1
|
Zhou Y, Bae E, Hoffman SS, Oh DY, Smith GI, Klein S, Talukdar S. Whole body and hematopoietic cell-specific deletion of G-protein coupled receptor 65 (GPR65) improves insulin sensitivity in diet-induced obese mice. Mol Metab 2025; 97:102169. [PMID: 40389090 PMCID: PMC12155959 DOI: 10.1016/j.molmet.2025.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025] Open
Abstract
OBJECTIVE Acidic extracellular microenvironments, resulting from enhanced glycolysis and lactic acid secretion by immune cells, along with metabolic acidosis may interfere with the insulin signaling pathway and contribute to the development of insulin resistance. In the present study, we investigated the role of G protein-coupled receptor GPR65, an extracellular pH sensing protein, in modulating insulin resistance. METHODS We measured GPR65 expression in the adipose tissue (AT) of subjects with varying metabolic health states. We utilized whole-body and hematopoietic cell-specific GPR65 knockout (KO) mice to investigate the mechanism underlying the associations between GPR65, inflammatory response, and insulin resistance. RESULTS Elevated GPR65 expression was observed in the AT of subjects with obesity, compared to their lean counterparts, and was inversely correlated with insulin resistance. In GPR65 KO mice, improved insulin sensitivity and decreased hepatic lipid content were observed, attributed to concomitant increases in mitochondrial activity and fatty acid β-oxidation in liver. GPR65 KO mice also exhibited increased Akt phosphorylation in skeletal muscle, suppressed proinflammatory gene expression in AT, and decreased serum cytokine levels, collectively suggesting the anti-inflammatory effects of GPR65 depletion. This was further confirmed by observations of decreased macrophage chemotaxis towards AT in vitro, and depressed inflammatory signaling pathway activation in bone marrow-derived dendritic cells from GPR65 KO mice. Additionally, hematopoietic lineage-specific GPR65 KO mice exhibited improved whole body insulin sensitivity in clamp studies, demonstrating GPR65 signaling in immune cells mediates this effect. CONCLUSIONS Our data suggests that macrophage-specific GPR65 signaling contributes to inflammation and the development of insulin resistance.
Collapse
Affiliation(s)
| | - EunJu Bae
- Jeonbuk National University, Jeonju, South Korea
| | | | - Da Young Oh
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Gordon I Smith
- Center for Human Nutrition, Washington University, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
2
|
Abd-Ellah HS, Zhao D, Zhou Y, Baell JB. Unlocking pH-responsive dual payload release through hydrazone linkage chemistry. Bioorg Med Chem 2025; 123:118172. [PMID: 40156936 DOI: 10.1016/j.bmc.2025.118172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The capacity for simultaneous intracellular delivery of two payloads to various organelles, in a targeted and programmable manner, would represent a powerful tool to probe cellular function and responses or deliver synergistic combination therapies. While only single pathways are currently probed, this work introduces an acid-labile trifunctional hydrazone linker that releases two types of payloads, which we term payload W and payload Z. As a key and controlling feature, initial acid-mediated release of payload W triggers release of payload Z with 1:1 stoichiometry via intramolecular cyclization. An azide group is also built into the linker structure to allow optional conjugation to nanoparticles (NPs). Through overcoming significant synthetic challenges, we have prepared six target acylhydrazone linkers and evaluated their stability over a range of pH values. An acyl acetophenone hydrazone linker (linker 3) displays a particularly promising release profile, supporting the feasibility of the novel dual-release concept through high stability at physiological pH but rapid release of both payloads under pH conditions similar to those in late endosomal and lysosomal compartments (pH 4.5-5.5) or tumor sites (pH 6.5). Therefore, linker 3 holds the potential as an ideal candidate carrier for future nanoparticle conjugation, offering a mechanism for dual drug release after endosomal entrapment. A particularly promising application would be in combination therapy for controlled intracellular delivery of doxorubicin (DOX) and a nitric oxide (NO) donor, or proteins and/or siRNA and small molecules, to enable diverse synergistic treatment strategies.
Collapse
Affiliation(s)
- Heba S Abd-Ellah
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Dan Zhao
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Yayao Zhou
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Jonathan B Baell
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
| |
Collapse
|
3
|
Perren L, Busch M, Ruiz PA, Malagola E, Baumeler V, Foti F, Gross A, Grütter T, Edel H, Schuler C, Handler K, De Lange G, Arnold IC, de Vallière C, Seuwen K, Hausmann M, Rogler G. Loss of proton-sensing GPR4 reduces tumor progression in mouse models of colon cancer. Mol Oncol 2025. [PMID: 40397803 DOI: 10.1002/1878-0261.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 05/23/2025] Open
Abstract
We aimed to understand the role of G protein-coupled receptor 4 (GPR4) in tumorigenesis. GPR4 is a pH-sensing receptor that is activated by acidic extracellular pH. GPR4 is expressed primarily in vascular endothelial cells (ECs). Intestinal tissue from patients with inflammatory bowel disease (IBD) shows increased expression of GPR4. Patients with IBD have a significantly increased risk of developing colorectal cancer (CRC). In the MC38 model, Gpr4-deficient mice showed significantly reduced tumor size and weight compared to wild-type (WT) mice. This effect correlated with a significant increase in IL2 protein and natural killer (NK)1.1+ cells in tumor tissue in Gpr4-/- compared to WT. In the azoxymethane (AOM)/dextran sodium sulfate (DSS) model of CRC, Gpr4-deficient mice showed significantly reduced tumor progression and number of apurinic/apyrimidinic (AP) sites. Gpr4-deficient mice showed a significantly increased number of NKp46+ cells in tumor tissue, and increased numbers of NK cells were confirmed by qPCR and flow cytometry. The absence of GPR4 significantly attenuated tumor progression in the colon of mice, and this result correlated with increased cytotoxic cell activity and reduced presence of tumor-associated macrophages and neutrophils. GPR4 represents a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Leonie Perren
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Moana Busch
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Valeria Baumeler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Foti
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Adelina Gross
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Tobias Grütter
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Hendrik Edel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Cordelia Schuler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Kristina Handler
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Glenn De Lange
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Khasanov TA, Mineev KS, Kalinovskii AP, Korolkova YV, Palikov VA, Palikova YA, Dyachenko IA, Kozlov SA, Andreev YA, Osmakov DI. Sea anemone Cys-ladder peptide Ms13-1 induces a pain response as a positive modulator of acid-sensing ion channel 1a. FEBS J 2025; 292:2671-2687. [PMID: 39964805 DOI: 10.1111/febs.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is involved in processes associated with fear, learning, and neurodegeneration within the central nervous system. However, ASIC1a is also abundant in the peripheral nervous system, where its role is still poorly understood, largely due to the lack of selective ligands. In this study, we present the discovery of the first selective positive allosteric modulator for ASIC1a, isolated from the sea anemone Metridium senile. The active compound, a peptide named Ms13-1, features a novel type of fold named 'Cys-ladder'. Ms13-1 exhibits high affinity and selectivity for ASIC1a, enhancing channel activation in response to a broad range of acidic stimuli (pH 6.9-5.5) without altering the proton affinity for the channel. Moreover, injection of Ms13-1 into the hind paw of mice provokes robust and long-lasting pain-related behavior, which is significantly attenuated by a selective ASIC1 antagonist. The discovery of this novel selective positive allosteric modulator opens up new perspectives to investigate the role of ASIC1a in various physiological processes.
