1
|
Snyder BL, Huang R, Burkholder AB, Donahue DR, Mahler BW, Bortner CD, Lai WS, Blackshear PJ. Synergistic roles of tristetraprolin family members in myeloid cells in the control of inflammation. Life Sci Alliance 2024; 7:e202302222. [PMID: 37903626 PMCID: PMC10616675 DOI: 10.26508/lsa.202302222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Members of the tristetraprolin (TTP) family of RNA-binding proteins can bind to and promote the decay of specific transcripts containing AU-rich motifs. ZFP36 (TTP) is best known for regulating pro-inflammatory cytokine expression in myeloid cells; however, its mammalian paralogues ZFP36L1 and ZFP36L2 have not been viewed as important in controlling inflammation. We knocked out these genes in myeloid cells in mice, singly and together. Single-gene myeloid-specific knockouts resulted in almost no spontaneous phenotypes. In contrast, mice with myeloid cell deficiency of all three genes developed severe inflammation, with a median survival of 8 wk. Macrophages from these mice expressed many more stabilized transcripts than cells from myeloid-specific TTP knockout mice; many of these encoded pro-inflammatory cytokines and chemokines. The failure of weight gain, arthritis, and early death could be prevented completely by two normal alleles of any of the three paralogues, and even one normal allele of Zfp36 or Zfp36l2 was enough to prevent the inflammatory phenotype. Our findings emphasize the importance of all three family members, acting in concert, in myeloid cell function.
Collapse
Affiliation(s)
- Brittany L Snyder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Rui Huang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Adam B Burkholder
- Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Danielle R Donahue
- NIH Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Beth W Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, Durham, NC, USA
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
2
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
3
|
Cicchetto AC, Jacobson EC, Sunshine H, Wilde BR, Krall AS, Jarrett KE, Sedgeman L, Turner M, Plath K, Iruela-Arispe ML, de Aguiar Vallim TQ, Christofk HR. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep 2023; 42:112411. [PMID: 37086408 PMCID: PMC10332406 DOI: 10.1016/j.celrep.2023.112411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.
Collapse
Affiliation(s)
- Andrew C Cicchetto
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elsie C Jacobson
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hannah Sunshine
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Blake R Wilde
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Abigail S Krall
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Leslie Sedgeman
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - M Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Zhao M, Zhou J, Tang Y, Liu M, Dai Y, Xie H, Wang Z, Chen L, Wu Y. Genome-wide analysis of RNA-binding proteins co-expression with alternative splicing events in mitral valve prolapse. Front Immunol 2023; 14:1078266. [PMID: 37180137 PMCID: PMC10171460 DOI: 10.3389/fimmu.2023.1078266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives We investigated the role and molecular mechanisms of RNA-binding proteins (RBPs) and their regulated alternative splicing events (RASEs) in the pathogenesis of mitral valve prolapse (MVP). Methods For RNA extraction, we obtained peripheral blood mononuclear cells (PBMCs) from five patients with MVP, with or without chordae tendineae rupture, and five healthy individuals. High-throughput sequencing was used for RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) analysis, alternative splicing (AS) analysis, functional enrichment analysis, co-expression of RBPs, and alternative splicing events (ASEs) analysis were conducted. Results The MVP patients exhibited 306 up-regulated genes and 198 down-regulated genes. All down- and up-regulated genes were enriched in both Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, MVP was closely associated with the top 10 enriched terms and pathways. In MVP patients, 2,288 RASEs were found to be significantly different, and four suitable RASEs (CARD11 A3ss, RBM5 ES, NCF1 A5SS, and DAXX A3ss) were tested. We identified 13 RNA-binding proteins (RBPs) from the DEGs and screened out four RBPs (ZFP36, HSPA1A, TRIM21, and P2RX7). We selected four RASEs based on the co-expression analyses of RBPs and RASEs, including exon skipping (ES) of DEDD2, alternative 3' splice site (A3SS) of ETV6, mutually exclusive 3'UTRs (3pMXE) of TNFAIP8L2, and A3SS of HLA-B. Furthermore, the selected four RBPs and four RASEs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and showed high consistency with RNA sequencing (RNA-seq). Conclusion Dysregulated RBPs and their associated RASEs may play regulatory roles in MVP development and may therefore be used as therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Chen
- *Correspondence: Liang Chen, ; Yanhu Wu,
| | - Yanhu Wu
- *Correspondence: Liang Chen, ; Yanhu Wu,
| |
Collapse
|
5
|
Chen J, Patial S, Saini Y. Silencing of RNA binding protein, ZFP36L1, promotes epithelial-mesenchymal transition in liver cancer cells by regulating transcription factor ZEB2. Cell Signal 2022; 100:110462. [PMID: 36100056 DOI: 10.1016/j.cellsig.2022.110462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
RNA binding proteins (RBPs) of the zinc finger protein 36 family including zinc finger protein 36 like 1 (ZFP36L1) are implicated in cancer, however, the underlying molecular mechanisms have remained unclear. These proteins function by regulating post-transcriptional gene expression upon binding to the AU-rich elements (ARE's) within the 3'untranslated regions (3'UTRs) of specific mRNAs and increasing their mRNA turnover. Here, we tested the role of ZFP36L1 in hepatocellular carcinoma (HCC) cell lines. ZFP36L1 was under-expressed among the three RBPs in a majority of the HCC cell lines. Silencing of ZFP36L1 in two of the seven HCC cell lines resulted in epithelial-mesenchymal transition (EMT) like morphological changes, which were characterized by the transition of epithelial morphology to elongated mesenchymal morphology and increased migration and invasion potential. Conversely, overexpression of ZFP36L1 abolished these changes. RNA-seq analysis of ZFP36L1-depleted HCC cells revealed a significant upregulation of an EMT-inducing transcription factor, ZEB2 (zinc-finger E-box-binding homeobox 2), and enrichment of pathways associated with mesenchymal cell development and differentiation. ZEB2 mRNA contains AREs within its 3'UTR and its stability was increased following ZFP36L1 knockdown. Conversely, ZEB2 was significantly downregulated following ZFP36L1 overexpression and ZEB2 3'UTR was regulated by ZFP36L1 in luciferase reporter assays. These data identify ZEB2 mRNA as a ZFP36L1 target in HCC cells and demonstrate that ZFP36L1 regulates EMT possibly through direct regulation of ZEB2 mRNA. In summary, our results demonstrate that ZFP36L1 suppresses EMT inliver cancer cells by down-regulating the expression of EMT-inducing transcription factor, ZEB2. These data suggest an important role of ZFP36L1 in the development, progression, and metastasis of hepatocellular cancer.
