1
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
2
|
Wieczfinska J, Pawliczak R. Relaxin Affects Airway Remodeling Genes Expression through Various Signal Pathways Connected with Transcription Factors. Int J Mol Sci 2022; 23:ijms23158413. [PMID: 35955554 PMCID: PMC9368845 DOI: 10.3390/ijms23158413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Fibrosis is one of the parameters of lung tissue remodeling in asthma. Relaxin has emerged as a natural suppressor of fibrosis, showing efficacy in the prevention of a multiple models of fibrosis. Therefore, the aim of this study was to analyze the aptitudes of relaxin, in the context of its immunomodulatory properties, in the development of airway remodeling. WI-38 and HFL1 fibroblasts, as well as epithelial cells (NHBE), were incubated with relaxin. Additionally, remodeling conditions were induced with two serotypes of rhinovirus (HRV). The expression of the genes contributing to airway remodeling were determined. Moreover, NF-κB, c-Myc, and STAT3 were knocked down to analyze the pathways involved in airway remodeling. Relaxin decreased the mRNA expression of collagen I and TGF-β and increased the expression of MMP-9 (p < 0.05). Relaxin also decreased HRV-induced expression of collagen I and α-SMA (p < 0.05). Moreover, all the analyzed transcription factors—NF-κB, c-Myc, and STAT3—have shown its influence on the pathways connected with relaxin action. Though relaxin requires further study, our results suggest that this natural compound offers great potential for inhibition of the development, or even reversing, of factors related to airway remodeling. The presented contribution of the investigated transcription factors in this process additionally increases its potential possibilities through a variety of its activity pathways.
Collapse
|
3
|
Luo X, Wu J, Wu G. PPARγ activation suppresses the expression of MMP9 by downregulating NF-κB post intracerebral hemorrhage. Neurosci Lett 2021; 752:135770. [PMID: 33636289 DOI: 10.1016/j.neulet.2021.135770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is critical in protecting against inflammatory and oxidative stresses post brain injury. We have previously reported that rosiglitazone, an agonist of PPARγ, was effective to prevent microglia from apoptosis and ameliorate neuronal injuries post intracerebral hemorrhage (ICH) with suppression of matrix metalloproteinase-9 (MMP9) expression. However, molecular mechanisms linking how PPARγ decreases MMP9 remain unknown. Here, we hypothesize that PPARγ downregulates MMP9 expression post hemorrhage by inhibiting nuclear factor kappa B (NF-κB), an upstream regulator of MMPs gene and also key transcription factor involved in the control of immune and neuroinflammatory responses. We found both in vivo and in vitro that PPARγ was significantly downregulated post ICH with prominent increases of NF-κB and MMP9. Activation of PPARγ using rosiglitazone decreased the expression of both NF-κB and MMP9, while reversed effects were observed when administrating the PPARγ antagonist GW9662. Besides, inhibiting NF-κB by JSH-23 also suppressed the expression of MMP9, with only limited effect on PPARγ. Further studies revealed prominent colocalizations of NF-κB with PPARγ and MMP9, respectively. Finally, direct interactions of NF-κB with PPARγ and MMP9 gene were also confirmed, respectively, by protein and chromatin immunoprecipitations. These results suggested a role of NF-κB in mediating the reduction of MMP9 by PPARγ, potentially providing a new therapeutic target for brain hemorrhage.
Collapse
Affiliation(s)
- Xingmei Luo
- The Second Affiliated Hospital of Suzhou University, Suzhou, China; Department of Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Wu
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
4
|
Papoutsis K, Kapelouzou A, Georgiopoulos G, Kontogiannis C, Kourek C, Mylonas KS, Patelis N, Cokkinos DV, Karavokyros I, Georgopoulos S. Tissue-specific relaxin-2 is differentially associated with the presence/size of an arterial aneurysm and the severity of atherosclerotic disease in humans. Acta Pharmacol Sin 2020; 41:745-752. [PMID: 32024951 PMCID: PMC7471450 DOI: 10.1038/s41401-019-0350-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022]
Abstract
Circulating or tissue-related biomarkers are of clinical value for risk stratification in patients with abdominal aortic aneurysms. Relaxin-2 (RL2) has been linked to the presence and size of arterial aneurysms, and to the extent of atherosclerosis in human subjects. Here, we assessed the expression levels of RL2 in aneurysmal (AA, n = 16) and atherosclerotic (ATH, n = 22) arteries, and established the correlation between RL2 levels and the presence/size of AA and the clinical severity of atherosclerosis. The expression levels of metalloproteinases (MMPs) and endothelial nitric oxide synthetase (eNOS) were also detected for correlations with different phenotypes of atherosclerosis and AA. Temporal artery biopsy specimens (n = 6) and abdominal aortic tissues harvested from accident victims during autopsy (n = 10) were used as controls. Quantitative tissue biomarker analysis revealed that tissue-specific RL2 was increased in patients with larger or symptomatic AA compared to subjects with atherosclerotic disease and healthy controls. In situ RL2 levels were proportional to the size and the severity of aneurysmatic disease, and were substantially elevated in patients with symptomatic aneurysm of any diameter or asymptomatic aneurysm of a diameter >350% of that of the normal artery. In contrast, tissue RL2 was inversely associated with the clinical severity of atherosclerotic lesions. Correlation between RL2 and MMP2 was different between ATH1 and ATH2, depending on atherosclerosis grade. Overall, tissue RL2 is differentially associated with discrete phenotypes of arterial disease and might exert multipotent biological effects on vascular wall integrity and remodeling in human subjects.