Collapse
Affiliation(s)
- Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr P Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Lin W, Xu L, Li G, Tortorella MD. Molecular gene signature of circulating stromal/stem cells. J Hum Genet 2025; 70:275-280. [PMID: 40069498 DOI: 10.1038/s10038-025-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The human skeleton is renewed and regenerated throughout life, by a cellular process known as bone remodeling. Stem cells are clono-genic cells that are capable of differentiation into multiple mature cell types (multipotency), and simultaneously replenishing stem cell pool (self-renewal), which allows them to sustain tissue development and maintenance. Circulating mesenchymal stromal/stem cells (MSCs), are mobile adult stem cells with specific gene expression profiling, as well as enhanced mitochondrial remodeling as a promising source for personalized cell and gene therapy. A global LGR5-associated genetic interaction network highlights the functional organization and molecular phenotype of circulating MSCs.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Micky Daniel Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China.
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Zhang S, Elbs-Glatz Y, Tao S, Schmitt S, Li Z, Rottmar M, Maniura-Weber K, Ren Q. Probiotics promote cellular wound healing responses by modulating the PI3K and TGF-β/Smad signaling pathways. Cell Commun Signal 2025; 23:195. [PMID: 40269904 PMCID: PMC12016068 DOI: 10.1186/s12964-025-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Skin wound healing represents a dynamic and intricate biological process involving the coordinated efforts of various cellular and molecular components to restore tissue integrity and functionality. Among the myriads of cellular events orchestrating wound closure, fibroblast migration and the regulation of fibrosis play pivotal roles in determining the outcome of wound healing. In recent years, probiotic therapy has emerged as a promising strategy for modulating wound healing and fibrosis. Here, we aim to investigate the effect of bacterial probiotics on cell migration and anti-fibrotic response of human dermal fibroblast (HDFs). METHODS Probiotic mixture BioK was co-cultured with HDFs in vitro to assess its impact on fibroblast migration, gene expression, and protein production associated with important processes in wound healing. Gene expression was investigated by transcriptomic analysis and confirmed by RT-qPCR. Protein levels of the identified genes were evaluated by ELISA. The role of lactic acid, produced by BioK, in mediating pH-related effects on fibroblast activity was further examined. RESULTS We observed that BioK effectively promoted HDFs migration in vitro, which was found to be related to the up-regulation of genes involved in the phosphoinositide 3-kinase (PI3K) signaling pathways such as Paxillin, PI3K, PKC and ITG-β1. Interestingly, we also found that BioK down-regulated the expression of Nox-4, α-SMA and Col-I in TGF-Smad signaling pathways, which are involved in the differentiation of fibroblasts to myofibroblasts, and extracellular matrix type I collagen production, demonstrating its potential in reducing formation of fibrosis and scars. One of the acting factors for such down-regulation was identified to be BioK-produced lactic acid, which is known to lower the surrounding pH and to play a major role in fibroblast activity and wound healing. CONCLUSIONS This study demonstrates BioK's beneficial effects on fibroblast migration and its potential to mitigate fibrosis through pH modulation and pathway-specific gene regulation. These findings enhance our understanding of probiotic action on wound healing and offer promising therapeutic insights for the reduction of scar formation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sixuan Zhang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Yvonne Elbs-Glatz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Siyuan Tao
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Steven Schmitt
- ETH Zurich, D-BSSE (Department of Biosystems Science and Engineering), Basel, 4056, Switzerland
| | - Zhihao Li
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Markus Rottmar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Katharina Maniura-Weber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Qun Ren
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| |
Collapse
|
7
|
Cao L, Leclercq-Cohen G, Klein C, Sorrentino A, Bacac M. Mechanistic insights into resistance mechanisms to T cell engagers. Front Immunol 2025; 16:1583044. [PMID: 40330489 PMCID: PMC12053166 DOI: 10.3389/fimmu.2025.1583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
T cell engagers (TCEs) represent a groundbreaking advancement in the treatment of B and plasma cell malignancies and are emerging as a promising therapeutic approach for the treatment of solid tumors. These molecules harness T cells to bind to and eliminate cancer cells, effectively bypassing the need for antigen-specific T cell recognition. Despite their established clinical efficacy, a subset of patients is either refractory to TCE treatment (e.g. primary resistance) or develops resistance during the course of TCE therapy (e.g. acquired or treatment-induced resistance). In this review we comprehensively describe the resistance mechanisms to TCEs, occurring in both preclinical models and clinical trials with a particular emphasis on cellular and molecular pathways underlying the resistance process. We classify these mechanisms into tumor intrinsic and tumor extrinsic ones. Tumor intrinsic mechanisms encompass changes within tumor cells that impact the T cell-mediated cytotoxicity, including tumor antigen loss, the expression of immune checkpoint inhibitory ligands and intracellular pathways that render tumor cells resistant to killing. Tumor extrinsic mechanisms involve factors external to tumor cells, including the presence of an immunosuppressive tumor microenvironment (TME) and reduced T cell functionality. We further propose actionable strategies to overcome resistance offering potential avenues for enhancing TCE efficacy in the clinic.