Collapse
Affiliation(s)
- Jian Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
6
|
Snyder BL, Blackshear PJ. Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases. Pharmacol Ther 2022; 239:108198. [PMID: 35525391 PMCID: PMC9636069 DOI: 10.1016/j.pharmthera.2022.108198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Abnormal regulation of pro-inflammatory cytokine and chemokine mediators can contribute to the excess inflammation characteristic of many autoimmune diseases, such as rheumatoid arthritis, psoriasis, Crohn's disease, type 1 diabetes, and many others. The tristetraprolin (TTP) family consists of a small group of related RNA-binding proteins that bind to preferred AU-rich binding sites within the 3'-untranslated regions of specific mRNAs to promote mRNA deadenylation and decay. TTP deficient mice develop a severe systemic inflammatory syndrome consisting of arthritis, myeloid hyperplasia, dermatitis, autoimmunity and cachexia, due at least in part to the excess accumulation of proinflammatory chemokine and cytokine mRNAs and their encoded proteins. To investigate the possibility that increased TTP expression or activity might have a beneficial effect on inflammatory diseases, at least two mouse models have been developed that provide proof of principle that increasing TTP activity can promote the decay of pro-inflammatory and other relevant transcripts, and decrease the severity of mouse models of inflammatory disease. Animal studies of this type are summarized here, and we briefly review the prospects for harnessing these insights for the development of TTP-based anti-inflammatory treatments in humans.
Collapse
Affiliation(s)
- Brittany L Snyder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
7
|
Antonia RJ, Karelehto E, Toriguchi K, Matli M, Warren RS, Pfeffer LM, Donner DB. STAT3 regulates inflammatory cytokine production downstream of TNFR1 by inducing expression of TNFAIP3/A20. J Cell Mol Med 2022; 26:4591-4601. [PMID: 35841281 PMCID: PMC9357623 DOI: 10.1111/jcmm.17489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Tumour Necrosis Factor (TNF) potently induces a transient inflammatory response that must be downregulated once any invasive stimulus has resolved. Yet, how TNF‐induced inflammation is shut down in normal cells is incompletely understood. The present study shows that STAT3 was activated in mouse embryo fibroblasts (MEFs) by treatment with TNF or an agonist antibody to TNFR1. STAT3 activation was inhibited by pharmacological inhibition of the Jak2 tyrosine kinase that associates with TNFR1. To identify STAT3 target genes, global transcriptome analysis by RNA sequencing was performed in wild‐type MEFs and MEFs from STAT3 knockout (STAT3KO) mice that were stimulated with TNF, and the results were validated at the protein level by using multiplex cytokine assays and immunoblotting. After TNF stimulation, STAT3KO MEFs showed greater gene and protein induction of the inflammatory chemokines Ccl2, Cxcl1 and Cxcl10 than WT MEFs. These observations show that, by activating STAT3, TNF selectively modulates expression of a cohort of chemokines that promote inflammation. The greater induction by TNF of chemokines in STAT3KO than WT MEFs suggested that TNF induced an inhibitory protein in WT MEFs. Consistent with this possibility, STAT3 activation by TNFR1 increased the expression of Tnfaip3/A20, a ubiquitin modifying enzyme that inhibits inflammation, in WT MEFs but not in STAT3KO MEFs. Moreover, enforced expression of Tnfaip3/A20 in STAT3KO MEFs suppressed proinflammatory chemokine expression induced by TNF. Our observations identify Tnfaip3/A20 as a new downstream target for STAT3 which limits the induction of Ccl2, Cxcl1 and Cxcl10 and inflammation induced by TNF.
Collapse
Affiliation(s)
- Ricardo J Antonia
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Eveliina Karelehto
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Kan Toriguchi
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Mary Matli
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Robert S Warren
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David B Donner
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| |
Collapse
|
8
|
Shen TH, Stauber J, Xu K, Jacunski A, Paragas N, Callahan M, Banlengchit R, Levitman AD, Desanti De Oliveira B, Beenken A, Grau MS, Mathieu E, Zhang Q, Li Y, Gopal T, Askanase N, Arumugam S, Mohan S, Good PI, Stevens JS, Lin F, Sia SK, Lin CS, D’Agati V, Kiryluk K, Tatonetti NP, Barasch J. Snapshots of nascent RNA reveal cell- and stimulus-specific responses to acute kidney injury. JCI Insight 2022; 7:e146374. [PMID: 35230973 PMCID: PMC8986083 DOI: 10.1172/jci.insight.146374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current strategy to detect acute injury of kidney tubular cells relies on changes in serum levels of creatinine. Yet serum creatinine (sCr) is a marker of both functional and pathological processes and does not adequately assay tubular injury. In addition, sCr may require days to reach diagnostic thresholds, yet tubular cells respond with programs of damage and repair within minutes or hours. To detect acute responses to clinically relevant stimuli, we created mice expressing Rosa26-floxed-stop uracil phosphoribosyltransferase (Uprt) and inoculated 4-thiouracil (4-TU) to tag nascent RNA at selected time points. Cre-driven 4-TU-tagged RNA was isolated from intact kidneys and demonstrated that volume depletion and ischemia induced different genetic programs in collecting ducts and intercalated cells. Even lineage-related cell types expressed different genes in response to the 2 stressors. TU tagging also demonstrated the transient nature of the responses. Because we placed Uprt in the ubiquitously active Rosa26 locus, nascent RNAs from many cell types can be tagged in vivo and their roles interrogated under various conditions. In short, 4-TU labeling identifies stimulus-specific, cell-specific, and time-dependent acute responses that are otherwise difficult to detect with other technologies and are entirely obscured when sCr is the sole metric of kidney damage.
Collapse
Affiliation(s)
| | | | | | - Alexandra Jacunski
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Neal Paragas
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sumit Mohan
- Department of Medicine, and
- Department of Epidemiology
| | | | | | | | | | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Vivette D’Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
9
|
Activation of the MKK3-p38-MK2-ZFP36 Axis by Coronavirus Infection Restricts the Upregulation of AU-Rich Element-Containing Transcripts in Proinflammatory Responses. J Virol 2022; 96:e0208621. [PMID: 34985993 DOI: 10.1128/jvi.02086-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.
