1
|
Ming B, Li L, Cai S, Hu Z, Gao R, Umehara H, Zhong J, Zheng F, Dong L. How to focus on autoantigen-specific lymphocytes: a review on diagnosis and treatment of Sjogren's syndrome. J Leukoc Biol 2025; 117:qiae247. [PMID: 39953919 DOI: 10.1093/jleuko/qiae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Indexed: 02/17/2025] Open
Abstract
Sjogren's syndrome (SS) is an autoimmune epithelitis characterized by focal lymphocytic infiltration against self-antigens leading to progressive glandular dysfunction, which can develop to multisystem manifestation. The classification criteria for SS emphasizes glandular lymphocyte infiltrates and anti-SSA/SSB seropositivity, which is usually manifested in advanced patients. Therapeutically, apart from symptomatic treatment, treatment of SS is based on glucocorticoids and conventional synthetic disease-modifying antirheumatic drugs with global immunosuppression, but the efficacy of biologic or targeted synthetic therapies is still sparse. Currently, emerging studies focus on autoantigen-specific immunotherapies to treat autoimmune disorders by directly eliminating autoreactive cell subsets and inducing tolerance by increasing the autoreactive regulatory lymphocytes. Herein, we summarize the current state of research on the autoantigen-specific approaches for detecting autoreactive lymphocytes and outline the current autoantigen-specific immunotherapies in other autoimmune disorders and their attempts in treatment of SS. Last, we discuss the potential value of focusing on autoantigen-specific lymphocytes in the early diagnosis, monitoring, and targeted treatment of SS. Potential strategies for targeting autoreactive lymphocytes need to be confirmed in SS.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziwei Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hisanori Umehara
- Department of Medicine, Nagahama City Hospital, Nagahama 526-0043, Japan
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Singh Kakan S, Abdelhamid S, Ju Y, MacKay JA, Edman MC, Raman I, Zhu C, Raj P, Hamm-Alvarez SF. Serum and tear autoantibodies from NOD and NOR mice as potential diagnostic indicators of local and systemic inflammation in Sjögren's disease. Front Immunol 2025; 15:1516330. [PMID: 39936155 PMCID: PMC11810956 DOI: 10.3389/fimmu.2024.1516330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Background Sjögren's Disease (SjD) is an autoimmune disease characterized by lymphocytic infiltration of salivary and lacrimal glands (LG). The LG produces the protein-rich aqueous component of tears, and SjD-associated autoimmune dacryoadenitis (AD) may thus alter tear autoantibody composition. Methods The presence of tertiary lymphoid structures (TLS) in LG from two murine models of SjD-associated AD, male non-obese diabetic (NOD) and male non-obese insulitis resistant (NOR) mice, were evaluated using immunofluorescence. IgG and IgA reactivity in serum and tears from these models were probed in three studies against a panel of 80-120 autoantigens using autoantibody microarrays relative to serum and tears from healthy male BALB/c mice. Sources of Ig in tears were investigated using scRNA-Seq of the LG (GSE132420). Data were analyzed by R package Limma and Seurat. Results Analysis of immunofluorescence in LG sections from both SjD models showed TLS. Only one autoantibody was significantly elevated in tears and serum in both SjD models across all studies. Three autoantibodies were significantly elevated in serum but not in tears in both SjD models across all studies. Conversely, six IgG and thirteen IgA autoantibodies (6 sharing the same autoantigen) were significantly elevated in tears but not serum in both SjD models. Igha and Ighg2b expressing cells were identified in the plasma cell cluster of NOD.H2b LG. Conclusion NOD and NOR mice with SjD-associated AD have distinct autoantibody profiles in tears and serum. Tear IgA isotype autoantibodies showed a greater diversity than tear IgG autoantibodies. TLS observed in LG are a likely source of the tear autoantibodies.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sara Abdelhamid
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Yaping Ju
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - J. Andrew MacKay
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Indu Raman
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prithvi Raj
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Terhaar H, Jiminez V, Grant E, Collins C, Khass M, Yusuf N. Immune Repertoires in Various Dermatologic and Autoimmune Diseases. Genes (Basel) 2024; 15:1591. [PMID: 39766858 PMCID: PMC11675122 DOI: 10.3390/genes15121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The immune repertoire (IR) is a term that defines the combined unique genetic rearrangements of antigen receptors expressed by B and T lymphocytes. The IR determines the ability of the immune system to identify and respond to foreign antigens while preserving tolerance to host antigens. When immune tolerance is disrupted, development of autoimmune diseases can occur due to the attack of self-antigens. Recent technical advances in immune profiling allowed identification of common patterns and shared antigen-binding sequences unique to diverse array of diseases. However, there is no current literature to date evaluates IR findings in autoimmune and skin inflammatory conditions. In this review, we provide an overview of the past and current research findings of IR in various autoimmune and dermatologic conditions. Enriching our understanding of IRs in these conditions is critical for understanding the pathophysiology behind autoimmune skin disease onset and progression. Furthermore, understanding B-cell and T-cell IR will help devise therapeutic treatments in the hopes of restoring immune tolerance and preventing disease onset and progression.