Collapse
Affiliation(s)
- Linlin Cao
- Roche Innovation Center, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
9
|
Runyan LA, Kudryashova E, Agrawal R, Mohamed M, Kudryashov DS. Human plastins are novel cytoskeletal pH sensors with a reduced F-actin bundling capacity at basic pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645573. [PMID: 40196613 PMCID: PMC11974883 DOI: 10.1101/2025.03.26.645573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intracellular pH (pHi) is a fundamental component of cell homeostasis. Controlled elevations in pHi precede and accompany cell polarization, cytokinesis, and directional migration. pH dysregulation contributes to cancer, neurodegenerative diseases, diabetes, and other metabolic disorders. While cytoskeletal rearrangements are crucial for these processes, only a few cytoskeletal proteins, namely Cdc42, cofilin, talin, cortactin, α-actinin, and AIP1 have been documented as pH sensors. Here, we report that actin-bundling proteins plastin 2 (PLS2, aka LCP1) and plastin 3 (PLS3) respond to physiological scale pH fluctuations by a reduced F-actin bundling at alkaline pH. The inhibition of PLS2 actin-bundling activity at elevated pH stems from the reduced affinity of the N-terminal actin-binding domain (ABD1) to actin. In fibroblast cells, elevated cytosolic pH caused the dissociation of ectopically expressed PLS2 from actin structures, whereas acidic conditions promoted its tighter association with focal adhesions and stress fibers. We identified His207 as one of the pH-sensing residues whose mutation to Lys and Tyr reduces pH sensitivity by enhancing and inhibiting the bundling ability, respectively. Our results suggest that weaker actin bundling by plastin isoforms at alkaline pH favors higher dynamics of the actin cytoskeleton. Therefore, like other cytoskeleton pH sensors, plastins promote disassembly and faster dynamics of cytoskeletal components during cytokinesis and cell migration. Since both plastins are implemented in cancer, their pH sensitivity may contribute to the accelerated proliferation and enhanced invasive and metastatic potentials of cancer cells at alkaline pHi.
Collapse
Affiliation(s)
- Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Richa Agrawal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Mubarik Mohamed
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| |
Collapse
|
10
|
Da Silva A, Barrachina F, Avenatti MC, Elizagaray ML, Bastepe I, Sasso-Cerri E, Battistone MA. Proton-secreting cells modulate mucosal immune surveillance in the male reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645301. [PMID: 40196529 PMCID: PMC11974861 DOI: 10.1101/2025.03.26.645301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Proton-secreting cells in various organs, such as the kidney and epididymis, regulate pH balance, maintaining cellular homeostasis, and supporting key physiological processes. More recently, these specialized cells have emerged as key contributors to mucosal immunity, orchestrating immune activation. Epididymitis is an inflammatory condition that significantly impacts male fertility, often due to a lack of diagnosis and treatment. This study explores the involvement of region-specific epididymal proton-secreting clear cells (CCs) in the immune response by interacting with the immune system during LPS-induced mouse epididymitis. We found that in response to LPS, CCs rapidly shifted to a proinflammatory phenotype, marked by the upregulation of cytokines and chemokines, alongside the downregulation of genes involved in sperm maturation. Morphological changes in CCs, including increased apical blebs and altered shape across different epididymal segments, suggest their active role in immune responses. Moreover, mononuclear phagocytes (MPs) reduced their luminal-reaching projections in the proximal epididymis after the LPS challenge. This bacteria antigen triggered the migration of dendritic cells and neutrophil infiltration in the distal epididymis. These immune landscape alterations contributed to epithelial damage and impaired sperm maturation, as evidenced by decreased sperm motility following LPS injection. Our findings indicate that proton-secreting cells are immune gatekeepers in the epididymis, initiating immune responses and disrupting sperm maturation. This research enhances the understanding of epithelial immunoregulation and will help to develop novel diagnostic and therapeutic strategies for epididymitis and male infertility. Furthermore, insights into CC-mediated immune responses could inform the development of new approaches for male contraception.
Collapse
|
11
|
Moi D, Carradori S, Gallorini M, Mencarelli N, Deplano A, Angeli A, Vittorio S, Supuran CT, Onnis V. Investigation on Human Carbonic Anhydrase IX and XII Inhibitory Activity and A549 Antiproliferative Activity of a New Class of Coumarinamides. Pharmaceuticals (Basel) 2025; 18:372. [PMID: 40143148 PMCID: PMC11944513 DOI: 10.3390/ph18030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Background-Aggressive solid tumors are commonly characterized by both basic intracellular pH and acidic extracellular pH, which increase cell survival and proliferation. As carbonic anhydrases IX/XII are involved in this pH regulation, their inhibition is an appealing approach in cancer therapy, avoiding cancer cell survival and proliferation. Substituted coumarins are selective non-classical CA IX and CA XII inhibitors. Methods-In this study, new 7-hydroxycoumarinamides were synthesized and assayed for CA inhibition and antiproliferative activity. Results-All of the coumarinamides showed human CA IX and CA XII selective inhibition over the off-target CA I and CA II isoforms. Coumarin acts as a suicide inhibitor because its heterocyclic ring can be hydrolyzed by CA esterase activity to give the corresponding 2-hydroxycinnamic acid derivative which blocks the entrance of the active site. The 2-hydroxycinnamic acid derivatives deriving from the most potent and selective coumarinamides were docked into CA IX and XII to better understand the activity and selectivity against the two CA isoforms. The most active coumarinamides also produced a decrease of A549 cell proliferation and were able to arrest cells at the G1/S checkpoint. Conclusions-These results may open new perspectives for developing coumarin-based CA IX/XII inhibitors.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life and Environmental Sciences, Unit of Pharmaceuitical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, CA, Italy; (D.M.); (A.D.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti, CH, Italy; (S.C.); (M.G.); (N.M.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti, CH, Italy; (S.C.); (M.G.); (N.M.)
| | - Noemi Mencarelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti, CH, Italy; (S.C.); (M.G.); (N.M.)
| | - Alberto Deplano
- Department of Life and Environmental Sciences, Unit of Pharmaceuitical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, CA, Italy; (D.M.); (A.D.)
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, FI, Italy; (A.A.); (C.T.S.)
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, MI, Italy;
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, FI, Italy; (A.A.); (C.T.S.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceuitical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, CA, Italy; (D.M.); (A.D.)
| |
Collapse
|
12
|
Deng M, Liao S, Deng J, Li C, Liu L, Han Q, Huo Y, Zhou X, Teng X, Lai M, Zhang H, Lai C. S100A2 promotes clear cell renal cell carcinoma tumor metastasis through regulating GLUT2 expression. Cell Death Dis 2025; 16:135. [PMID: 40011447 PMCID: PMC11865524 DOI: 10.1038/s41419-025-07418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cancer and is highly malignant. Despite advances in diagnostics and treatment, the prognosis for ccRCC remains poor. The dual nature (promotion or inhibition) of S100A2 in different cancer types shows the complex involvement of its tumorigenesis, but its effect in ccRCC remains unclear. In this study, we first elucidate the tumor-promoting function of S100A2 in ccRCC by reprogramming glycolysis. Mechanistically, we demonstrate that S100A2 accelerates cancer progression through its interaction with the transcription factor HNF1A, leading to activating GLUT2 transcription. The upregulation of GLUT2 significantly enhances glucose uptake by cancer cells, thereby fueling augmented glucose metabolism and fostering the malignant progression of ccRCC. Collectively, our findings highlight the pivotal role of the S100A2-HNF1A-GLUT2 axis in promoting migration and invasion of ccRCC by amplifying glycolysis and suggest that targeting the S100A2-HNF1A-GLUT2 axis is clinically relevant for the treatment of metastatic ccRCC.