Collapse
|
10
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|
11
|
Tristetraprolin, Inflammation, and Metabolic Syndrome in Arab Adults: A Case Control Study. BIOLOGY 2021; 10:biology10060550. [PMID: 34207463 PMCID: PMC8235193 DOI: 10.3390/biology10060550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary Metabolic syndrome (MetS) is a common disorder characterized as a low-grade chronic inflammatory state. The association of tristetraprolin (TTP), a novel anti-inflammatory protein, and MetS remains to be explored. We evaluated circulating TTP in a group of adult males and females with and without MetS. Serum levels of TTP were higher in the MetS group than in controls. In all subjects, serum TTP was also correlated with MetS components (e.g., glucose, lipids, and obesity indices). These findings suggest that TTP may be a promising biomarker for MetS. Abstract Tristetraprolin (TTP) is an mRNA binding protein suggested to have a substantial role in regulating the mRNA expression of numerous inflammatory factors, but data on TTP and its association with metabolic syndrome (MetS), a chronic low-grade inflammatory disorder, are scarce. We hypothesize that TTP may modulate MetS and its components. A total of 200 Saudi adults (aged 38.6 ± 8.3 years) were included in this cross-sectional study. Anthropometrics data were collected and fasting blood glucose taken for the assessment of glycemic, lipids and inflammatory markers using commercially available assays. The National Cholesterol Education Program Adult Treatment Panel (NCEP ATP III) criteria were used to define MetS. Results showed significantly higher levels of TTP in the MetS group than in controls [288.1 pg/mL vs. 150.9 pg/mL, p < 0.001]. Circulating TTP was significantly associated with tumor necrosis factor alpha [TNF-α, R = 0.30, p < 0.05], interleukin 1β [IL-1β, R = 0.41, p < 0.01] and C-reactive protein [CRP, R = 0.36, p < 0.01], adiponectin [R = 0.36, p < 0.05], insulin [R = 0.37, p < 0.05], and insulin resistance [HOMA-IR, R = 0.40, p < 0.05]. Receiver operating characteristics (ROC) suggest a potential use of TTP as diagnostic biomarker for MetS [AUC = 0.819, p < 0.001]. The findings suggest that TTP is associated with inflammation and glycemia, which may influence MetS. TTP is a promising diagnostic biomarker for MetS which can be confirmed in larger cohorts.
Collapse
|
12
|
Rodríguez-Gómez G, Paredes-Villa A, Cervantes-Badillo MG, Gómez-Sonora JP, Jorge-Pérez JH, Cervantes-Roldán R, León-Del-Río A. Tristetraprolin: A cytosolic regulator of mRNA turnover moonlighting as transcriptional corepressor of gene expression. Mol Genet Metab 2021; 133:137-147. [PMID: 33795191 DOI: 10.1016/j.ymgme.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Tristetraprolin (TTP) is a nucleocytoplasmic 326 amino acid protein whose sequence is characterized by possessing two CCCH-type zinc finger domains. In the cytoplasm TTP function is to promote the degradation of mRNAs that contain adenylate/uridylate-rich elements (AREs). Mechanistically, TTP promotes the recruitment of poly(A)-specific deadenylases and exoribonucleases. By reducing the half-life of about 10% of all the transcripts in the cell TTP has been shown to participate in multiple cell processes that include regulation of gene expression, cell proliferation, metabolic homeostasis and control of inflammation and immune responses. However, beyond its role in mRNA decay, in the cell nucleus TTP acts as a transcriptional coregulator by interacting with chromatin modifying enzymes. TTP has been shown to repress the transactivation of NF-κB and estrogen receptor suggesting the possibility that it participates in the transcriptional regulation of hundreds of genes in human cells and its possible involvement in breast cancer progression. In this review, we discuss the cytoplasmic and nuclear functions of TTP and the effect of the dysregulation of its protein levels in the development of human diseases. We suggest that TTP be classified as a moonlighting tumor supressor protein that regulates gene expression through two different mechanims; the decay of ARE-mRNAs and a transcriptional coregulatory function.
Collapse
Affiliation(s)
- Gabriel Rodríguez-Gómez
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Paredes-Villa
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mayte Guadalupe Cervantes-Badillo
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jessica Paola Gómez-Sonora
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jesús H Jorge-Pérez
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
13
|
Assabban A, Dubois-Vedrenne I, Van Maele L, Salcedo R, Snyder BL, Zhou L, Azouz A, de Toeuf B, Lapouge G, La C, Melchior M, Nguyen M, Thomas S, Wu SF, Hu W, Kruys V, Blanpain C, Trinchieri G, Gueydan C, Blackshear PJ, Goriely S. Tristetraprolin expression by keratinocytes protects against skin carcinogenesis. JCI Insight 2021; 6:140669. [PMID: 33497366 PMCID: PMC8021119 DOI: 10.1172/jci.insight.140669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Cancer is caused primarily by genomic alterations resulting in deregulation of gene regulatory circuits in key growth, apoptosis, or DNA repair pathways. Multiple genes associated with the initiation and development of tumors are also regulated at the level of mRNA decay, through the recruitment of RNA-binding proteins to AU-rich elements (AREs) located in their 3'-untranslated regions. One of these ARE-binding proteins, tristetraprolin (TTP; encoded by Zfp36), is consistently dysregulated in many human malignancies. Herein, using regulated overexpression or conditional ablation in the context of cutaneous chemical carcinogenesis, we show that TTP represents a critical regulator of skin tumorigenesis. We provide evidence that TTP controlled both tumor-associated inflammation and key oncogenic pathways in neoplastic epidermal cells. We identify Areg as a direct target of TTP in keratinocytes and show that EGFR signaling potentially contributed to exacerbated tumor formation. Finally, single-cell RNA-Seq analysis indicated that ZFP36 was downregulated in human malignant keratinocytes. We conclude that TTP expression by epidermal cells played a major role in the control of skin tumorigenesis.