Collapse
Affiliation(s)
- Hanna Terhaar
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily Grant
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camden Collins
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohamed Khass
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Endodontics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Kakan SS, Abdelhamid S, Ju Y, MacKay JA, Edman MC, Raman I, Zhu C, Raj P, Hamm-Alvarez SF. Serum and Tear Autoantibodies from NOD and NOR Mice as Potential Diagnostic Indicators of Local and Systemic Inflammation in Sjögren's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619993. [PMID: 39553935 PMCID: PMC11565729 DOI: 10.1101/2024.10.24.619993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Sjögren's Disease (SjD) is an autoimmune disease characterized by lymphocytic infiltration of salivary and lacrimal glands (LG). The LG produces the protein-rich aqueous component of tears, and SjD-associated autoimmune dacryoadenitis (AD) may thus alter tear autoantibody composition. Methods The presence of tertiary lymphoid structures (TLS) in LG from two murine models of SjD-associated AD, male NOD and male NOR mice, were evaluated using immunofluorescence. IgG and IgA reactivity in serum and tears from these models were probed in three studies against a panel of 80-120 autoantigens using autoantibody microarrays relative to serum and tears from healthy male BALB/c mice. Data were analyzed by R package Limma. Results Analysis of immunofluorescence in LG sections from both SjD models showed TLS. Only one autoantibody was significantly elevated in tears and serum in both SjD models across all studies. Three autoantibodies were significantly elevated in serum but not in tears in both SjD models across all studies. Conversely, six IgG and thirteen IgA autoantibodies (6 sharing the same autoantigen) were significantly elevated in tears but not serum in both SjD models. Conclusion NOD and NOR mice with SjD-associated AD have distinct autoantibody profiles in tears and serum. Tear IgA isotype autoantibodies showed a greater diversity than tear IgG autoantibodies. TLS observed in LG are a likely source of the tear autoantibodies.