Collapse
Affiliation(s)
- Mengli Deng
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Shaoxia Liao
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Jingwen Deng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lu Liu
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Qizheng Han
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Yifeng Huo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Zhou
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Xiaodong Teng
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
| | - Chong Lai
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Foti F, Schuler C, Ruiz PA, Perren L, Malagola E, de Vallière C, Seuwen K, Hausmann M, Rogler G. The Simultaneous Deletion of pH-Sensing Receptors GPR4 and OGR1 (GPR68) Ameliorates Colitis with Additive Effects on Multiple Parameters of Inflammation. Int J Mol Sci 2025; 26:1552. [PMID: 40004018 PMCID: PMC11855581 DOI: 10.3390/ijms26041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
G protein-coupled receptors (GPRs), including pro-inflammatory GPR4 and ovarian cancer GPR1 (OGR1/GPR68), are involved in the pH sensing of the extracellular space and have been implicated in inflammatory bowel disease (IBD). Previous data show that a loss of GPR4 or OGR1 independently is associated with reduced intestinal inflammation in mouse models of experimental colitis. In the present manuscript, we investigated the impact of the simultaneous loss of GPR4 and OGR1 in animal models of IBD. To study the effects of combined loss of Gpr4 Ogr1 in IBD we used the well-established acute dextran sodium sulfate (DSS) and spontaneous Il10-/- murine colitis models. Disease severity was assessed using multiple clinical scores (e.g., body weight loss, disease activity score, murine endoscopic index of colitis severity (MEICS) and histological analyses). Real-time quantitative polymerase chain reaction (qPCR), Western blot, and flow cytometry were used to investigate changes in pro-inflammatory cytokines expression and immune cells infiltration. We found that a combined loss of GPR4 and OGR1 significantly reduces colon inflammation in IBD relative to single deficiencies as evidenced by reduced body weight loss, disease score, CD4/CD8 ratio, and Il1β, Il6, and Tnf in the colon. Similarly, in the II10 deficiency model, the inflammation was significantly ameliorated upon the simultaneous deletion of GPR4 and OGR1, evidenced by a reduction in the MEICS score, colon length, Tnf and Il1β measurements, and a decrease in the number of macrophages in the colon, as compared to single deletions. Importantly, hydroxyproline levels were decreased close to baseline in Il10-/- × Gpr4-/- × Ogr1-/- mice. Our findings demonstrate that the simultaneous loss of GRP4 and OGR1 functions exerts an additive effect on multiple parameters associated with colonic inflammation. These results further reinforce the hypothesis that chronic inflammatory acidosis is a driver of fibrosis and is dependent on GPR4 and OGR1 signaling. The inhibition of both GPR4 and OGR1 by pH-sensing receptor modulators may constitute as a potential therapeutic option for IBD, as both pH-sensing receptors appear to sustain inflammation by acting on complementary pro-inflammatory pathways.
Collapse
|
14
|
Chen YJN, Shi RC, Xiang YC, Fan L, Tang H, He G, Zhou M, Feng XZ, Tan JD, Huang P, Ye X, Zhao K, Fu WY, Li LL, Bian XT, Chen H, Wang F, Wang T, Zhang CK, Zhou BH, Chen W, Liang TT, Lv JT, Kang X, Shi YX, Kim E, Qin YH, Hettinghouse A, Wang KD, Zhao XL, Yang MY, Tang YZ, Piao HL, Guo L, Liu CJ, Miao HM, Tang KL. Malate initiates a proton-sensing pathway essential for pH regulation of inflammation. Signal Transduct Target Ther 2024; 9:367. [PMID: 39737965 PMCID: PMC11683149 DOI: 10.1038/s41392-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages. Here, we found that L-malate exerts anti-inflammatory effect via BiP-IRF2BP2 signaling, which is a sensor of cytosolic pH in macrophages. First, L-malate, a TCA intermediate upregulated in pro-inflammatory macrophages, was identified as a potent anti-inflammatory metabolite through initial screening. Subsequent screening with DARTS and MS led to the isolation of L-malate-BiP binding. Further screening through protein‒protein interaction microarrays identified a L-malate-restrained coupling of BiP with IRF2BP2, a known anti-inflammatory protein. Interestingly, pH reduction, which promotes carboxyl protonation of L-malate, facilitates L-malate and carboxylate analogues such as succinate to bind BiP, and disrupt BiP-IRF2BP2 interaction in a carboxyl-dependent manner. Both L-malate and acidification inhibit BiP-IRF2BP2 interaction, and protect IRF2BP2 from BiP-driven degradation in macrophages. Furthermore, both in vitro and in vivo, BiP-IRF2BP2 signal is required for effects of both L-malate and pH on inflammatory responses. These findings reveal a previously unrecognized, proton/carboxylate dual sensing pathway wherein pH and L-malate regulate inflammatory responses, indicating the role of certain carboxylate metabolites as adaptors in the proton biosensing by interactions between macromolecules.