Collapse
Affiliation(s)
- Assiya Assabban
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ingrid Dubois-Vedrenne
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Laurye Van Maele
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Abdulkader Azouz
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bérengère de Toeuf
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Gaëlle Lapouge
- Laboratory of Stem Cells and Cancer, WELBIO, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline La
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Maxime Melchior
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Si Fan Wu
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, New York, USA
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, WELBIO, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Perry J. Blackshear
- Signal Transduction Laboratory and
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Stanislas Goriely
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
14
|
Xu B, Tang J, Lyu C, Wandu WS, Stumpo DJ, Mattapallil MJ, Horai R, Gery I, Blackshear PJ, Caspi RR. Regulated Tristetraprolin Overexpression Dampens the Development and Pathogenesis of Experimental Autoimmune Uveitis. Front Immunol 2021; 11:583510. [PMID: 33569048 PMCID: PMC7868398 DOI: 10.3389/fimmu.2020.583510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Non-infectious uveitis, a common cause of blindness in man, is often mediated by autoimmunity, a process in which cytokines play major roles. The biosynthesis and secretion of pro-inflammatory cytokines are regulated in part by tristetraprolin (TTP), an endogenous anti-inflammatory protein that acts by binding directly to specific sequence motifs in the 3'-untranslated regions of target mRNAs, promoting their turnover, and inhibiting synthesis of their encoded proteins. We recently developed a TTP-overexpressing mouse (TTPΔARE) by deleting an AU-rich element (ARE) instability motif from the TTP mRNA, resulting in increased accumulation of TTP mRNA and protein throughout the animal. Here, we show that homozygous TTPΔARE mice are resistant to the induction of experimental autoimmune uveitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP), an established model for human autoimmune (noninfectious) uveitis. Lymphocytes from TTPΔARE mice produced lower levels of the pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and TNFα than wild type (WT) mice. TTPΔARE mice also produced lower titers of antibodies against the uveitogenic protein. In contrast, TTPΔARE mice produced higher levels of the anti-inflammatory cytokine IL-10, and had higher frequencies of regulatory T-cells, which, moreover, displayed a moderately higher per-cell regulatory ability. Heterozygous mice developed EAU and associated immunological responses at levels intermediate between homozygous TTPΔARE mice and WT controls. TTPΔARE mice were able, however, to develop EAU following adoptive transfer of activated WT T-cells specific to IRBP peptide 651-670, and naïve T-cells from TTPΔARE mice could be activated by antibodies to CD3/CD28. Importantly, TTPΔARE antigen presenting cells were significantly less efficient compared to WT in priming naïve T cells, suggesting that this feature plays a major role in the dampened immune responses of the TTPΔARE mice. Our observations demonstrate that elevated systemic levels of TTP can inhibit the pathogenic processes involved in EAU, and suggest the possible use of TTP-based treatments in humans with uveitis and other autoimmune conditions.
Collapse
Affiliation(s)
- Biying Xu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Jihong Tang
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Cancan Lyu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Wambui S Wandu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Igal Gery
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.,Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
15
|
Catherine DeSoto M. Regional differences in use of immune-modulating catechins should be investigated regarding COVID-19. Brain Behav Immun 2020; 89:526-527. [PMID: 32679175 PMCID: PMC7362853 DOI: 10.1016/j.bbi.2020.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- M. Catherine DeSoto
- Address: Department of Psychology, University of Northern Iowa, Cedar Falls, Iowa 50614-0505, Bartlett 2062, United States
| |
Collapse
|
16
|
Porter W, Snowden E, Hahn F, Ferguson M, Tong F, Dillmore WS, Blaesius R. High accuracy gene expression profiling of sorted cell subpopulations from breast cancer PDX model tissue. PLoS One 2020; 15:e0238594. [PMID: 32911489 PMCID: PMC7482927 DOI: 10.1371/journal.pone.0238594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 01/01/2023] Open
Abstract
Intratumor Heterogeneity (ITH) is a functionally important property of tumor tissue and may be involved in drug resistance mechanisms. Although descriptions of ITH can be traced back to very early reports about cancer tissue, mechanistic investigations are still limited by the precision of analysis methods and access to relevant tissue sources. PDX models have provided a reproducible source of tissue with at least a partial representation of naturally occurring ITH. We investigated the properties of phenotypically distinct cell populations by Fluorescence activated cell sorting (FACS) tissue derived cells from multiple tumors from a triple negative breast cancer patient derived xenograft (PDX) model. We subsequently subjected each population to in depth gene expression analysis. Our findings suggest that process related gene expression changes (caused by tissue dissociation and FACS sorting) are restricted to Immediate Early Genes (IEGs). This allowed us to discover highly reproducible gene expression profiles of distinct cellular compartments identifiable by cell surface markers in this particular tumor model. Within the context of data from a previously published model our work suggests that gene expression profiles associated with hypoxia, stemness and drug resistance may reside in tumor subpopulations predictably growing in PDX models. This approach provides a novel opportunity for prospective mechanistic studies of ITH.
Collapse
Affiliation(s)
- Warren Porter
- BD Technologies and Innovation, Research Triangle Park, NC, United States of America
| | - Eileen Snowden
- BD Technologies and Innovation, Research Triangle Park, NC, United States of America
| | - Friedrich Hahn
- BD Technologies and Innovation, Research Triangle Park, NC, United States of America
| | - Mitchell Ferguson
- BD Technologies and Innovation, Research Triangle Park, NC, United States of America
| | - Frances Tong
- BD Technologies and Innovation, Research Triangle Park, NC, United States of America
| | - W. Shannon Dillmore
- BD Technologies and Innovation, Research Triangle Park, NC, United States of America
| | - Rainer Blaesius
- BD Technologies and Innovation, Research Triangle Park, NC, United States of America
- * E-mail:
| |
Collapse
|
17
|
Choudhary I, Vo T, Bathula CS, Lamichhane R, Lewis BW, Looper J, Jeyaseelan S, Blackshear PJ, Saini Y, Patial S. Tristetraprolin Overexpression in Non-hematopoietic Cells Protects Against Acute Lung Injury in Mice. Front Immunol 2020; 11:2164. [PMID: 32983182 PMCID: PMC7493631 DOI: 10.3389/fimmu.2020.02164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
Tristetraprolin (TTP) is a mRNA binding protein that binds to adenylate-uridylate-rich elements within the 3′ untranslated regions of certain transcripts, such as tumor necrosis factor (Tnf) mRNA, and increases their rate of decay. Modulation of TTP expression is implicated in inflammation; however, its role in acute lung inflammation remains unknown. Accordingly, we tested the role of TTP in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. LPS-challenged TTP-knockout (TTPKO) mice, as well as myeloid cell-specific TTP-deficient (TTPmyeKO) mice, exhibited significant increases in lung injury, although these responses were more robust in the TTPKO. Mice with systemic overexpression of TTP (TTPΔARE) were protected from ALI, as indicated by significantly reduced neutrophilic infiltration, reduced levels of neutrophil chemoattractants, and histological parameters of ALI. Interestingly, while irradiated wild-type (WT) mice reconstituted with TTPKO hematopoietic progenitor cells (HPCs) showed exaggerated ALI, their reconstitution with the TTPΔARE HPCs mitigated ALI. The reconstitution of irradiated TTPΔARE mice with HPCs from either WT or TTPΔARE donors conferred significant protection against ALI. In contrast, irradiated TTPΔARE mice reconstituted with TTPKO HPCs had exaggerated ALI, but the response was milder as compared to WT recipients that received TTPKO HPCs. Finally, the reconstitution of irradiated TTPKO recipient mice with TTPΔARE HPCs did not confer any protection to the TTPKO mice. These data together suggest that non-HPCs-specific overexpression of TTP within the lungs protects against ALI via downregulation of neutrophil chemoattractants and reduction in neutrophilic infiltration.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Thao Vo
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Chandra S Bathula
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Richa Lamichhane
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jayme Looper
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
18
|
Peng H, Ning H, Wang Q, Lai J, Wei L, Stumpo DJ, Blackshear PJ, Fu M, Hou R, Hoft DF, Liu J. Tristetraprolin Regulates T H17 Cell Function and Ameliorates DSS-Induced Colitis in Mice. Front Immunol 2020; 11:1952. [PMID: 32922402 PMCID: PMC7457025 DOI: 10.3389/fimmu.2020.01952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
TH17 cells have been extensively investigated in inflammation, autoimmune diseases, and cancer. The precise molecular mechanisms for TH17 cell regulation, however, remain elusive, especially regulation at the post-transcriptional level. Tristetraprolin (TTP) is an RNA-binding protein important for degradation of the mRNAs encoding several proinflammatory cytokines. With newly generated T cell-specific TTP conditional knockout mice (CD4CreTTPf/f), we found that aging CD4CreTTPf/f mice displayed an increase of IL-17A in serum and spontaneously developed chronic skin inflammation along with increased effector TH17 cells in the affected skin. TTP inhibited TH17 cell development and function by promoting IL-17A mRNA degradation. In a DSS-induced colitis model, CD4CreTTPf/f mice displayed severe colitis and had more TH17 cells and serum IL-17A compared with wild-type mice. Furthermore, neutralization of IL-17A reduced the severity of colitis. Our results reveal a new mechanism for regulating TH17 function and TH17-mediated inflammation post-transcriptionally by TTP, suggests that TTP might be a novel therapeutic target for the treatment of TH17-mediated diseases.