Collapse
Affiliation(s)
- Konstantinos Papoutsis
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Georgios Georgiopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Christos Kontogiannis
- Department of Clinical Therapeutics, "Alexandra" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christos Kourek
- School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Konstantinos S Mylonas
- School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Nikolaos Patelis
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| | - Dennis V Cokkinos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Ioannis Karavokyros
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| | - Sotirios Georgopoulos
- First Department of Surgery, Vascular Unit, Laiko General Hospital, National & Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
5
|
Ghosh RK, Banerjee K, Tummala R, Ball S, Ravakhah K, Gupta A. Serelaxin in acute heart failure: Most recent update on clinical and preclinical evidence. Cardiovasc Ther 2016; 35:55-63. [DOI: 10.1111/1755-5922.12231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Raktim Kumar Ghosh
- Department of Cardiovascular Medicine; St. Vincent Charity Medical Center; A Teaching Hospital affiliated to Case Western Reserve University; Cleveland OH USA
| | | | - Ramyashree Tummala
- Department of Internal Medicine; St. Vincent Charity Medical Center; A Teaching Hospital affiliated to Case Western Reserve University; Cleveland OH USA
| | - Somedeb Ball
- Department of Internal Medicine; St Francis Hospital and Medical Center; Hartford CT USA
| | - Keyvan Ravakhah
- Department of Internal Medicine; St. Vincent Charity Medical Center; A Teaching Hospital affiliated to Case Western Reserve University; Cleveland OH USA
| | - Anjan Gupta
- Department of Cardiovascular Medicine; St. Vincent Charity Medical Center; A Teaching Hospital affiliated to Case Western Reserve University; Cleveland OH USA
| |
Collapse
|
6
|
Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2016; 174:933-949. [PMID: 27239943 DOI: 10.1111/bph.13523] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The insulin-like peptide relaxin, originally identified as a hormone of pregnancy, is now known to exert a range of pleiotropic effects including vasodilatory, anti-fibrotic, angiogenic, anti-apoptotic and anti-inflammatory effects in both males and females. Relaxin produces these effects by binding to a cognate receptor RXFP1 and activating a variety of signalling pathways including cAMP, cGMP and MAPKs as well as by altering gene expression of TGF-β, MMPs, angiogenic growth factors and endothelin receptors. The peptide has been shown to be effective in halting or reversing many of the adverse effects including fibrosis in animal models of cardiovascular disease including ischaemia/reperfusion injury, myocardial infarction, hypertensive heart disease and cardiomyopathy. Relaxin given to humans is safe and produces favourable haemodynamic changes. Serelaxin, the recombinant form of relaxin, is now in extended phase III clinical trials for the treatment of acute heart failure. Previous clinical studies indicated that a 48 h infusion of relaxin improved 180 day mortality, yet the mechanism underlying this effect is not clear. This article provides an overview of the cellular mechanism of effects of relaxin and summarizes its beneficial actions in animal models and in the clinic. We also hypothesize potential mechanisms for the clinical efficacy of relaxin, identify current knowledge gaps and suggest new ways in which relaxin could be useful therapeutically. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Mohsin Sarwar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thomas B Dschietzig
- Immundiagnostik AG, Bensheim, Germany.,Campus Mitte, Medical Clinic for Cardiology and Angiology, Charité-University Medicine Berlin, Berlin, Germany.,Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Bensheim, Germany
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| |
Collapse
|
7
|
Antifibrotic Actions of Serelaxin – New Roles for an Old Player. Trends Pharmacol Sci 2016; 37:485-497. [DOI: 10.1016/j.tips.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
|
8
|
Raleigh JMV, Toldo S, Das A, Abbate A, Salloum FN. Relaxin' the Heart: A Novel Therapeutic Modality. J Cardiovasc Pharmacol Ther 2015; 21:353-62. [PMID: 26589290 DOI: 10.1177/1074248415617851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
The peptide hormone relaxin has traditionally been linked to the maternal adaptation of the cardiovascular system during the first trimester of pregnancy. By promoting nitric oxide formation through different molecular signaling events, relaxin has been proposed as a pleiotropic and cardioprotective hormone in the setting of many cardiovascular diseases. In fact, preclinical studies were able to demonstrate that relaxin promotes vasodilatation and angiogenesis, ameliorates ischemia/reperfusion injury, and regulates extracellular matrix turnover and remodeling. In the RELAX-AHF phase 3 clinical trial, serelaxin (recombinant human relaxin) was shown to be safe, and it exerted survival benefits in patients with acute heart failure. RELAX-AHF-2 is currently ongoing, and it aims to address a larger population and evaluate harder clinical outcomes. Besides heart failure, acute myocardial infarction, peripheral arterial disease, and stable coronary disease could be target diseases for treatment with serelaxin in future clinical trials.
