1
|
Vymazal O, Papatheodorou I, Andrejčinová I, Bosáková V, Vascelli G, Bendíčková K, Zelante T, Hortová-Kohoutková M, Frič J. Calcineurin-NFAT signaling controls neutrophils' ability of chemoattraction upon fungal infection. J Leukoc Biol 2024; 116:816-829. [PMID: 38648505 DOI: 10.1093/jleuko/qiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Calcineurin-nuclear factor of activated T cells (CN-NFAT) inhibitors are widely clinically used drugs for immunosuppression, but besides their required T cell response inhibition, they also undesirably affect innate immune cells. Disruption of innate immune cell function can explain the observed susceptibility of CN-NFAT inhibitor-treated patients to opportunistic fungal infections. Neutrophils play an essential role in innate immunity as a defense against pathogens; however, the effect of CN-NFAT inhibitors on neutrophil function was poorly described. Thus, we tested the response of human neutrophils to opportunistic fungal pathogens, namely Candida albicans and Aspergillus fumigatus, in the presence of CN-NFAT inhibitors. Here, we report that the NFAT pathway members were expressed in neutrophils and mediated part of the neutrophil response to pathogens. Upon pathogen exposure, neutrophils underwent profound transcriptomic changes with subsequent production of effector molecules. Importantly, genes and proteins involved in the regulation of the immune response and chemotaxis, including the chemokines CCL2, CCL3, and CCL4 were significantly upregulated. The presence of CN-NFAT inhibitors attenuated the expression of these chemokines and impaired the ability of neutrophils to chemoattract other immune cells. Our results amend knowledge about the impact of CN-NFAT inhibition in human neutrophils.
Collapse
Affiliation(s)
- Ondrej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Gianluca Vascelli
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Teresa Zelante
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Marcela Hortová-Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, 128 00, Czech Republic
| |
Collapse
|
2
|
Borges VDF, Galant LS, Kanashiro A, Castanheira FVES, Monteiro VVS, Duarte DÂ, Rodrigues FC, Silva CMDS, Schneider AH, Cebinelli GCM, de Lima MHF, Viola JPDB, Cunha TM, da Costa Neto CM, Alves-Filho JCF, Pupo AS, Cunha FDQ. FK506 impairs neutrophil migration that results in increased polymicrobial sepsis susceptibility. Inflamm Res 2023; 72:203-215. [PMID: 36401631 DOI: 10.1007/s00011-022-01669-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.
Collapse
Affiliation(s)
- Vanessa de Fátima Borges
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Selinger Galant
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Vargas E Silva Castanheira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valter Vinícius Silva Monteiro
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego Ângelo Duarte
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Filipe Camargo Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Meirelles de Souza Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Cesar Martelossi Cebinelli
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio Miguel da Costa Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Farias Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - Fernando de Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Vymazal O, Bendíčková K, De Zuani M, Vlková M, Hortová-Kohoutková M, Frič J. Immunosuppression Affects Neutrophil Functions: Does Calcineurin-NFAT Signaling Matter? Front Immunol 2021; 12:770515. [PMID: 34795676 PMCID: PMC8593005 DOI: 10.3389/fimmu.2021.770515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Neutrophils are innate immune cells with important roles in antimicrobial defense. However, impaired or dysregulated neutrophil function can result in host tissue damage, loss of homeostasis, hyperinflammation or pathological immunosuppression. A central link between neutrophil activation and immune outcomes is emerging to be the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, which is activated by neutrophil detection of a microbial threat via pattern recognition receptors and results in inflammatory cytokine production. This potent pro-inflammatory pathway is also the target of several immunosuppressive drugs used for the treatment of autoimmune disorders, during solid organ and hematopoietic cell transplantations, and as a part of anti-cancer therapy: but what effects these drugs have on neutrophil function, and their broader consequences for immune homeostasis and microbial defense are not yet known. Here, we bring together the emerging literature describing pathology- and drug- induced neutrophil impairment, with particular focus on their effects on calcineurin-NFAT signaling in the innate immune compartment.