Collapse
Affiliation(s)
- Hui Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jinping Lai
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Lin Wei
- Department of Immunology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Deborah J. Stumpo
- National Institute of Environmental Health Sciences, Research Triangle, NC, United States
| | - Perry J. Blackshear
- National Institute of Environmental Health Sciences, Research Triangle, NC, United States
| | - Mingui Fu
- Shock/Trauma Research Center and Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
19
|
The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects. Cancers (Basel) 2020; 12:cancers12061539. [PMID: 32545247 PMCID: PMC7352335 DOI: 10.3390/cancers12061539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.
Collapse
|
20
|
Yamazumi Y, Sasaki O, Suyama-Fuchino S, Kohu K, Kamoshida Y, Harada H, Fujio K, Oda T, Akiyama T. The RNA-binding protein Mex-3B plays critical roles in the development of steroid-resistant neutrophilic airway inflammation. Biochem Biophys Res Commun 2019; 519:220-226. [PMID: 31493864 DOI: 10.1016/j.bbrc.2019.08.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
Abstract
While most asthma can be treated with steroids, about 10%, called severe asthma, is refractory to steroids. It has recently been shown that in a subgroup of severe asthma cases, neutrophils that infiltrate into the airways play an important role in inflammation. However, the mechanisms underlying this increased neutrophil infiltration are not well understood. Here, using a mouse model of steroid-resistant neutrophilic inflammation, we show that mice deficient for the RNA-binding protein Mex-3B have significantly less neutrophil infiltration in the airways than wild-type mice. We further demonstrate that Mex-3B post-transcriptionally upregulates CXCL2, a chemokine that induces neutrophil chemotaxis and migration. Moreover, we show that treatment with either anti-CXCL2 antibody or anti-Mex-3B antisense oligonucleotide suppresses neutrophilic allergic airway inflammation. These results suggest that Mex-3B-mediated induction of CXCL2 is crucial for steroid-resistant neutrophilic allergic airway inflammation. Our findings suggest new strategies for therapeutic intervention in steroid-resistant severe asthma.
Collapse
Affiliation(s)
- Yusuke Yamazumi
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Oh Sasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Saki Suyama-Fuchino
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kazuyoshi Kohu
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Kamoshida
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeaki Oda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
21
|
Lai WS, Stumpo DJ, Wells ML, Gruzdev A, Hicks SN, Nicholson CO, Yang Z, Faccio R, Webster MW, Passmore LA, Blackshear PJ. Importance of the Conserved Carboxyl-Terminal CNOT1 Binding Domain to Tristetraprolin Activity In Vivo. Mol Cell Biol 2019; 39:e00029-19. [PMID: 31036567 PMCID: PMC6580703 DOI: 10.1128/mcb.00029-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 04/19/2019] [Indexed: 01/19/2023] Open
Abstract
Tristetraprolin (TTP) is an anti-inflammatory protein that modulates the stability of certain cytokine/chemokine mRNAs. After initial high-affinity binding to AU-rich elements in 3' untranslated regions of target mRNAs, mediated through its tandem zinc finger (TZF) domain, TTP promotes the deadenylation and ultimate decay of target transcripts. These transcripts and their encoded proteins accumulate abnormally in TTP knockout (KO) mice, leading to a severe inflammatory syndrome. To assess the importance of the highly conserved C-terminal CNOT1 binding domain (CNBD) of TTP to the TTP deficiency phenotype in mice, we created a mouse model in which TTP lacked its CNBD. CNBD deletion mice exhibited a less severe phenotype than the complete TTP KO mice. In macrophages, the stabilization of target transcripts seen in KO mice was partially normalized in the CNBD deletion mice. In cell-free experiments, recombinant TTP lacking its CNBD could still activate target mRNA deadenylation by purified recombinant Schizosaccharomyces pombe CCR4/NOT complexes, although to a lesser extent than full-length TTP. Thus, TTP lacking its CNBD can still act to promote target mRNA instability in vitro and in vivo These data have implications for TTP family members throughout the eukarya, since species from all four kingdoms contain proteins with linked TZF and CNOT1 binding domains.