Collapse
Affiliation(s)
- Juan M Valle Raleigh
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefano Toldo
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Duarte C, Kobayashi Y, Kawamoto T, Moriyama K. RELAXIN enhances differentiation and matrix mineralization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells in vitro. Bone 2014; 65:92-101. [PMID: 24857857 DOI: 10.1016/j.bone.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 01/19/2023]
Abstract
RELAXIN (RLN) is a polypeptide hormone of the insulin-like hormone family; it facilitates birth by softening and widening the pubic symphysis and cervix in many mammals, including humans. The role of RLN in bone metabolism was recently suggested by its ability to induce osteoclastogenesis and activate osteoclast function. RLN binds to RELAXIN/INSULIN-LIKE FAMILY PEPTIDE 1 (RXFP1) and 2 (RXFP2), with varying species-specific affinities. Young men with mutated RXFP2 are at high risk for osteoporosis, as RXFP2 influences osteoblast metabolism by binding to INSULIN-LIKE PEPTIDE 3 (INSL3). However, there have been no reports on RLN function in osteoblast differentiation and mineralization or on the functionally dominant receptors for RLN in osteoblasts. We previously described Rxfp1 and 2 expression patterns in developing mouse oral components, including the maxillary and mandibular bones, Meckel's cartilage, tongue, and tooth primordia. We hypothesized that Rln/Rxfp signaling is a key mediator of skeletal development and metabolism. Here, we present the gene expression patterns of Rxfp1 and 2 in developing mouse calvarial frontal bones as determined by in situ hybridization. In addition, RLN enhanced osteoblastic differentiation and caused abnormal mineralization and extracellular matrix metabolism through Rxfp2, which was predominant over Rxfp1 in MC3T3-E1 mouse calvarial osteoblasts. Our data suggest a novel role for Rln in craniofacial skeletal development and metabolism through Rxfp2.
Collapse
Affiliation(s)
- Carolina Duarte
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 Japan.
| | - Tatsuo Kawamoto
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 Japan.
| |
Collapse
|
11
|
Willcox JM, Summerlee AJS. Relaxin protects astrocytes from hypoxia in vitro. PLoS One 2014; 9:e90864. [PMID: 24598861 PMCID: PMC3944802 DOI: 10.1371/journal.pone.0090864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
The peptide relaxin has recently been shown to protect brain tissues from the detrimental effects of ischemia. To date, the mechanisms for this remain unclear. In order to investigate the neuroprotective mechanisms by which relaxin may protect the brain, we investigated the possibility that relaxin protects astrocytes from hypoxia or oxygen/glucose deprivation (OGD). Cultured astrocytes were pre-treated with either relaxin-2 or relaxin-3 and exposed to OGD for 24 or 48 hours. Following OGD exposure, viability assays showed that relaxin-treated cells exhibited a higher viability when compared to astrocytes that experienced OGD-alone. Next, to test whether relaxin reduced the production of reactive oxygen species (ROS) astrocytes were exposed to the same conditions as the previous experiment and a commercially available ROS detection kit was used to detect ROS production. Astrocytes that were treated with relaxin-2 and relaxin-3 showed a marked decrease in ROS production when compared to control astrocytes that were exposed only to OGD. Finally, experiments were performed to determine whether or not the mitochondrial membrane potential was affected by relaxin treatment during 24 hour OGD. Mitochondrial membrane potential was higher in astrocytes that were treated with relaxin-2 and relaxin-3 compared to untreated OGD-alone astrocytes. Taken together, these data present novel findings that show relaxin protects astrocytes from ischemic conditions through the reduction of ROS production and the maintenance of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Jordan M. Willcox
- Department of Biomedical science, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | | |
Collapse
|
12
|
Zhao Z, Ng CY, Liu T, Li H, Li G. Relaxin as novel strategy in the management of atrial fibrillation: potential roles and future perspectives. Int J Cardiol 2014; 171:e72-e73. [PMID: 24373631 DOI: 10.1016/j.ijcard.2013.11.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/30/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Zhiqiang Zhao
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Chee Yuan Ng
- Department of Cardiology, Loma Linda University Medical Center, CA, United States
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Hongmin Li
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China.
| |
Collapse
|
13
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Ariel A, Timor O. Hanging in the balance: endogenous anti-inflammatory mechanisms in tissue repair and fibrosis. J Pathol 2012; 229:250-63. [DOI: 10.1002/path.4108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Amiram Ariel
- Department of Biology, Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Orly Timor
- Department of Biology, Faculty of Natural Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
15
|
Ahmad N, Wang W, Nair R, Kapila S. Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1: induction of MMP-9 involves the PI3K, ERK, Akt and PKC-ζ pathways. Mol Cell Endocrinol 2012; 363:46-61. [PMID: 22835547 PMCID: PMC3447121 DOI: 10.1016/j.mce.2012.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
We determined the precise role of relaxin family peptide (RXFP) receptors-1 and -2 in the regulation of MMP-9 and -13 by relaxin, and delineated the signaling cascade that contributes to relaxin's modulation of MMP-9 in fibrocartilaginous cells. Relaxin treatment of cells in which RXFP1 was silenced resulted in diminished induction of MMP-9 and -13 by relaxin, whereas overexpression of RXFP1 potentiated the relaxin-induced expression of these proteinases. Suppression or overexpression of RXFP2 resulted in no changes in the relaxin-induced MMP-9 and -13. Studies using chemical inhibitors and siRNAs to signaling molecules showed that PI3K, Akt, ERK and PKC-ζ and the transcription factors Elk-1, c-fos and, to a lesser extent, NF-κB are involved in relaxin's induction of MMP-9. Our findings provide the first characterization of signaling cascade involved in the regulation of any MMP by relaxin and offer mechanistic insights on how relaxin likely mediates extracellular matrix turnover.
