence or absence of anti-IL-4, anti-IL-5 or anti-IL-4Ralpha monoclonal antibodies (mAbs). TdT-mediated dUTP nick end-labeling (TUNEL) assay, 7-aminoactinomycin-D (7-AAD) intercalation, and flow cytometry were used to determine the CD4+ CD30+ blasts percentage, cell proliferation, apoptosis, and intracellular cytokines after 7 culture days. RESULTS Cell proliferation induced with allergen showed that 90% of the allergen-stimulated blasts were CD4+, 50% of which were CD30+. Allergen-stimulated PBMC showed a progressive increase (mean: from 7% to 23%) of CD4+ CD30+IFN-gamma+ and CD4+ CD30+IL-4+ blasts which diminished (mean: 6%) after 5 culture days. In contrast, CD4+ CD30+IL-5+ blasts showed a continuous progression (from 12% to 24%) that maintained after 7 culture days. The vast majority of CD4+ CD30+ blasts were negative to 7-AAD or TUNEL. Additionally, a significant decrease (34%) was observed in the number of CD4+ CD30+ blasts when IL-4 was neutralized. CONCLUSIONS These data suggest that specific allergen stimulation of PBMC isolated from allergic patients generates a nonapoptotic CD4+ CD30+ blast subset that produces IL-5.
Collapse
Affiliation(s)
- Y Garfias
- Instituto de Oftalmología, Fundación Conde de Valenciana, Mexico
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Several members of the tumor necrosis factor receptor (TNFR) family function after initial T cell activation to sustain T cell responses. This review focuses on CD27, 4-1BB (CD137), OX40 (CD134), HVEM, CD30, and GITR, all of which can have costimulatory effects on T cells. The effects of these costimulatory TNFR family members can often be functionally, temporally, or spatially segregated from those of CD28 and from each other. The sequential and transient regulation of T cell activation/survival signals by different costimulators may function to allow longevity of the response while maintaining tight control of T cell survival. Depending on the disease condition, stimulation via costimulatory TNF family members can exacerbate or ameliorate disease. Despite these complexities, stimulation or blockade of TNFR family costimulators shows promise for several therapeutic applications, including cancer, infectious disease, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
20
|
Esparza EM, Arch RH. Glucocorticoid-Induced TNF Receptor Functions as a Costimulatory Receptor That Promotes Survival in Early Phases of T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2005; 174:7869-74. [PMID: 15944292 DOI: 10.4049/jimmunol.174.12.7869] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid-induced TNFR (GITR) is a member of the TNFR family that can inhibit the suppressive function of regulatory T cells and promote the survival and activation of T cells. However, little is known about the molecular mechanisms regulating T cell survival and activation downstream of GITR. To gain further insight into the cellular events and signaling pathways triggered by GITR, survival, proliferation, and cytokine production as well as activation of MAPKs and NF-kappaB were monitored after cross-linking of the receptor on naive and activated T cells. GITR cross-linking provided costimulation of naive and activated T cells and resulted in activation of MAPKs and NF-kappaB. Although GITR-induced signaling pathways augmented the survival of naive T cells, they were not sufficient to inhibit activation-induced cell death triggered by CD3 cross-linking of activated T cells. Differences in the contributions of GITR to cell survival between naive and activated T cells suggest that the receptor triggers specific pathways depending on the activation state of the T cell.
Collapse
Affiliation(s)
- Edward M Esparza
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|