Collapse
Affiliation(s)
- Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Stephanie N Hicks
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cindo O Nicholson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Zhengfeng Yang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children, St. Louis, Missouri, USA
| | - Roberta Faccio
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children, St. Louis, Missouri, USA
| | | | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
22
|
Lee SR, Mun JY, Jeong MS, Lee HH, Roh YG, Kim WT, Kim MH, Heo J, Choi YH, Kim SJ, Cha HJ, Jun M, Leem SH. Thymoquinone-Induced Tristetraprolin Inhibits Tumor Growth and Metastasis through Destabilization of MUC4 mRNA. Int J Mol Sci 2019; 20:ijms20112614. [PMID: 31141941 PMCID: PMC6600862 DOI: 10.3390/ijms20112614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), a well-characterized AU-rich element (ARE) binding protein, functions as a tumor suppressor gene. The purpose of this study was to investigate whether a bioactive substance derived from a natural medicinal plant affects the induction of TTP and to elucidate its mechanism. We examined the effects of natural bioactive materials including Resveratrol (RSV), thymoquinone (TQ) and curcumin on the expression of TTP in cancer cell. TQ derived from a natural plant Nigella sativa increased the expression levels of TTP mRNA and proteins in a dose-dependent manner in gastric and breast cancer cells. TQ-induced TTP increased the instability of MUC4 mRNA by direct binding of TTP to ARE in the 3′UTR of MUC4 mRNA. The induction of TTP by TQ also reduced the proliferation, migration and invasion of cancer cells. The expression of the epithelial-mesenchymal (EMT)-related genes, which were target genes of TTP, was also decreased by the TQ treatment. In the in vivo experiments using mouse melanoma cells, TQ-induced TTP inhibited metastasis of tumor cells. We have found that TQ-induced TTP might inhibit metastasis by reducing tumor cell migration and invasion through destabilization of MUC4 mRNA, which suggest the MUC4 as a novel target to TTP.
Collapse
Affiliation(s)
- Se-Ra Lee
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
- Division of Drug Development & Optimization, Osong Medical Innovation Foundation (KBio), Chungbuk 28160, Korea.
| | - Jeong-Yeon Mun
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
| | - Mi-So Jeong
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
| | - Hyun-Hee Lee
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
| | - Yun-Gil Roh
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
| | - Won-Tae Kim
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
| | - Min-Hye Kim
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
| | - Jeonghoon Heo
- Departments of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan 49267, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dongeui University, Busan 47227, Korea.
| | - Su Jin Kim
- Department of Pathology, College of Medicine, Dong-A University, Busan 49315, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-702, Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea.
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
23
|
Lai WS, Arvola RM, Goldstrohm AC, Blackshear PJ. Inhibiting transcription in cultured metazoan cells with actinomycin D to monitor mRNA turnover. Methods 2019; 155:77-87. [PMID: 30625384 DOI: 10.1016/j.ymeth.2019.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Decay of transcribed mRNA is a key determinant of steady state mRNA levels in cells. Global analysis of mRNA decay in cultured cells has revealed amazing heterogeneity in rates of decay under normal growth conditions, with calculated half-lives ranging from several minutes to many days. The factors that are responsible for this wide range of decay rates are largely unknown, although our knowledge of trans-acting RNA binding proteins and non-coding RNAs that can control decay rates is increasing. Many methods have been used to try to determine mRNA decay rates under various experimental conditions in cultured cells, and transcription inhibitors like actinomycin D have probably the longest history of any technique for this purpose. Despite this long history of use, the actinomycin D method has been criticized as prone to artifacts, and as ineffective for some promoters. With appropriate guidelines and controls, however, it can be a versatile, effective technique for measuring endogenous mRNA decay in cultured mammalian and insect cells, as well as the decay of exogenously-expressed transcripts. It can be used readily on a genome-wide level, and is remarkably cost-effective. In this short review, we will discuss our utilization of this approach in these cells; we hope that these methods will allow more investigators to apply this useful technique to study mRNA decay under the appropriate conditions.
Collapse
Affiliation(s)
- Wi S Lai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Rene M Arvola
- The Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Aaron C Goldstrohm
- The Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Perry J Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States; The Departments of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
24
|
Angiolilli C, Kabala PA, Grabiec AM, Rossato M, Lai WS, Fossati G, Mascagni P, Steinkühler C, Blackshear PJ, Reedquist KA, Baeten DL, Radstake TRDJ. Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Res Ther 2018; 20:148. [PMID: 30029685 PMCID: PMC6053802 DOI: 10.1186/s13075-018-1638-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) suppress cytokine production in immune and stromal cells of patients with rheumatoid arthritis (RA). Here, we investigated the effects of the HDACi givinostat (ITF2357) on the transcriptional and post-transcriptional regulation of inflammatory markers in RA fibroblast-like synoviocytes (FLS). METHODS The effects of ITF2357 on the expression and messenger RNA (mRNA) stability of IL-1β-inducible genes in FLS were analyzed using array-based qPCR and Luminex. The expression of primary and mature cytokine transcripts, the mRNA levels of tristetraprolin (TTP, or ZFP36) and other AU-rich element binding proteins (ARE-BP) and the cytokine profile of fibroblasts derived from ZFP36+/+ and ZFP36-/- mice was measured by qPCR. ARE-BP silencing was performed by small interfering RNA (siRNA)-mediated knockdown, and TTP post-translational modifications were analyzed by immunoblotting. RESULTS ITF2357 reduced the expression of 85% of the analyzed IL-1β-inducible transcripts, including cytokines (IL6, IL8), chemokines (CXCL2, CXCL5, CXCL6, CXCL10), matrix-degrading enzymes (MMP1, ADAMTS1) and other inflammatory mediators. Analyses of mRNA stability demonstrated that ITF2357 accelerates IL6, IL8, PTGS2 and CXCL2 mRNA degradation, a phenomenon associated with the enhanced transcription of TTP, but not other ARE-BP, and the altered post-translational status of TTP protein. TTP knockdown potentiated cytokine production in RA FLS and murine fibroblasts, which in the latter case was insensitive to inhibition by ITF2357 treatment. CONCLUSIONS Our study identifies that regulation of cytokine mRNA stability is a predominant mechanism underlying ITF2357 anti-inflammatory properties, occurring via regulation of TTP. These results highlight the therapeutic potential of ITF2357 in the treatment of RA.