Collapse
Affiliation(s)
- Yu-Jia-Nan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Rong-Chen Shi
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yuan-Cai Xiang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Li Fan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Hong Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Gang He
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mei Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xin-Zhe Feng
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Jin-Dong Tan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pan Huang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiao Ye
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Wen-Yu Fu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Liu-Li Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Xu-Ting Bian
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Feng Wang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Teng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Chen-Ke Zhang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Bing-Hua Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Tao-Tao Liang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jing-Tong Lv
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xia Kang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - You-Xing Shi
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ellen Kim
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Yin-Hua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University, Chongqing, 400038, China
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Kai-di Wang
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Xiang-Li Zhao
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ming-Yu Yang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu-Zhen Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lin Guo
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Hong-Ming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Kang-Lai Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
15
|
Karki P, Ke Y, Zhang C, Promnares K, Li Y, Williams CH, Hong CC, Birukov KG, Birukova AA. GPR68 Mediates Lung Endothelial Dysfunction Caused by Bacterial Inflammation and Tissue Acidification. Cells 2024; 13:2125. [PMID: 39768215 PMCID: PMC11674861 DOI: 10.3390/cells13242125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined the role of extracellular acidification on human pulmonary endothelial cell (EC) permeability and inflammatory status per se and investigated potential synergistic effects of acidosis on endothelial dysfunction caused by bacterial lipopolysaccharide (LPS, Klebsiella pneumoniae). Results showed that medium acidification to pH 6.5 caused a delayed increase in EC permeability illustrated by a decrease in transendothelial electrical resistance and loss of continuous VE-cadherin immunostaining at cell junctions. Likewise, acidic pH induced endothelial inflammation reflected by increased mRNA and protein expression of EC adhesion molecules VCAM-1 and ICAM-1, upregulated mRNA transcripts of tumor necrosis factor-α, IL-6, IL-8, IL-1β, and CXCL5, and increased secretion of ICAM-1, IL-6, and IL-8 in culture medium monitored by ELISA. Among the GPCRs tested, acidic pH selectively increased mRNA and protein expression of GPR68, and only the GPR68-specific small molecule inhibitor OGM-8345 rescued acidosis-induced endothelial permeability and inflammation. Furthermore, acidic pH exacerbated LPS-induced endothelial permeability and inflammatory response in cultured lung macrovascular as well as microvascular endothelial cells. These effects were suppressed by OGM-8345 in both EC types. Altogether, these results suggest that GPR68 is a critical mediator of acidic pH-induced dysfunction of human pulmonary vascular endothelial cells and mediates the augmenting effect of tissue acidification on LPS-induced endothelial cell injury.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.P.); (K.G.B.)
| | - Chenou Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.P.); (K.G.B.)
| | - Yue Li
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| | - Charles H. Williams
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.H.W.); (C.C.H.)
| | - Charles C. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.H.W.); (C.C.H.)
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.P.); (K.G.B.)
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| |
Collapse
|
16
|
Zhang X, Zhang X, Cheng S, Fan X, Bao H, Zhou S, Ping J. Spatiotemporal Cell Control via High-Precision Electronic Regulation of Microenvironmental pH. NANO LETTERS 2024; 24:15645-15651. [PMID: 39588840 DOI: 10.1021/acs.nanolett.4c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Accurate regulation of extracellular pH is crucial for controlling cell behaviors and functions. However, typical methods, which primarily rely on replacing cell culture media or using ionic diffusion, are slow, nondirectional, and lack spatiotemporal resolution. Here, we develop a microfabricated device that regulates microenvironmental pH within specific localized zones with high precision (uncertainty <0.1 pH units) and temporal resolution. The device uses a synchronization strategy that coordinates two processes: pulsatile modulation of pH through microelectrolysis and ultrasensitive graphene-electronic pH sensing, which operates in antiphase to the modulation. Using this device, we show real-time control of the dynamic behaviors of microscale clusters of bacteria (motility) and cardiomyocytes (calcium signaling and necrotic injury) in response to precisely regulated extracellular pH variations. Our device addresses the limitations of typical pH-altering techniques and holds significant potential to advance cell biology, physiology, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xin Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sizhe Cheng
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiao Fan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Huilu Bao
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shuang Zhou
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jinglei Ping
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Zhao J, Hu S, Qi Z, Xu X, Long X, Huang A, Liu J, Cheng P. Mitochondrial metabolic reprogramming of macrophages and T cells enhances CD47 antibody-engineered oncolytic virus antitumor immunity. J Immunother Cancer 2024; 12:e009768. [PMID: 39631851 PMCID: PMC11624815 DOI: 10.1136/jitc-2024-009768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Although immunotherapy can reinvigorate immune cells to clear tumors, the response rates are poor in some patients. Here, CD47 antibody-engineered oncolytic viruses (oAd-αCD47) were employed to lyse tumors and activate immunity. The oAd-αCD47 induced comprehensive remodeling of the tumor microenvironment (TME). However, whether the acidic TME affects the antitumor immunotherapeutic effects of oncolytic viruses-αCD47 has not been clarified. METHODS To assess the impact of oAd-αCD47 treatment on the TME, we employed multicolor flow cytometry. Glucose uptake was quantified using 2NBDG, while mitochondrial content was evaluated with MitoTracker FM dye. pH imaging of tumors was performed using the pH-sensitive fluorophore SNARF-4F. Moreover, changes in the calmodulin-dependent protein kinase II (CaMKII)/cyclic AMP activates-responsive element-binding proteins (CREB) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) signaling pathway were confirmed through western blotting and flow cytometry. RESULTS Here, we identified sodium bicarbonate (NaBi) as the potent metabolic reprogramming agent that enhanced antitumor responses in the acidic TME. The combination of NaBi and oAd-αCD47 therapy significantly inhibited tumor growth and produced complete immune control in various tumor-bearing mouse models. Mechanistically, combination therapy mainly reduced the number of regulatory T cells and enriched the ratio of M1-type macrophages TAMs (M1.TAMs) to M2-type macrophages TAMs (M2.TAMs), while decreasing the abundance of PD-1+TIM3+ expression and increasing the expression of CD107a in the CD8+ T cells. Furthermore, the combination therapy enhanced the metabolic function of T cells and macrophages by upregulating PGC1α, a key regulator of mitochondrial biogenesis. This metabolic improvement contributed to a robust antitumor response. Notably, the combination therapy also promoted the generation of memory T cells, suggesting its potential as an effective neoadjuvant treatment for preventing postoperative tumor recurrence and metastasis. CONCLUSIONS Tumor acidic microenvironment impairs mitochondrial energy metabolism in macrophages and T cells inducing oAd-αCD47 immunotherapeutic resistance. NaBi improves the acidity of the TME and activates the CaMKII/CREB/PGC1α mitochondrial biosynthesis signaling pathway, which reprograms the energy metabolism of macrophages and T cells in the TME, and oral NaBi enhances the antitumor effect of oAd-αCD47.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shichuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongbing Qi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xianglin Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Long