Collapse
Affiliation(s)
- Ondřej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Marcela Vlková
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, St. Anne´s University Hospital, Brno, Czechia
| | | | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
| |
Collapse
|
4
|
Cai SY, Yu D, Soroka CJ, Wang J, Boyer JL. Hepatic NFAT signaling regulates the expression of inflammatory cytokines in cholestasis. J Hepatol 2021; 74:550-559. [PMID: 33039404 PMCID: PMC7897288 DOI: 10.1016/j.jhep.2020.09.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The nuclear factor of activated T-cells (NFAT) plays an important role in immune responses by regulating the expression of inflammatory genes. However, it is not known whether NFAT plays any role in the bile acid (BA)-induced hepatic inflammatory response. Thus, we aimed to examine the functional role of NFATc3 in cholestatic liver injury in mice and humans. METHODS Gene and protein expression and cellular localization were assessed in primary hepatocyte cultures (mouse and human) and cholestatic liver tissues (murine models and patients with primary biliary cholangitis [PBC] or primary sclerosing cholangitis [PSC]) by quantitative PCR, western blot and immunohistochemistry. Specific NFAT inhibitors were used in vivo and in vitro. Gene reporter assays and ChIP-PCR were used to determine promoter activity. RESULTS NFAT isoforms c1 and c3 were expressed in human and mouse hepatocytes. When treated with cholestatic levels of BAs, nuclear translocation of NFATc3 was increased in both human and mouse hepatocytes and was associated with elevated mRNA levels of IL-8, CXCL2, and CXCL10 in these cells. Blocking NFAT activation with pathway-specific inhibitors or knocking down Nfatc3 expression significantly decreased BA-driven induction of these cytokines in mouse hepatocytes. Nuclear expression of NFATc3/Nfatc3 protein was increased in cholestatic livers, both in mouse models (bile duct ligation or Abcb4-/- mice) and in patients with PBC and PSC in association with elevated tissue levels of Cxcl2 (mice) or IL-8 (humans). Gene reporter assays and ChIP-PCR demonstrated that the NFAT response element in the IL-8 promoter played a key role in BA-induced human IL-8 expression. Finally, blocking NFAT activation in vivo in Abcb4-/- mice reduced cholestatic liver injury. CONCLUSIONS NFAT plays an important role in BA-stimulated hepatic cytokine expression in cholestasis. Blocking hepatic NFAT activation may reduce cholestatic liver injury in humans. LAY SUMMARY Bile acid induces liver injury by stimulating the expression of inflammatory genes in hepatocytes through activation of the transcription factor NFAT. Blocking this activation in vitro (in hepatocyte cultures) and in vivo (in cholestatic mice) decreased the expression of inflammatory genes and reduced liver injury.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine, Liver Center, Yale University School of Medicine, New Haven, CT 06520.
| | - Dongke Yu
- Department of Internal Medicine, Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Carol J Soroka
- Department of Internal Medicine, Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Jing Wang
- Department of Internal Medicine, Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - James L Boyer
- Department of Internal Medicine, Liver Center, Yale University School of Medicine, New Haven, CT 06520.
| |
Collapse
|
5
|
Wen L, Javed TA, Dobbs AK, Brown R, Niu M, Li L, Khalid A, Barakat MT, Xiao X, Yimlamai D, Konnikova L, Yu M, Byersdorfer CA, Husain SZ. The Protective Effects of Calcineurin on Pancreatitis in Mice Depend on the Cellular Source. Gastroenterology 2020; 159:1036-1050.e8. [PMID: 32445858 PMCID: PMC7502475 DOI: 10.1053/j.gastro.2020.05.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Calcineurin is a ubiquitously expressed central Ca2+-responsive signaling molecule that mediates acute pancreatitis, but little is known about its effects. We compared the effects of calcineurin expression by hematopoietic cells vs pancreas in mouse models of pancreatitis and pancreatitis-associated lung inflammation. METHODS We performed studies with mice with hematopoietic-specific or pancreas-specific deletion of protein phosphatase 3, regulatory subunit B, alpha isoform (PPP3R1, also called CNB1), in mice with deletion of CNB1 (Cnb1UBC△/△) and in the corresponding controls for each deletion of CNB1. Acute pancreatitis was induced in mice by administration of caerulein or high-pressure infusion of radiocontrast into biliopancreatic ducts; some mice were also given intraductal infusions of an adeno-associated virus vector that expressed nuclear factor of activated T -cells (NFAT)-luciferase into pancreas. Pancreas, bone marrow, liver, kidney, heart, and lung were collected and analyzed by histopathology, immunohistochemistry, and immunoblots; levels of cytokines were measured in serum. Mouse and human primary pancreatic acinar cells were transfected with a vector that expressed NFAT-luciferase and incubated with an agent that blocks interaction of NFAT with calcineurin; cells were analyzed by immunofluorescence. Calcineurin-mediated neutrophil chemotaxis and reactive oxygen species production were measured in neutrophils from mice. RESULTS Mice with hematopoietic-specific deletion of CNB1 developed the same level of local pancreatic inflammation as control mice after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts. Cnb1UBC△/△ mice or mice with pancreas-specific deletion of CNB1 developed less severe pancreatitis and reduced pancreatic inflammation after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts compared with control mice. NFAT was activated in pancreas of Swiss Webster mice given caerulein or infusions of radiocontrast into biliopancreatic ducts. Blocking the interaction between calcineurin and NFAT did not reduce pancreatic acinar cell necrosis in response to caerulein or infusions of radiocontrast. Mice with hematopoietic-specific deletion of CNB1 (but not mice with pancreas-specific deletion of CNB1) had reduced infiltration of lung tissues by neutrophils. Neutrophil chemotaxis and production of reactive oxygen species were decreased after incubation with a calcineurin inhibitor. CONCLUSIONS Hematopoietic and neutrophil expression of calcineurin promotes pancreatitis-associated lung inflammation, whereas pancreatic calcineurin promotes local pancreatic inflammation. The findings indicate that the protective effects of blocking or deleting calcineurin on pancreatitis are mediated by the source of its expression. This information should be used in the development of strategies to inhibit calcineurin for the prevention of pancreatitis and pancreatitis-associated lung inflammation.