Collapse
Affiliation(s)
- Nisar Ahmad
- The University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
16
|
Halls ML. Constitutive formation of an RXFP1-signalosome: a novel paradigm in GPCR function and regulation. Br J Pharmacol 2012; 165:1644-1658. [PMID: 21557732 DOI: 10.1111/j.1476-5381.2011.01470.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The classical second messenger cAMP is important in diverse physiological processes, where its spatial and temporal compartmentalization allows precise control over multiple cellular events. Within this context, G-protein-coupled receptors (GPCRs) govern specialized pools of cAMP, which are functionally specific for the unique cellular effects attributed to a particular system. The relaxin receptor, RXFP1, is a GPCR that exerts pleiotropic physiological effects including a potent anti-fibrotic response, increased cancer metastases, and has efficacy as a vasodilator in heart failure. On a cellular level, relaxin stimulation of RXFP1 results in the activation of multiple G-protein pathways affecting cAMP accumulation. Specificity and diversity in the cAMP signal generated by RXFP1 is controlled by differential G-protein coupling dependent upon the background of cellular expression, and cAMP compartmentalization. Further complexity in cAMP signalling results from the constitutive assembly of an RXFP1-signalosome, which specifically responds to low concentrations of relaxin, and activates a distinct cAMP pathway. The RXFP1-signalosome is a higher-order protein complex that facilitates receptor sensitivity to attomolar concentration of peptide, exhibits constitutive activity and dual coupling to G-proteins and β-arrestins and reveals a concentration-biased agonism mediated by relaxin. The specific and directed formation of GPCR-centered signalosomes allows an even greater spatial and temporal control of cAMP, thus rationalizing the considerable physiological scope of this ubiquitous second messenger.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Desai A, Darland G, Bland JS, Tripp ML, Konda VR. META060 attenuates TNF-α-activated inflammation, endothelial–monocyte interactions, and matrix metalloproteinase-9 expression, and inhibits NF-κB and AP-1 in THP-1 monocytes. Atherosclerosis 2012; 223:130-6. [DOI: 10.1016/j.atherosclerosis.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/23/2012] [Accepted: 05/04/2012] [Indexed: 12/13/2022]
|
18
|
Horton JS, Yamamoto SY, Bryant-Greenwood GD. Relaxin augments the inflammatory IL6 response in the choriodecidua. Placenta 2012; 33:399-407. [PMID: 22386961 DOI: 10.1016/j.placenta.2012.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/16/2012] [Accepted: 02/03/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED Intrauterine infection frequently leads to preterm birth (PTB), with the pathophysiology involving activation of the innate immune system and its associated inflammatory response. The choriodecidua produces relaxin (RLN) and elevated levels are associated with preterm premature rupture of the fetal membranes. However, it is not increased in bacterially-mediated PTB, but may act as an endogenous sterile inflammatory mediator. Elevated systemic RLN levels from the corpus luteum are also associated with PTB, but the mechanism is unknown. In clinical obstetrics, intrauterine inflammation or infection can coexist with elevated RLN. Therefore, in this study, we further characterized the effects of RLN alone or together with an inflammatory mediator on the production of IL1B, CSF2 (GM-CSF), IL6, IL8 and TNF, from chorionic cytotrophoblasts (CyT), decidual fibroblasts (DF) and stromal cells (DSC), using interleukin-1 beta (IL1B) to mimic sterile inflammation or lipopolysaccharide (LPS) for bacterial infection. Endogenous differences between the cells showed that the CyT expressed more RLN, its receptor RXFP1 and the RXFP1 splice variant D. CyT also showed the most robust cAMP response to RLN with increased IL6 secreted after 4 h, preceded by increased transcription at 1 h, likely due to activation of RXFP1 and cAMP. When all cell types were treated with IL1B and RLN, RLN augmented secretion of IL6 and IL8 from CyT and DF, but not DSC. Similarly, RLN augmented LPS-induced IL6 secretion from CyT and DF. Despite the structural similarity between TLR4 and RXFP1, blocking TLR4 in CyT had no effect on RLN-induced IL6 secretion, suggesting specific activation of RXFP1. Thus, we have shown that in the presence of a low level of intrauterine inflammation/infection, elevated RLN could act on the CyT and DF to augment the inflammatory response, contributing to the pathophysiology of PTB. SUMMARY RLN augments the inflammatory responses induced by IL1B or LPS in chorionic cytotrophoblasts and decidual fibroblasts.