- Department of Oncology, Guangan People’s Hospital, Sichuan, Guangan, China
| | - Anliang Huang
- Department of Pathology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Liu H, Pan M, Liu M, Zeng L, Li Y, Huang Z, Guo C, Wang H. Lactate: a rising star in tumors and inflammation. Front Immunol 2024; 15:1496390. [PMID: 39660139 PMCID: PMC11628389 DOI: 10.3389/fimmu.2024.1496390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Lactate has been traditionally regarded as a mere byproduct of glycolysis or metabolic waste. However, an increasing body of literature suggests its critical role in regulating various physiological and pathological processes. Lactate is generally associated with hypoxia, inflammation, viral infections, and tumors. It performs complex physiological roles by activating monocarboxylate transporter (MCT) or the G protein-coupled receptor GPR81 across the cell membrane. Lactate exerts immunosuppressive effects by regulating the functions of various immune cells (such as natural killer cells, T cells, dendritic cells, and monocytes) and its role in macrophage polarization and myeloid-derived suppressor cell (MDSC) differentiation in the tumor microenvironment. Lactic acid has also recently been found to increase the density of CD8+ T cells, thereby enhancing the antitumor immune response. Acute or chronic inflammatory diseases have opposite immune states in the inflammatory disease microenvironment. Factors such as cell types, transcriptional regulators, ionic mediators, and the microenvironment all contribute to the diverse functions lactate exhibits. Herein, we reviewed the pleiotropic effects of lactate on the regulation of various functions of immune cells in the tumor microenvironment and under inflammatory conditions, which may help to provide new insights and potential targets for the diagnosis and treatment of inflammatory diseases and malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
19
|
Campbell PM, Willmott T, Summers A, Knight CG, Humphreys GJ, Konkel JE, Augustine T, McBain AJ. Investigating oral microbiome dynamics in chronic kidney disease and post-transplantation in continuous culture. Microbiol Spectr 2024; 12:e0059824. [PMID: 39382278 PMCID: PMC11537021 DOI: 10.1128/spectrum.00598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 10/10/2024] Open
Abstract
The oral microbiome is influenced by environmental factors in chronic kidney disease and following kidney transplantation affecting microbial composition, which may have implications for health and recovery. A major driver of oral microbiome perturbation is the accumulation of urea in saliva. We have modelled increased salivary urea concentrations associated with CKD and subsequent reductions that may occur post-transplantation. Oral microbiota were established in constant-depth film fermenters by inoculation with saliva. Duplicate validation runs were maintained with artificial saliva with baseline urea concentrations (0.205 mg/mL) for 21 days. Triplicate treatment runs were then done with baseline urea for 10 days (healthy phase) before urea was increased for 10 days to reflect CKD concentrations (0.92 mg/mL) (CKD phase). This was followed by reversion to baseline urea concentrations (post-transplant phase). Biofilms in primary validation runs reached dynamic stability within 5 days according to viable counting. DNA sequence data indicated minimal taxonomic variation over time and between low and high urea treatments despite background noise indicating changes in bacteria belonging to the family Gemellaceae and the genera TG5 and Leptotrichia. Significant differences in alpha and beta diversity occurred between low and high urea states but not following reversion to a low urea environment. Increased abundance of the TG5 was detected in late model phases, despite apparent count stability, and independent of changes in urea concentrations. IMPORTANCE This study investigates dynamic changes in the oral microbiome associated with changes in salivary urea concentration, an important factor in chronic kidney disease (CKD). The in vitro system modeled increased urea concentrations and subsequent reductions post-transplantation. The study provides insight into the oral microbial shifts during different simulated clinical phases. Understanding these dynamics is crucial for advancing our comprehension of CKD-associated oral microbiome variations and their potential impact on patient well-being and recovery.
Collapse
Affiliation(s)
- Paul M. Campbell
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Thomas Willmott
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Angela Summers
- Department of Renal and Pancreatic Transplantation, Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Gavin J. Humphreys
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Joanne E. Konkel
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Titus Augustine
- Department of Renal and Pancreatic Transplantation, Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Vuillefroy de Silly R, Pericou L, Seijo B, Crespo I, Irving M. Acidity suppresses CD8 + T-cell function by perturbing IL-2, mTORC1, and c-Myc signaling. EMBO J 2024; 43:4922-4953. [PMID: 39284912 PMCID: PMC11535206 DOI: 10.1038/s44318-024-00235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
CD8 + T cells have critical roles in tumor control, but a range of factors in their microenvironment such as low pH can suppress their function. Here, we demonstrate that acidity restricts T-cell expansion mainly through impairing IL-2 responsiveness, lowers cytokine secretion upon re-activation, and reduces the cytolytic capacity of CD8 + T cells expressing low-affinity TCR. We further find decreased mTORC1 signaling activity and c-Myc levels at low pH. Mechanistically, nuclear/cytoplasmic acidification is linked to mTORC1 suppression in a Rheb-, Akt/TSC2/PRAS40-, GATOR1- and Lkb1/AMPK-independent manner, while c-Myc levels drop due to both decreased transcription and higher levels of proteasome-mediated degradation. In addition, lower intracellular levels of glutamine, glutamate, and aspartate, as well as elevated proline levels are observed with no apparent impact on mTORC1 signaling or c-Myc levels. Overall, we suggest that, due to the broad impact of acidity on CD8 + T cells, multiple interventions will be required to restore T-cell function unless intracellular pH is effectively controlled.
Collapse
Affiliation(s)
- Romain Vuillefroy de Silly
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Laetitia Pericou
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
21
|
Bhardwaj K, Anand T, Jangir R, Sahoo SK. Aggregation-Induced Emission Active Benzidine-Pyridoxal Derived Scaffold for Detecting Fe 3+ and pH. J Fluoresc 2024; 34:2917-2926. [PMID: 37962767 DOI: 10.1007/s10895-023-03503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Present work introduces an aggregation-induced emission (AIE) active Schiff base 4,4'-((1E,1'E)-([1,1'-biphenyl]-4,4'-diylbis(azaneylylidene))bis(methaneylylidene))bis(5-(hydroxymethyl)-2-methylpyridin-3-ol) (BNPY). Schiff base BNPY was synthesized by reacting benzidine with pyridoxal. The non-fluorescent BNPY in freely soluble DMSO medium showed a significant fluorescence enhancement at 563 nm (λex = 400 nm) upon increasing the water fraction (fw) in DMSO above 60% due to the restriction of intramolecular rotation upon the aggregation of BNPY. The AIE active BNPY was employed for the detection of metal ions in DMSO:H2O (fw = 70%). Upon the addition of Fe3+, the fluorescence emission of BNPY at 563 nm was quenched due to the chelation-enhanced fluorescence quenching (CHEQ). The Job's plot experiment supported the formation of a complex between BNPY and Fe3+ in 1:2 binding ratio. With an estimated detection limit of 5.6 × 10-7 M, BNPY was employed to detect and quantify Fe3+ ion in real water samples with satisfactory recovery percentages. Moreover, the pH studies of BNPY aggregates revealed three different fluorescence windows: non-fluorescent in acidic pH 2.02 to 3.16, yellow fluorescent between pH 3.60 to 9.33, and green fluorescent in basic pH 9.96 to 12.86.