Collapse
|
5
|
Gao X, Xiao G, Yang F, Dou R, Xue M, Zhang Y, Zheng Z, Ding J. Laboratory risk factors for coexistent primary biliary cholangitis in patients with Sjögren's syndrome: a retrospective study. BMC Gastroenterol 2023; 23:220. [PMID: 37365494 DOI: 10.1186/s12876-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Limited research exists on the laboratory characteristics of coexistent primary biliary cholangitis (PBC) and Sjögren's syndrome (SS). This study aimed to investigate the laboratory risk factors for the coexistence of PBC in patients with SS. METHODS Eighty-two patients with coexistent SS and PBC (median age 52.50 years) and 82 age- and sex-matched SS controls were retrospectively enrolled between July 2015 and July 2021. The clinical and laboratory characteristics of the two groups were compared. Laboratory risk factors for the coexistence of PBC in patients with SS were analyzed using logistic regression analysis. RESULTS Both groups had a similar prevalence of hypertension, diabetes, thyroid disease, and interstitial lung disease. Compared with the SS group, patients in the SS + PBC group had higher levels of liver enzymes, immunoglobulins M (IgM), G2, and G3 (P < 0.05). The percentage of patients with an antinuclear antibody (ANA) titre > 1:10000 in the SS + PBC group was 56.1%, higher than that in the SS group (19.5%, P < 0.05). Additionally, cytoplasmic, centromeric, and nuclear membranous patterns of ANA and positive anti-centromere antibody (ACA) were observed more frequently in the SS + PBC group (P < 0.05). Logistic regression analysis showed that elevated IgM levels, high ANA titre, cytoplasmic pattern, and ACA were independent risk factors for PBC coexistence in SS. CONCLUSIONS In addition to established risk factors, elevated IgM levels, positive ACA, and high ANA titre with cytoplasmic pattern provide clues to clinicians for the early screening and diagnosis of PBC in patients with SS.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China
| | - Guangzhi Xiao
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China
| | - Fengfan Yang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China
| | - Rongrong Dou
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China
| | - Miao Xue
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China
| | - Yingying Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China
| | - Jin Ding
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Rd., Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
6
|
Validation of Methods to Assess the Immunoglobulin Gene Repertoire in Tissues Obtained from Mice on the International Space Station. ACTA ACUST UNITED AC 2020. [DOI: 10.2478/gsr-2017-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
Spaceflight is known to affect immune cell populations. In particular, splenic B-cell numbers decrease during spaceflight and in ground-based physiological models. Although antibody isotype changes have been assessed during and after spaceflight, an extensive characterization of the impact of spaceflight on antibody composition has not been conducted in mice. Next Generation Sequencing and bioinformatic tools are now available to assess antibody repertoires. We can now identify immunoglobulin gene-segment usage, junctional regions, and modifications that contribute to specificity and diversity. Due to limitations on the International Space Station, alternate sample collection and storage methods must be employed. Our group compared Illumina MiSeq® sequencing data from multiple sample preparation methods in normal C57Bl/6J mice to validate that sample preparation and storage would not bias the outcome of antibody repertoire characterization. In this report, we also compared sequencing techniques and a bioinformatic workflow on the data output when we assessed the IgH and Igκ variable gene usage. Our bioinformatic workflow has been optimized for Illumina HiSeq® and MiSeq® datasets, and is designed specifically to reduce bias, capture the most information from Ig sequences, and produce a data set that provides other data mining options.
Collapse
|
7
|
Rettig TA, Ward C, Pecaut MJ, Chapes SK. Validation of Methods to Assess the Immunoglobulin Gene Repertoire in Tissues Obtained from Mice on the International Space Station. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2017; 5:2-23. [PMID: 29270444 PMCID: PMC5736159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spaceflight is known to affect immune cell populations. In particular, splenic B cell numbers decrease during spaceflight and in ground-based physiological models. Although antibody isotype changes have been assessed during and after space flight, an extensive characterization of the impact of spaceflight on antibody composition has not been conducted in mice. Next Generation Sequencing and bioinformatic tools are now available to assess antibody repertoires. We can now identify immunoglobulin gene- segment usage, junctional regions, and modifications that contribute to specificity and diversity. Due to limitations on the International Space Station, alternate sample collection and storage methods must be employed. Our group compared Illumina MiSeq sequencing data from multiple sample preparation methods in normal C57Bl/6J mice to validate that sample preparation and storage would not bias the outcome of antibody repertoire characterization. In this report, we also compared sequencing techniques and a bioinformatic workflow on the data output when we assessed the IgH and Igκ variable gene usage. This included assessments of our bioinformatic workflow on Illumina HiSeq and MiSeq datasets and is specifically designed to reduce bias, capture the most information from Ig sequences, and produce a data set that provides other data mining options. We validated our workflow by comparing our normal mouse MiSeq data to existing murine antibody repertoire studies validating it for future antibody repertoire studies.