Collapse
Affiliation(s)
- Chiara Angiolilli
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | - Pawel A Kabala
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksander M Grabiec
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marzia Rossato
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Functional Genomics Center, University of Verona, Verona, Italy
| | - Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | | | - Paolo Mascagni
- Italfarmaco Research and Development, Cinisello Balsamo, Italy
| | | | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kris A Reedquist
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique L Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
A Knock-In Tristetraprolin (TTP) Zinc Finger Point Mutation in Mice: Comparison with Complete TTP Deficiency. Mol Cell Biol 2018; 38:MCB.00488-17. [PMID: 29203639 DOI: 10.1128/mcb.00488-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023] Open
Abstract
Tristetraprolin (TTP) is a tandem CCCH zinc finger protein that can bind to AU-rich element-containing mRNAs and promote their decay. TTP knockout mice develop a severe inflammatory syndrome, largely due to excess tumor necrosis factor (TNF), whose mRNA is a direct target of TTP binding and destabilization. TTP's RNA binding activity and its ability to promote mRNA decay are lost when one of the zinc-coordinating residues of either zinc finger is mutated. To address several long-standing questions about TTP activity in intact animals, we developed a knock-in mouse with a cysteine-to-arginine mutation within the first zinc finger. Homozygous knock-in mice developed a severe inflammatory syndrome that was essentially identical to that of complete TTP deficiency, suggesting that TTP's critical anti-inflammatory role in mammalian physiology is secondary to its ability to bind RNA. In addition, there was no evidence for a "dominant-negative" effect of the mutant allele in heterozygotes, as suggested by previous experiments. Finally, mRNA decay experiments in mutant macrophages demonstrated that TTP can regulate the stability of its own mRNA, albeit to a minor extent. These studies suggest that RNA binding is an essential first step in the physiological activities of members of this protein family.
Collapse
|
26
|
Guo J, Qu H, Chen Y, Xia J. The role of RNA-binding protein tristetraprolin in cancer and immunity. Med Oncol 2017; 34:196. [DOI: 10.1007/s12032-017-1055-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
|
27
|
The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem Soc Trans 2017; 44:1321-1337. [PMID: 27911715 PMCID: PMC5095909 DOI: 10.1042/bst20160166] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.
Collapse
|
28
|
Dunoyer-Geindre S, Rivier-Cordey AS, Tsopra O, Lecompte T, Kruithof EKO. Effect of ATRA and ATO on the expression of tissue factor in NB4 acute promyelocytic leukemia cells and regulatory function of the inflammatory cytokines TNF and IL-1β. Ann Hematol 2017; 96:905-917. [PMID: 28343272 PMCID: PMC5406437 DOI: 10.1007/s00277-017-2970-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
The characteristic hemorrhages of acute promyelocytic leukemia (APL) are caused in part by the high expression of tissue factor (TF) on leukemic cells, which also produce TNF and IL-1β, proinflammatory cytokines known to increase TF in various cell types. Exposure of NB4 cells, an APL cell line, to all-trans retinoic acid (ATRA) or arsenic trioxide (ATO) rapidly and strongly reduced TF mRNA. Both drugs also reduced TNF mRNA, but later, and moreover increased IL-1β mRNA. The effect on procoagulant activity of cells and microparticles, as measured with calibrated automated thrombography, was delayed and only partial at 24 h. TNF and IL-1β inhibition reduced TF mRNA and activity only partially. Inhibition of the inflammatory signaling intermediate p38 reduced TF mRNA by one third but increased TNF and IL-1β mRNA. NF-κB inhibition reduced, within 1 h, TF and TNF mRNA but did not change IL-1β mRNA, and rapidly and markedly reduced cell survival, with procoagulant properties still being present. In conclusion, although we provide evidence that TNF, IL-1β, and their signaling intermediates have a regulatory function on TF expression by NB4 APL cells, the effect of ATRA and ATO on TF can only partially be accounted for by their impact on these cytokines.
Collapse
Affiliation(s)
- Sylvie Dunoyer-Geindre
- Division of Angiology and Hemostasis, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Anne-Sophie Rivier-Cordey
- Division of Angiology and Hemostasis, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Olga Tsopra
- Division of Hematology, Department of Medical Specialties, University Hospital of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland
| | - Thomas Lecompte
- Division of Hematology, Department of Medical Specialties, University Hospital of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland.
| | - Egbert K O Kruithof
- Division of Angiology and Hemostasis, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Ross EA, Naylor AJ, O'Neil JD, Crowley T, Ridley ML, Crowe J, Smallie T, Tang TJ, Turner JD, Norling LV, Dominguez S, Perlman H, Verrills NM, Kollias G, Vitek MP, Filer A, Buckley CD, Dean JL, Clark AR. Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann Rheum Dis 2017; 76:612-619. [PMID: 27597652 PMCID: PMC5446007 DOI: 10.1136/annrheumdis-2016-209424] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Tristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP. METHODS The expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP. RESULTS TTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation. CONCLUSIONS The phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- E A Ross
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - A J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D O'Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T Crowley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - M L Ridley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J Crowe
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - T Smallie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T J Tang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L V Norling
- William Harvey Research Institute, QMUL, London, UK
| | - S Dominguez
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - H Perlman
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - N M Verrills
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - G Kollias
- Division of Immunology, Biomedical Sciences Research Center ‘Alexander Fleming’, Vari, Greece
| | - M P Vitek
- Cognosci Inc., Research Triangle Park, North Carolina, USA
| | - A Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - C D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J L Dean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Wells ML, Perera L, Blackshear PJ. An Ancient Family of RNA-Binding Proteins: Still Important! Trends Biochem Sci 2017; 42:285-296. [PMID: 28096055 DOI: 10.1016/j.tibs.2016.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
Abstract
RNA-binding proteins are important modulators of mRNA stability, a crucial process that determines the ultimate cellular levels of mRNAs and their encoded proteins. The tristetraprolin (TTP) family of RNA-binding proteins appeared early in the evolution of eukaryotes, and has persisted in modern eukaryotes. The domain structures and biochemical functions of family members from widely divergent lineages are remarkably similar, but their mRNA 'targets' can be very different, even in closely related species. Recent gene knockout studies in species as distantly related as plants, flies, yeasts, and mice have demonstrated crucial roles for these proteins in a wide variety of physiological processes. Inflammatory and hematopoietic phenotypes in mice have suggested potential therapeutic approaches for analogous human disorders.
Collapse
Affiliation(s)
- Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Shi J, Xu X, Luo F, Shi Q, He X, Xia Y. Differences in Tfh Cell Response Between the Graft and Spleen With Chronic Allograft Nephropathy. Cell Transplant 2016; 26:95-102. [PMID: 27524795 DOI: 10.3727/096368916x692816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to investigate follicular helper T (Tfh) cell response and its difference between renal graft and spleen in a rat renal transplantation model undergoing chronic allograft nephropathy (CAN). Orthotopical kidney transplantations were performed on Fischer (F344) rats and transplanted to Lewis rats, using syngeneic Lewis-Lewis grafts as controls. Tissue samples were collected at 8 weeks posttransplantation. The status of Tfh cell response was assessed by measuring the levels of transcription factor B-cell lymphoma 6 (Bcl-6), interleukin-21 (IL-21), chemokine receptor type 5 (CXCR5), and B-cell-activating factor belonging to the TNF family (BAFF). Tfh cell response was upregulated in both renal graft and spleen of the CAN group compared to the control group. However, Tfh cell response of the spleen was weaker than that of the graft, which was possibly related to the upregulation of splenic Treg activation. Also, the difference between two tissues was partially associated with the different expressions of tristetraprolin (TTP)/IL-10. Our data help improve our understanding of the role of Tfh cell response in the body with CAN and may provide a valuable clue for better treatment of CAN.