Collapse
Affiliation(s)
- J S Horton
- Department of Cell and Molecular Biology, University of Hawaii, John A. Burns School of Medicine, 651 Ilalo Street, Bioscience Building, Honolulu, HI 96813, USA.
| | | | | |
Collapse
|
19
|
Chen JC, Frankshun AL, Wiley AA, Miller DJ, Welch KA, Ho TY, Bartol FF, Bagnell CA. Milk-borne lactocrine-acting factors affect gene expression patterns in the developing neonatal porcine uterus. Reproduction 2011; 141:675-83. [DOI: 10.1530/rep-10-0320] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lactocrine communication of milk-borne bioactive factors (MbFs) from mother to offspring through nursing can affect neonatal development with lasting consequences. Relaxin (RLX), a lactocrine-active peptide found in porcine colostrum, stimulates estrogen receptor-α (ESR1) expression required for uterine development shortly after birth (postnatal day=PND 0). Whether other MbFs or cooperative lactocrine mechanisms affect the neonatal uterine developmental program is unknown. To determine the effects of age, nursing, and exogenous RLX on gene expression associated with uterine development, gilts (n=4–5/group) were assigned to nursead libitumor to receive milk replacer, with or without exogenous RLX (20 μg/kg BW i.m./6 h for 48 h), from birth to PND 2 when uteri were collected. Body weight and uterine weight increased (P<0.05) similarly from birth to PND 2 in all gilts. However, colostrum consumption was required for normal uterine ESR1, vascular endothelial growth factor (VEGFA), matrix metalloproteinase 9 (MMP9), and RLX receptor (RXFP1) protein and/or transcript expression on PND 2. Uterine ESR1, VEGFA, and MMP9 protein levels were below (P<0.01) the assay sensitivity in replacer-fed gilts. Supplemental RLX increased (P<0.05) uterine ESR1 protein and mRNA in nursed gilts, as well as VEGFA protein in nursed andVEGFAmRNA in both nursed and replacer-fed gilts. RLX treatment did not affect uterineMMP9mRNA levels. When compared with replacer-fed gilts on PND 2, uterineRXFP1mRNA was reduced (P<0.05) in nursed gilts and in RLX-supplemented replacer-fed gilts. These results constitute the first evidence that establishment of the neonatal porcine uterine developmental program requires maternal lactocrine support.
Collapse
|
20
|
Hewitson TD, Ho WY, Samuel CS. Antifibrotic properties of relaxin: in vivo mechanism of action in experimental renal tubulointerstitial fibrosis. Endocrinology 2010; 151:4938-48. [PMID: 20826562 DOI: 10.1210/en.2010-0286] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study examined the efficacy and in vivo mechanism of action of the antifibrotic hormone, relaxin, in a mouse model of unilateral ureteric obstruction (UUO). Kidney fibrosis was assessed in recombinant human gene-2 relaxin-treated animals maintained for 3 and 9 d after UUO. Results were compared with untreated and unoperated animals (d 0). Total collagen, collagen subtypes (I, IV), TGF-β2 production, mothers against decapentaplegic homolog 2 (Smad2) phosphorylation, myofibroblast differentiation, mitosis, and apoptosis were all progressively increased by UUO (all P<0.05 vs. d 0 group at d 3 and d 9), whereas TGF-β1 production was increased and vascular endothelial growth factor expression (angiogenesis) decreased at d 9 (both P<0.05 vs. d 0). A progressive increase in matrix metalloproteinase (MMP)-2 after UUO suggested that it was reactive to the increased fibrogenesis. Conversely, MMP-9 was decreased at d 9, whereas its inhibitor tissue inhibitor of metalloproteinase-1 progressively decreased after UUO. Human gene-2 relaxin pretreatment of animals from 4 d prior to UUO ameliorated the increase in total collagen, collagen IV, Smad2 phosphorylation, and myofibroblasts at both time points (all P<0.05 vs. untreated groups) and inhibited TGF-β2 production and cell proliferation (both P<0.05 vs. untreated groups) with a trend toward normalizing vascular endothelial growth factor expression at d 9, with no effect on TGF-β1 production or apoptosis. The relaxin-mediated regulation of MMPs and tissue inhibitor of metalloproteinases in this model was not consistent with its antifibrotic properties. The beneficial effects of relaxin were lost when treatment was stopped. These findings establish that relaxin can inhibit both early and established phases of tubulointerstitial fibrosis, primarily by suppressing cell proliferation, myofibroblast differentiation, and collagen production. Not all of these effects paralleled changes to TGF-β-Smad signaling.