Collapse
Affiliation(s)
- Kanishk Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Ritambhra Jangir
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
22
|
Krenev IA, Egorova EV, Khaydukova MM, Mikushina AD, Zabrodskaya YA, Komlev AS, Eliseev IE, Shamova OV, Berlov MN. Characterization of Structural Properties and Antimicrobial Activity of the C3f Peptide of Complement System. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2069-2082. [PMID: 39647833 DOI: 10.1134/s000629792411018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024]
Abstract
The C3f peptide is a by-product of regulation of the activated complement system with no firmly established function of its own. We have previously shown that C3f exhibits moderate antimicrobial activity against some Gram-positive bacteria in vitro. Presence of two histidine residues in the amino acid sequence of the peptide suggests enhancement of its antimicrobial activity at lower pH and in the presence of metal cations, particularly zinc cations. Since such conditions could be realized in inflammatory foci, the study of dependence of C3f activity on pH and presence of metal cations could provide an opportunity to assess biological significance of antimicrobial properties of the peptide. The peptide C3f and its analogs with histidine residues substituted by lysines or serines, C3f[H/K] and C3f[H/S], were prepared by solid-phase synthesis. Using CD spectroscopy, we found that C3f contained a β-hairpin and unstructured regions; presence of Zn2+ did not affect conformation of the peptide. In the present work, it was shown that C3f could also exhibit antimicrobial activity against Gram-negative bacteria, in particular, Pseudomonas aeruginosa ATCC 27583. Exposure of P. aeruginosa and Listeria monocytogenes EGD to the peptide was accompanied by disruption of the barrier function of bacterial membranes. Zn2+ ions, unlike Cu2+ ions, enhanced antimicrobial activity of C3f against L. monocytogenes, with 4- and 8-fold molar excess of Zn2+ being no more effective than a 20% excess. Activity of the C3f analogs was also enhanced to some extent by the zinc ions. Thus, we hypothesize existence of the histidine-independent formation of C3f-Zn2+ complexes leading to increase in the total charge and antimicrobial activity of the peptide. In the presence of 0.15 M NaCl, C3f lost its antimicrobial activity regardless of the presence of Zn2+, indicating an insignificant role of C3f as an endogenous antimicrobial peptide. Presence of C3f eliminated bactericidal effect of Zn2+ against the zinc-sensitive Escherichia coli strain ESBL 521/17, indirectly confirming interaction of the peptide with Zn2+. Activity of C3f against Micrococcus luteus A270 increased with decreasing pH, while effect of pH on the C3f activity against L. monocytogenesis was more complex. In this work, we show significance of the factors such as pH and metal cations in realization of antimicrobial activity of peptides based on the example of C3f.
Collapse
Affiliation(s)
- Ilia A Krenev
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Ekaterina V Egorova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Maria M Khaydukova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, 192019, Russia
| | - Anna D Mikushina
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Alferov University, Saint Petersburg, 194021, Russia
| | - Yana A Zabrodskaya
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
- Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Aleksey S Komlev
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Igor E Eliseev
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Alferov University, Saint Petersburg, 194021, Russia
| | - Olga V Shamova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mikhail N Berlov
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
23
|
Wang Z, Zou X, Wang H, Hao Z, Li G, Wang S. Companion diagnostics and predictive biomarkers for PD-1/PD-L1 immune checkpoint inhibitors therapy in malignant melanoma. Front Immunol 2024; 15:1454720. [PMID: 39530091 PMCID: PMC11550933 DOI: 10.3389/fimmu.2024.1454720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death receptor 1 (PD-1), when bound to the ligand programmed death-ligand 1 (PD-L1), can suppress cellular immunity and play a critical role in the initiation and development of cancer. Immune drugs targeting these two sites have been developed for different cancers, including malignant melanoma. The accompanying diagnostic method has been approved by the FDA to guide patient medication. However, the method of immunohistochemical staining, which varies widely due to the antibody and staining cut-off values, has certain limitations in application and does not benefit all patients. Increasing researches begin to focus on new biomarkers to improve objective response rates and survival in cancer patients. In this article, we enumerated three major groups, including tumour microenvironment, peripheral circulation, and gene mutation, which covered the current main research directions. In the future, we hope those biomarkers may be used to guide the treatment of patients with malignant melanoma.
Collapse
Affiliation(s)
- Zeping Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaojing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiyan Wang
- Beijing Biomedical Science and Technology Center, Zhaofenghua Biotechnology (Nanjing) Company Limited, Beijing, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
24
|
Li S, Melchiore F, Kantari-Mimoun C, Mouton A, Knockaert S, Philippon W, Chanrion B, Bourgeois C, Lefebvre C, Elhmouzi-Younes J, Blanc V, Ramon Olayo F, Laugel B. In silico and pharmacological evaluation of GPR65 as a cancer immunotherapy target regulating T-cell functions. Front Immunol 2024; 15:1483258. [PMID: 39483470 PMCID: PMC11525786 DOI: 10.3389/fimmu.2024.1483258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The success of cancer immunotherapies such as immune checkpoint inhibitors, CAR T-cells and immune cell engagers have provided clinicians with tools to bypass some of the limitations of cancer immunity. However, numerous tumour factors curtail the immune response against cancer and limit the efficiency of immuno-oncology (IO) therapies. Acidification of the extra-cellular tumour environment consecutive to aberrant cancer cell metabolism is a well-known promoter of oncogenic processes that also acts as an immune regulator. Yet, the suppressive mechanisms of low extra-cellular pH on anti-cancer immunity remain poorly understood. Recent reports have suggested that GPR65, a Gαs-coupled proton-sensing GPCR broadly expressed in the immune system, may act as an immune suppressant detrimental to anti-tumour immunity. So far, the immuno-regulatory properties of GPR65 in acidic milieux have mostly been documented in macrophages and myeloid cells. Our computational evaluation of GPR65's transcriptomic expression profile and potential as an IO target using public datasets prompted us to further investigate its functions in human T-cells. To this end, we identified and validated GPR65 small molecule inhibitors active in in vitro cellular assays and we showed that GPR65 inhibition promoted the killing capacity of antigen-specific human T-cells. Our results broaden the scope of GPR65 as an IO target by suggesting that its inhibition may enhance T-cell anti-tumour activity and provide useful pharmacological tools to further investigate the therapeutic potential of GPR65 inhibition.