Collapse
Affiliation(s)
- Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tanveer A Javed
- Division of Pediatric Gastroenterology, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rebecca Brown
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mengya Niu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Li
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Asna Khalid
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Monique T Barakat
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California; Department of Medicine, Stanford University, Palo Alto, California
| | - Xiangwei Xiao
- Division of Pediatric Surgery, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dean Yimlamai
- Division of Pediatric Gastroenterology, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mang Yu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California.
| |
Collapse
|
6
|
Madhi R, Rahman M, Mörgelin M, Thorlacius H. c-Abl kinase regulates neutrophil extracellular trap formation, inflammation, and tissue damage in severe acute pancreatitis. J Leukoc Biol 2019; 106:455-466. [PMID: 30861207 DOI: 10.1002/jlb.3a0618-222rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are involved in acute pancreatitis (AP) but mechanisms controlling NET expulsion in AP are incompletely understood. Herein, we examined the role of c-Abelson (c-Abl) kinase in NET formation and tissue damage in severe AP. AP was induced by taurocholate infusion into pancreatic duct or intraperitoneal administration of l-arginine in mice. Pancreatic, lung, and blood samples were collected and levels of phosphorylated c-Abl kinase, citrullinated histone 3, DNA-histone complexes, myeloperoxidase, amylase, cytokines, and CXC chemokines were quantified. Citrullinated histone 3, reactive oxygen species (ROS), and NET formation were determined in bone marrow neutrophils. Taurocholate challenge increased phosphorylation of c-Abl kinase and levels of citrullinated histone 3 in the pancreas as well as DNA-histone complexes in the plasma. Administration of the c-Abl kinase inhibitor GZD824 not only abolished activation of c-Abl kinase but also decreased levels of citrullinated histone 3 in the pancreas and DNA-histone complexes in the plasma of animals with AP. Moreover, GZD824 decreased plasma levels of amylase, IL-6, and MMP-9 as well as edema, acinar cell necrosis, hemorrhage, CXC chemokine formation, and neutrophil infiltration in the inflamed pancreas. A beneficial effect of c-Abl kinase inhibition was confirmed in l-arginine-induced pancreatitis. In vitro, inhibition of c-Abl kinase reduced TNF-α-induced formation of ROS, histone 3 citrullination, and NETs in isolated bone marrow neutrophils. Our findings demonstrate that c-Abl kinase regulates NET formation in the inflamed pancreas. In addition, inhibition of c-Abl kinase reduced pancreatic tissue inflammation, and damage in AP. Thus, targeting c-Abl kinase might be a useful way to protect the pancreas in severe AP.
Collapse
Affiliation(s)
- Raed Madhi
- Department of Clinical Science, Malmö, Section for Surgery, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Science, Malmö, Section for Surgery, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Henrik Thorlacius
- Department of Clinical Science, Malmö, Section for Surgery, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Döhrmann S, LaRock CN, Anderson EL, Cole JN, Ryali B, Stewart C, Nonejuie P, Pogliano J, Corriden R, Ghosh P, Nizet V. Group A Streptococcal M1 Protein Provides Resistance against the Antimicrobial Activity of Histones. Sci Rep 2017; 7:43039. [PMID: 28220899 PMCID: PMC5318940 DOI: 10.1038/srep43039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Histones are essential elements of chromatin structure and gene regulation in eukaryotes. An unexpected attribute of these nuclear proteins is their antimicrobial activity. A framework for histone release and function in host defense in vivo was revealed with the discovery of neutrophil extracellular traps, a specialized cell death process in which DNA-based structures containing histones are extruded to ensnare and kill bacteria. Investigating the susceptibility of various Gram-positive pathogens to histones, we found high-level resistance by one leading human pathogen, group A Streptococcus (GAS). A screen of isogenic mutants revealed that the highly surface-expressed M1 protein, a classical GAS virulence factor, was required for high-level histone resistance. Biochemical and microscopic analyses revealed that the N-terminal domain of M1 protein binds and inactivates histones before they reach their cell wall target of action. This finding illustrates a new pathogenic function for this classic GAS virulence factor, and highlights a potential innate immune evasion strategy that may be employed by other bacterial pathogens.