Collapse
Affiliation(s)
- Tim D Hewitson
- Howard Florey Institute, The University of Melbourne, and Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
21
|
Chen JC, Wiley AA, Ho TY, Frankshun AL, Hord KM, Bartol FF, Bagnell CA. Transient estrogen exposure from birth affects uterine expression of developmental markers in neonatal gilts with lasting consequences in pregnant adults. Reproduction 2010; 139:623-30. [DOI: 10.1530/rep-09-0454] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disruption of estrogen-sensitive, estrogen receptor (ER)-dependent events during porcine uterine development between birth (postnatal day=PND 0) and PND 14 affects patterns of uterine morphoregulatory gene expression in the neonate with lasting consequences for reproductive success. Uterine capacity for conceptus support is reduced in pregnant adult gilts exposed to estradiol valerate (EV) for 14 days from birth. Objectives here were to determine effects of EV exposure from birth through PND 13 on neonatal uterine and adult endometrial markers of growth, patterning, and remodeling. Targets included the relaxin receptor (RXFP1), estrogen receptor-α (ESR1) and vascular endothelial growth factor (VEGFA), morphoregulatory markers HOXA10 and WNT7A, and the matrix metalloproteinases (MMP)2 and MMP9. Gilts were treated daily with EV (50 μg/kg body weight per day, i.m.) or corn oil vehicle from birth through PND 13. Uteri were obtained from neonates on PND 14 and from adults on pregnancy day 12 (PxD 12). In neonates, EV exposure from birth increased uterineRXFP1gene expression, and both ESR1 and VEGFA proteins. At PxD 12, endometrialRXFP1mRNA remained elevated, while ESR1 protein was reduced. Early EV treatment decreased neonatal uterineWNT7A, but increasedHOXA10expression.WNT7Aexpression was reduced in EV-treated adults. Transient EV exposure increasedMMP9transcripts at PND 14, whereas both latent and active MMP9 activity was increased due to early EV treatment in adults on PxD 12. Results support the hypothesis that transient, estrogen-induced disruption of porcine uterine development from birth alters early programming events that lead to functional consequences in the adult.
Collapse
|
22
|
Singh S, Bennett RG. Relaxin signaling activates peroxisome proliferator-activated receptor gamma. Mol Cell Endocrinol 2010; 315:239-45. [PMID: 19712722 PMCID: PMC2814924 DOI: 10.1016/j.mce.2009.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/10/2009] [Accepted: 08/18/2009] [Indexed: 01/09/2023]
Abstract
Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1 (relaxin family peptide receptor 1). Many of relaxin's functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARgamma. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARgamma activity. In cells overexpressing RXFP1 (HEK-RXFP1), relaxin increased transcriptional activity through a PPAR response element (PPRE) in a concentration-dependent manner. In cells lacking RXFP1, relaxin had no effect. Relaxin increased both the baseline activity and the response to the PPARgamma agonists rosiglitazone and 15d-PGJ(2), but not to agonists of PPARalpha or PPARdelta. In HEK-RXFP1 cells infected with adenovirus expressing PPARgamma, relaxin increased transcriptional activity through PPRE, and this effect was blocked with an adenovirus expressing a dominant-negative PPARgamma. Knockdown of PPARgamma using siRNA resulted in a decrease in the response to both relaxin and rosiglitazone. Both relaxin and rosiglitazone increased expression of the PPARgamma target genes CD36 and LXRalpha in HEK-RXFP1 and in THP-1 cells naturally expressing RXFP1. Relaxin did not increase PPARgamma mRNA or protein levels. Treatment of cells with GW9662, an inhibitor of PPARgamma ligand binding, effectively blocked rosiglitazone-induced PPARgamma activation, but had no effect on relaxin activation of PPARgamma. These results suggest that relaxin activates PPARgamma activity, and increases the overall response in the presence of PPARgamma agonists. This activation is dependent on the presence of RXFP1. Furthermore, relaxin activates PPARgamma via a ligand-independent mechanism. These studies represent the first report that relaxin can activate the transcriptional activity of PPARgamma.
Collapse
Affiliation(s)
- Sudhir Singh
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
23
|
Bajenaru ML, Piña Y, Murray TG, Cebulla CM, Feuer W, Jockovich ME, Marin Castaño ME. Gelatinase expression in retinoblastoma: modulation of LH(BETA)T(AG) retinal tumor development by anecortave acetate. Invest Ophthalmol Vis Sci 2010; 51:2860-4. [PMID: 20107171 DOI: 10.1167/iovs.09-4500] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Gelatinases, matrix metalloproteinase (MMP)-2, and MMP-9 are known for their importance in angiogenesis and tumor biology. The purpose of this study was to test the hypothesis that anecortave acetate (AA) decreases transgenic retinoblastoma (RB) tumor burden by modulating gelatinase activity. METHODS To assess the possible gelatinase modulation after AA treatment, a single subconjunctival injection of AA (300 microg) was delivered to the right eyes of 10-week-old LH(BETA)T(AG) mice. Eyes were evaluated for gelatinase expression and activity by gel and in situ zymography at 24 hours, 48 hours, and 1 week after treatment. RESULTS Gel zymography of whole eye extracts and in situ zymography of retinal tumors showed strong gelatinase expression and activity within transgenic RB tumors. AA treatment in RB transgenic mice resulted in a significant decrease of gelatinase activity 1 week after AA treatment. Surprisingly, there was an initial transient upregulation of MMP-9 activity in whole eye extracts at 24 and 48 hours after AA treatment in both LH(BETA)T(AG) transgenic and wild-type mice. This increase was not observed in the tumors. CONCLUSIONS As suggested by our data, inhibition of gelatinase activity appears to be a mechanism of action of AA. AA treatment results in a decrease in gelatinase activity that correlates with the significant decrease in tumor burden shown by the authors' previous studies. However, the significance of the initial, transient upregulation of gelatinase by AA injection is unknown, and further studies are warranted. Combining antiangiogenic agents with multiple mechanisms of action has the potential to enhance RB tumor control.