Collapse
Affiliation(s)
| | - Claire Ward
- Division of Biology, Kansas State University, Manhattan, KS
| | - Michael J Pecaut
- Division of Radiation Research, Loma Linda University, Loma Linda University, CA
| | | |
Collapse
|
8
|
Kiripolsky J, Shen L, Liang Y, Li A, Suresh L, Lian Y, Li QZ, Gaile DP, Kramer JM. Systemic manifestations of primary Sjögren's syndrome in the NOD.B10Sn-H2 b/J mouse model. Clin Immunol 2017; 183:225-232. [PMID: 28526333 DOI: 10.1016/j.clim.2017.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022]
Abstract
Animal models that recapitulate human disease are crucial for the study of Sjögren's Syndrome (SS). While several SS mouse models exist, there are few primary SS (pSS) models that mimic systemic disease manifestations seen in humans. Similar to pSS patients, NOD.B10Sn-H2b/J (NOD.B10) mice develop exocrine gland disease and anti-nuclear autoantibodies. However, the disease kinetics and spectrum of extra-glandular disease remain poorly characterized in this model. Our objective was to characterize local and systemic SS manifestations in depth in NOD.B10 female mice at early and late disease time points. To this end, sera, exocrine tissue, lung, and kidney were analyzed. NOD.B10 mice have robust lymphocytic infiltration of salivary and lacrimal tissue. In addition, they exhibit significant renal and pulmonary inflammation. We identified numerous autoantibodies, including those directed against salivary proteins. In conclusion, the NOD.B10 model recapitulates both local and systemic pSS disease and represents an excellent model for translational studies.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Long Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen 361003, China; Autoimmune Division, Trinity Biotech, 60 Pineview Drive, Buffalo, NY 14228, USA
| | - Yichen Liang
- Autoimmune Division, Trinity Biotech, 60 Pineview Drive, Buffalo, NY 14228, USA
| | - Alisa Li
- Autoimmune Division, Trinity Biotech, 60 Pineview Drive, Buffalo, NY 14228, USA
| | - Lakshmanan Suresh
- Autoimmune Division, Trinity Biotech, 60 Pineview Drive, Buffalo, NY 14228, USA; Department of Oral Diagnostics Sciences, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Yun Lian
- Microarray Core Facility, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Daniel P Gaile
- Department of Biostatistics, School of Public Health and Health Professions, University of Buffalo, The State University of New York, 3435 Main Street, 718 Kimball Tower, Buffalo, NY 14214, USA
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY 14214, USA; Autoimmune Division, Trinity Biotech, 60 Pineview Drive, Buffalo, NY 14228, USA; Department of Oral Diagnostics Sciences, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
9
|
Bischof J, Ibrahim SM. bcRep: R Package for Comprehensive Analysis of B Cell Receptor Repertoire Data. PLoS One 2016; 11:e0161569. [PMID: 27551775 PMCID: PMC4995022 DOI: 10.1371/journal.pone.0161569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Immunoglobulins, as well as T cell receptors, play a key role in adaptive immune responses because of their ability to recognize antigens. Recent advances in next generation sequencing improved also the quality and quantity of individual B cell receptors repertoire sequencing. Unfortunately, appropriate software to exhaustively analyze repertoire data from NGS platforms without limitations of the number of sequences are lacking. Here we introduce a new R package, bcRep, which offers a platform for comprehensive analyses of B cell receptor repertoires, using IMGT/HighV-QUEST formatted data. Methods for gene usage statistics, clonotype classification, as well as diversity measures, are included. Furthermore, functions to filter datasets, to do summary statistics about mutations, as well as visualization methods, are available. To compare samples in respect of gene usage, diversity, amino acid proportions, similar sequences or clones, several functions including also distance measurements, as well as multidimensional scaling methods, are provided.
Collapse
Affiliation(s)
- Julia Bischof
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- * E-mail:
| | - Saleh M. Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|