Collapse
|
32
|
Tristetraprolin as a Therapeutic Target in Inflammatory Disease. Trends Pharmacol Sci 2016; 37:811-821. [PMID: 27503556 DOI: 10.1016/j.tips.2016.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/22/2022]
Abstract
Members of the tristetraprolin (TTP) family of RNA-binding proteins are found in all major eukaryotic groups. TTP family members, from plants through humans, can bind adenosine-uridine rich elements in target mRNAs with high affinity. In mammalian cells, these proteins then promote deadenylation and decay of target transcripts. Four such proteins are found in mice, of which the best studied is TTP. When the gene encoding TTP is disrupted in mice, the animals develop a severe syndrome of arthritis, autoimmunity, cachexia, dermatitis, and myeloid hyperplasia. Conversely, recent overexpression studies have demonstrated protection against several experimental models of immune inflammatory disease. This endogenous anti-inflammatory protein could serve as the basis for novel approaches to therapy of similar conditions in humans.
Collapse
|
33
|
Abstract
Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route.
Collapse
Affiliation(s)
- Fursham M Hamid
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eugene V Makeyev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
34
|
Khabar KSA. Hallmarks of cancer and AU-rich elements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27251431 PMCID: PMC5215528 DOI: 10.1002/wrna.1368] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Post‐transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU‐rich elements (AREs), cis‐acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE‐mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Khalid S A Khabar
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Effects of Combined Tristetraprolin/Tumor Necrosis Factor Receptor Deficiency on the Splenic Transcriptome. Mol Cell Biol 2016; 36:1395-411. [PMID: 26976640 DOI: 10.1128/mcb.01068-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP) acts by binding to AU-rich elements in certain mRNAs, such as tumor necrosis factor (TNF) mRNA, and increasing their decay rates. TTP knockout mice exhibit a profound inflammatory syndrome that is largely due to increased TNF levels. Although TTP's effects on gene expression have been well studied in cultured cells, little is known about its functions in intact tissues. We performed deep RNA sequencing on spleens from TTP knockout mice that were also deficient in both TNF receptors ("triple knockout" mice) to remove the secondary effects of excess TNF activity. To help identify posttranscriptionally regulated transcripts, we also compared changes in mature mRNA levels to levels of transiently expressed pre-mRNA. In the triple knockout spleens, levels of 3,014 transcripts were significantly affected by 1.5-fold or more, but only a small fraction exhibited differential mRNA/pre-mRNA changes suggestive of increased mRNA stability. Transferrin receptor mRNA, which contains two highly conserved potential TTP binding sites, was significantly upregulated relative to its pre-mRNA. This was reflected in increased transferrin receptor expression and increased splenic iron/hemosiderin deposition. Our results suggest that TTP deficiency has profound effects on the splenic transcriptome, even in the absence of secondary increases in TNF activity.
Collapse
|
36
|
Histamine and Immune Biomarkers in CNS Disorders. Mediators Inflamm 2016; 2016:1924603. [PMID: 27190492 PMCID: PMC4846752 DOI: 10.1155/2016/1924603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 11/18/2022] Open
Abstract
Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death.
Collapse
|
37
|
Qiu LQ, Lai WS, Stumpo DJ, Blackshear PJ. Mouse Embryonic Fibroblast Cell Culture and Stimulation. Bio Protoc 2016; 6:e1859. [PMID: 28573158 DOI: 10.21769/bioprotoc.1859] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Culture of mouse embryonic fibroblast (MEF) cells represents a powerful system to test gene function due to their easy accessibility, rapid growth rates, and the possibility of a large number of experiments. Fibroblasts are a group of heterogeneous resident cells of mesenchymal origin that have various locations, diverse appearances and distinctive activities. Because of their ubiquitous distribution as tissue cells, these cells are poised to respond to factors released by newly activated innate immune cells, thus becoming a useful tool to study inflammation and immunity. Here, we describe procedures for mouse embryonic fibroblast cell isolation, primary culture, and stimulation. Specifically, we have optimized a step of serum starvation prior to stimulation. This step is necessary to maintain the quiescent status of these cells before they are exposed to pro-inflammatory stimuli for optimal responses. As shown in our previous studies, these mouse fibroblasts do not express Tnf, Csf2, or Il2 mRNAs at levels readily detectable by routine northern blotting techniques (Lai WS et al., 2006).
Collapse
Affiliation(s)
- Lian-Qun Qiu
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Wi S Lai
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Deborah J Stumpo
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Perry J Blackshear
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| |
Collapse
|
38
|
Qiu LQ, Lai WS, Stumpo DJ, Blackshear PJ. Measurement of mRNA Decay in Mouse Embryonic Fibroblasts. Bio Protoc 2016; 6:e1858. [PMID: 28516114 DOI: 10.21769/bioprotoc.1858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
mRNA stability control is a critical step in the post-transcriptional regulation of gene expression. Actinomycin D, an antibiotic initially used as an anti-cancer drug, has turned out to be a convenient tool for studying the turnover rates of transcripts in cells, due to its inhibition of mRNA synthesis. Here, we describe a protocol for the measurement of mRNA decay after adding actinomycin D into the medium of stable fibroblast cell lines derived from wild-type and tristetraprolin (TTP)-deficient mouse embryonic fibroblast (MEF) cultures, as well as a protocol for determining the relative transcript abundance using semi-quantitative real time RT-PCR. Northern blotting or NanoString n-Counter are alternative methods to measure mRNA abundance, which is quantified using a phosphorimager in the former case. This protocol is suitable for studying primary cultured cells and stable cell lines derived from transgenic mice and their respective controls, and provides for direct comparisons of mRNA decay rates in otherwise identical cells with and without the gene of interest.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Wi S Lai
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Deborah J Stumpo
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Perry J Blackshear
- Post-transcriptional Gene Expression Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| |
Collapse
|
39
|
Shah S, Mostafa MM, McWhae A, Traves SL, Newton R. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1): IMPLICATIONS FOR REGULATION BY GLUCOCORTICOIDS. J Biol Chem 2015; 291:110-25. [PMID: 26546680 DOI: 10.1074/jbc.m115.697599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3'-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Andrew McWhae
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Suzanne L Traves
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|