Collapse
Affiliation(s)
- Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Christopher N LaRock
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Ericka L Anderson
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Brinda Ryali
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Chelsea Stewart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Poochit Nonejuie
- Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Joe Pogliano
- Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ross Corriden
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America.,Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America.,Department of Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Rady Children's Hospital, San Diego, California, United States of America
| |
Collapse
|
8
|
Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors. Curr Opin Hematol 2016; 23:36-43. [PMID: 26554893 DOI: 10.1097/moh.0000000000000198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Neutrophils have traditionally been viewed in the context of acute infection and inflammation forming the first line of defense against invading pathogens. Neutrophil trafficking to the site of inflammation requires adhesion and transmigration through blood vessels, which is orchestrated by adhesion molecules, such as β2 and β1-integrins, chemokines, and cytokines. The review focuses on recent advances in understanding the regulators of neutrophil recruitment during inflammation in both acute and chronic settings. RECENT FINDINGS Recent findings suggest that besides the established pathways of selectin or chemokine-mediated integrin activation, signaling by distinct Toll-like receptors (TLRs) (especially TLR2, TLR4, and TLR5) can activate integrin-dependent neutrophil adhesion. Moreover, the integrin α3β1 has been vitally implicated as a new player in neutrophil recruitment and TLR-mediated responses in septic inflammation. Furthermore, several endogenous inhibitory mechanisms of leukocyte recruitment have been identified, including the secreted molecules Del-1, PTX3, and GDF-15, which block distinct steps of the leukocyte adhesion cascade, as well as novel regulatory signaling pathways, involving the protein kinase AKT1 and IFN-λ2/IL-28A. SUMMARY The leukocyte adhesion cascade is a tightly regulated process, subjected to both positive and negative regulators. Dysregulation of this process and hence neutrophil recruitment can lead to the development of inflammatory and autoimmune diseases.
Collapse
|
9
|
Henriques-Normark B, Normark S. Streptococcal M1 Strikes by Neutralizing Cathelicidins. Cell Host Microbe 2016; 18:390-1. [PMID: 26468741 DOI: 10.1016/j.chom.2015.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Virulent group A streptococci have become a serious threat, with the emergence of the hypervirulent lineage M1T1. In this issue of Cell Host & Microbe, LaRock et al. (2015), uncover a role for the streptococcal M1 protein in neutralizing a key human antimicrobial peptide, cathelicidin.
Collapse
Affiliation(s)
- Birgitta Henriques-Normark
- Department of Microbiology, Cell Biology and Tumorbiology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | - Staffan Normark
- Department of Microbiology, Cell Biology and Tumorbiology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
10
|
Sawant KV, Xu R, Cox R, Hawkins H, Sbrana E, Kolli D, Garofalo RP, Rajarathnam K. Chemokine CXCL1-Mediated Neutrophil Trafficking in the Lung: Role of CXCR2 Activation. J Innate Immun 2015; 7:647-58. [PMID: 26138727 DOI: 10.1159/000430914] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/25/2015] [Indexed: 01/13/2023] Open
Abstract
The chemokine CXCL1 and its receptor CXCR2 play a crucial role in host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. Dysregulation in this process has been implicated in collateral tissue damage causing disease. CXCL1 reversibly exists as monomers and dimers, and it has been proposed that distinct monomer and dimer activities and the monomer-dimer equilibrium regulate the neutrophil function. However, the molecular mechanisms linking the CXCL1/CXCR2 axis and the neutrophil 'beneficial' and 'destructive' phenotypes are not known. In this study, we characterized neutrophil trafficking and its consequence in the mouse lung by the CXCL1 wild type (WT), which exists as monomers and dimers, and by a nondissociating dimer. Whereas the WT, compared to the dimer, was more active at low doses, both the WT and the dimer elicited a large neutrophil efflux at high doses. Importantly, robust neutrophil recruitment elicited by the WT or dimer was not detrimental to lung tissue integrity and, further, could not be correlated to surface CXCR2 levels. We conclude that the CXCL1 monomer-dimer distribution and receptor interactions are highly coupled and regulate neutrophil trafficking and that injury in the context of disease is a consequence of inappropriate CXCR2 activation at the target tissue and not due to mechanical forces exerted by neutrophils during recruitment.
Collapse
Affiliation(s)
- Kirti V Sawant
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex., USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang S, Wu M, Gao H. Editorial: NFAT signaling: no FAT as new weapon to fight shock. J Leukoc Biol 2015; 97:997-9. [PMID: 26031489 DOI: 10.1189/jlb.4ce1214-616r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shuang Zhang
- *Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota, USA; State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; and Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Min Wu
- *Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota, USA; State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; and Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hongwei Gao
- *Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota, USA; State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; and Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|