Collapse
Affiliation(s)
- M Livia Bajenaru
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Takano M, Yamaguchi M, Nakajima R, Fujita S, Kojima T, Kasai K. Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthod Craniofac Res 2009; 12:282-8. [PMID: 19840280 DOI: 10.1111/j.1601-6343.2009.01463.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Relapse of teeth that have moved during orthodontic treatment is a major clinical issue with respect to the goals of successful treatment. Such relapse is a physiologic response of the supporting tissues to application of force, and is mainly attributed to occlusal instability and increased mechanical tension exerted by the periodontal ligament (PDL). Relaxin, a member of the insulin/relaxin family of structurally related hormones, has an influence on many physiologic processes, such as collagen turnover, angiogenesis, and antifibrosis. Therefore, relaxin may also affect orthodontic tooth movement through alterations of the PDL, though little is known regarding the relationship between relaxin and stretched human PDL (hPDL) cells. In the present study, we investigated the effects of relaxin on the expression of collagen type I (Col-I) and matrix metalloproteinase 1 (MMP-1) in stretched hPDL cells in vitro. MATERIALS AND METHODS The release and gene expression of Col-I, as well as those of MMP-1 in stretched hPDL cells treated with relaxin were investigated using enzyme-linked immunosorbent assay and real-time PCR methods. RESULTS Relaxin decreased the release and gene expression of Col-I, and increased those of MMP-1 by stretched hPDL cells in a magnitude-dependent manner. CONCLUSION Our results indicate that relaxin modulates collagen metabolism in stretched hPDL cells via the release and expression of Col-I and MMP-1. This hormone may be useful to prevent orthodontic relapse following orthodontic treatment.
Collapse
Affiliation(s)
- M Takano
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis. BMC Evol Biol 2009; 9:293. [PMID: 20015397 PMCID: PMC2805637 DOI: 10.1186/1471-2148-9-293] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 12/16/2009] [Indexed: 01/15/2023] Open
Abstract
Background In recent years, the relaxin family of signaling molecules has been shown to play diverse roles in mammalian physiology, but little is known about its diversity or physiology in teleosts, an infraclass of the bony fishes comprising ~ 50% of all extant vertebrates. In this paper, 32 relaxin family sequences were obtained by searching genomic and cDNA databases from eight teleost species; phylogenetic, molecular evolutionary, and syntenic data analyses were conducted to understand the relationship and differential patterns of evolution of relaxin family genes in teleosts compared with mammals. Additionally, real-time quantitative PCR was used to confirm and assess the tissues of expression of five relaxin family genes in Danio rerio and in situ hybridization used to assess the site-specific expression of the insulin 3-like gene in D. rerio testis. Results Up to six relaxin family genes were identified in each teleost species. Comparative syntenic mapping revealed that fish possess two paralogous copies of human RLN3, which we call rln3a and rln3b, an orthologue of human RLN2, rln, two paralogous copies of human INSL5, insl5a and insl5b, and an orthologue of human INSL3, insl3. Molecular evolutionary analyses indicated that: rln3a, rln3b and rln are under strong evolutionary constraint, that insl3 has been subject to moderate rates of sequence evolution with two amino acids in insl3/INSL3 showing evidence of positively selection, and that insl5b exhibits a higher rate of sequence evolution than its paralogue insl5a suggesting that it may have been neo-functionalized after the teleost whole genome duplication. Quantitative PCR analyses in D. rerio indicated that rln3a and rln3b are expressed in brain, insl3 is highly expressed in gonads, and that there was low expression of both insl5 genes in adult zebrafish. Finally, in situ hybridization of insl3 in D. rerio testes showed highly specific hybridization to interstitial Leydig cells. Conclusions Contrary to previous studies, we find convincing evidence that teleosts contain orthologues of four relaxin family peptides. Overall our analyses suggest that in teleosts: 1) rln3 exhibits a similar evolution and expression pattern to mammalian RLN3, 2) insl3 has been subject to positive selection like its mammalian counterpart and shows similar tissue-specific expression in Leydig cells, 3) insl5 genes are highly represented and have a relatively high rate of sequence evolution in teleost genomes, but they exhibited only low levels of expression in adult zebrafish, 4) rln is evolving under very different selective constraints from mammalian RLN. The results presented here should facilitate the development of hypothesis-driven experimental work on the specific roles of relaxin family genes in teleosts.
Collapse
|
26
|
Kapila S, Xie Y, Wang W. Induction of MMP-1 (collagenase-1) by relaxin in fibrocartilaginous cells requires both the AP-1 and PEA-3 promoter sites. Orthod Craniofac Res 2009; 12:178-86. [PMID: 19627519 DOI: 10.1111/j.1601-6343.2009.01451.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES - Relaxin induces the matrix metalloproteinase MMP-1 (collagenase-1) in TMJ fibrocartilaginous cells, and this response is potentiated by beta-estradiol. We identified the MMP-1 promoter sites and transcription factors that are induced by relaxin with or without beta-estradiol in fibrocartilaginous cells. MATERIAL AND METHODS - Early passage cells were transiently transfected with the pBLCAT2 plasmid containing specific segments of the human MMP-1 promoter regulating the chloramphenicol acyl transferase (CAT) gene and co-transfected with a plasmid containing the beta-galactosidase gene. The cells were cultured in serum-free medium alone or medium containing 0.1 ng/ml relaxin, or 20 ng/ml beta-estradiol or both hormones, and lysates assayed for CAT and beta-galactosidase activity. RESULTS - Cells transfected with the -1200/-42 or -139/-42 bp MMP-1 promoter-reporter constructs showed 1.5-fold and 3-fold induction of CAT by relaxin in the absence or presence of beta-estradiol, respectively. Relaxin failed to induce CAT in the absence of the -137/-69 region of the MMP-1 promoter, which contains the AP-1-and PEA3-binding sites. Using wild type or mutated minimal AP-1 and PEA-3 promoters we found that both these promoter sites are essential for the induction of MMP-1 by relaxin. The mRNAs for transcription factors c-fos and c-jun, which together form the AP-1 heterodimer, and Ets-1 that modulates the PEA-3 site, were upregulated by relaxin or beta-estradiol plus relaxin. CONCLUSION - These studies show that both the AP-1 and PEA-3 promoter sites are necessary for the induction of MMP-1 by relaxin in fibrocartilaginous cells.
Collapse
Affiliation(s)
- S Kapila
- Department of Orthodontics and Pediatric Dentistry, The University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.
| | | | | |
Collapse
|
27
|
Sun J, Feng A, Zhang Y, Sun S, Hu W, Yang M, Wei F, Qu X. Fucoidan increases TNF-alpha-induced MMP-9 secretion in monocytic cell line U937. Inflamm Res 2009; 59:271-6. [PMID: 19774448 DOI: 10.1007/s00011-009-0095-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/03/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To investigate the effect of fucoidan on the expression of matrix metalloproteinase-9 (MMP-9) from monocytes. METHODS Human monocytic cell line U937 was purchased from ATCC. During the experiment, FBS-free 1640 was used and U937 was cultivated with 20 ng/ml TNF-alpha and/or different concentrations of fucoidan for 24 h. RT-PCR experiments were used to determine the MMP-9 mRNA expression. ELISA and gelatin zymography detected MMP-9 amounts and activity in the supernatant. The intracellular level of MMP-9 was assayed by Western blot, and the level of CD44 on the surface was assayed by FACS. RESULTS In this study, we showed that pro-inflammatory cytokine TNF-alpha up-regulated U937 MMP-9 mRNA and protein levels (P < 0.05). Fucoidan can increase the TNF-alpha-induced MMP-9 secretion from U937 (P < 0.05), but no significant difference was observed in MMP-9 mRNA. The intracellular level of MMP-9 treated with TNF-alpha and fucoidan was lower (P < 0.05) than that treated with TNF-alpha alone. In addition, we demonstrated that fucoidan downregulated the surface level of CD44, the main molecule to which MMP-9 attaches. CONCLUSIONS We demonstrated that fucoidan post-translationally regulated MMP-9 secretion from U937. Reduced intracellular level and decreased membrane attachment may contribute to the increase in MMP-9 secretion.
Collapse
Affiliation(s)
- Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sheng F, Cheng L, Zeng Q, Gao W. Increased expression and activity of MMP-9 in C-reactive protein- induced human THP-1 mononuclear cells is related to activation of nuclear factor kappa-B. ACTA ACUST UNITED AC 2009; 29:399-403. [PMID: 19662350 DOI: 10.1007/s11596-009-0401-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Indexed: 01/27/2023]
Abstract
The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-kappaB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 microg/mL (CRP groups) for 24 h. In PDTC (a specific NF-kappaB inhibitor) group, the cells were pre-treated with PDTC at 10 micromol/L and then with 100 microg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-kappaB inhibitor alpha (IkappaB-alpha) and NF-kappaB P(65) was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IkappaB-alpha expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-kappaB P65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 micromol/L, the decrease in IkappaB-alpha expression and the increase in NF-kappaB P(65) expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-kappaB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-kappaB activation.
Collapse
Affiliation(s)
- Fuqiang Sheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | |
Collapse
|
29
|
Bryant-Greenwood G, Yamamoto S, Sadowsky D, Gravett M, Novy M. Relaxin Stimulates Interleukin-6 and Interleukin-8 Secretion from the Extraplacental Chorionic Cytotrophoblast. Placenta 2009; 30:599-606. [DOI: 10.1016/j.placenta.2009.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/24/2009] [Accepted: 04/25/2009] [Indexed: 11/26/2022]
|
30
|
Samuel CS, Mookerjee I, Halls ML, Summers RJ, Chew E, Bathgate RAD, Tregear GW, Hewitson TD. Investigations into the Inhibitory Effects of Relaxin on Renal Myofibroblast Differentiation. Ann N Y Acad Sci 2009; 1160:294-9. [DOI: 10.1111/j.1749-6632.2008.03823.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Relaxin Modulates Collagen Type I and Matrix Metalloproteinase-1 Expression by Human Periodontal Ligament Cells. J Oral Biosci 2008. [DOI: 10.1016/s1349-0079(08)80011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|