Collapse
Affiliation(s)
- Shamin Li
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Fabien Melchiore
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Aurore Mouton
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Samantha Knockaert
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Wendy Philippon
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | - Benjamin Chanrion
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Céline Lefebvre
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Véronique Blanc
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| | | | - Bruno Laugel
- Institut de Recherches Servier, Paris-Saclay R&D Center, Gif-sur-Yvette, France
| |
Collapse
|
25
|
Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, Yang L, Sun L. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon 2024; 10:e38165. [PMID: 39364250 PMCID: PMC11447355 DOI: 10.1016/j.heliyon.2024.e38165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
The poly (lactic-co-glycolic acid) (PLGA) based nanoparticles have been applied for drug delivery due to their simple preparation, biodegradability, and ideal biocompatibility. In this study, the factors affecting the degradation of PLGA-based nanoparticles are reviewed, encompassing the ratio of PLA to PGA, relative molecular weight, crystallinity, and preparation process of PLGA nanoparticles. The drug release behavior of PLGA-based nanoparticles, such as the degradation environment, encapsulated drug properties of polymers, and drug loading rates, are also discussed. Since gastrointestinal cancer is one of the major global threats to human health, this paper comprehensively summarizes the application of PLGA nanoparticles in gastrointestinal cancers from diagnosis, chemotherapy, radiotherapy, and novel tumor treatment methods (immunotherapy, gene therapy, and photothermal therapy). Finally, the future application of PLGA-based drug delivery systems in treating gastrointestinal cancers is discussed. The bottleneck of application status and the prospect of PLGA-nanoparticles in gastrointestinal tumor application are presented. To truly realize the great and wide application of PLGA-based nanoparticles, collaborative progress in the field of nanomaterials and life sciences is needed.
Collapse
Affiliation(s)
- Rui Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanfei Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanjiang Pei
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Wenbin Wang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhi Zhu
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhaohua Zheng
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Limeng Yang
- School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| |
Collapse
|
26
|
Zhou R, Xue S, Cheng Y, Chen Y, Wang Y, Xing J, Liu H, Xu Y, Lin Y, Pei Z, Wei X, Ding J, Li S, Wang K, Yao F, Zhao Y, Ding C, Hu W. Macrophage membrane-camouflaged biomimetic nanoparticles for rheumatoid arthritis treatment via modulating macrophage polarization. J Nanobiotechnology 2024; 22:578. [PMID: 39300463 DOI: 10.1186/s12951-024-02822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic joint inflammation and cartilage damage. Current therapeutic strategies often result in side effects, necessitating the development of targeted and safer treatment options. This study introduces a novel nanotherapeutic system, 2-APB@DGP-MM, which utilizes macrophage membrane (MM)-encapsulated nanoparticles (NPs) for the targeted delivery of 2-Aminoethyl diphenylborinate (2-APB) to inflamed joints more effectively. The NPs are designed with a matrix metalloproteinase (MMP)-cleavable peptide, allowing for MMP-responsive drug release within RA microenvironment. Comprehensive in vitro and in vivo assays confirmed the successful synthesis and loading of 2-APB into the DSPE-GPLGVRGC-PEG (DGP) NPs, as well as their ability to repolarize macrophages from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. The NPs demonstrated high biocompatibility, low cytotoxicity, and enhanced cellular uptake. In a collagen-induced arthritis (CIA) mouse model, intra-articular injection of 2-APB@DGP-MM significantly reduced synovial inflammation and cartilage destruction. Histological analysis corroborated these findings, demonstrating marked improvements in joint structure and delayed disease progression. Above all, the 2-APB@DGP-MM nanotherapeutic system offers a promising and safe approach for RA treatment by modulating macrophage polarization and delivering effective agents to inflamed joints.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Song Xue
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510200, China
| | - Yuanzhi Cheng
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Wang
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Jing Xing
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Hao Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yucai Xu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Zejun Pei
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Xin Wei
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510200, China.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- The Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
27
|
Pal M, Bera A, Masarkar N, Upadhyay A, Mukherjee S, Roy M. Targeted Chemo-Phototherapy in Red Light with Novel Doxorubicin and Iron(III) Complex-Functionalized Gold Nanoconjugate (Dox-Fe@FA-AuNPs). Chem Asian J 2024; 19:e202400616. [PMID: 38923831 DOI: 10.1002/asia.202400616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The anticancer efficacy of doxorubicin, an anthracycline-based and FDA-approved chemotherapeutic drug, is significantly hindered by acquired chemoresistance and severe side effects despite its potent anticancer properties. To overcome these challenges, we developed an innovative therapeutic formulation that integrates targeted chemotherapy and phototherapy within a single platform using gold nanoparticles (AuNPs). This novel nanoconjugate, designated as Dox-Fe@FA-AuNPs, is co-functionalized with folic acid, doxorubicin, and an iron(III)-phenolate/carboxylate complex, enabling cancer-specific drug activation. Here, we report the synthesis, characterization, and comprehensive physico-chemical and biological evaluations of Dox-Fe@FA-AuNPs. The nanoconjugate exhibited excellent solubility, stability, and enhanced cellular uptake in folate receptor-positive cancer cells. The nanoconjugate was potently cytotoxic against HeLa and MDA-MB-231 cancer cells (HeLa: 105.5±16.52 μg mL-1; MDA-MB-231: 112.0±12.31 μg mL-1; MDA-MB-231 (3D): 156.31±19.35 μg mL-1) while less cytotoxic to the folate(-) cancer cells (MCF-7, A549 and HepG2). The cytotoxicity was attributed to the pH-dependent release of doxorubicin, which preferentially occurs in the acidic tumor microenvironment. Additionally, under red light irradiation, the nanoconjugate generated ROS, inducing caspase-3/7-dependent apoptosis with a photo-index (PI) >50, and inhibited cancer cell migration. Our findings underscore the potential of Dox-Fe@FA-AuNPs as a highly effective and sustainable platform for targeted chemo-phototherapy.
Collapse
Affiliation(s)
- Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore, 560012, Karnataka
| | - Neha Masarkar
- Department of Biochemistry, AIIMS Bhopal, Saket Nagar, Bhopal, Madhya Pradesh
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore, 560012, Karnataka
| | - Sukhes Mukherjee
- Department of Biochemistry, AIIMS Bhopal, Saket Nagar, Bhopal, Madhya Pradesh
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur
- Department of Chemistry, National Institute of Technology Agartala, Jirania, 799046, Tripura West
| |
Collapse
|
28
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Bogdan C, Islam NAK, Barinberg D, Soulat D, Schleicher U, Rai B. The immunomicrotope of Leishmania control and persistence. Trends Parasitol 2024; 40:788-804. [PMID: 39174373 DOI: 10.1016/j.pt.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Leishmania is an intracellular protozoan transmitted by sand fly vectors; it causes cutaneous, mucocutaneous, or visceral disease. Its growth and survival are impeded by type 1 T helper cell responses, which entail interferon (IFN)-γ-mediated macrophage activation. Leishmania partially escapes this host defense by triggering immune cell and cytokine responses that favor parasite replication rather than killing. Novel methods for in situ analyses have revealed that the pathways of immune control and microbial evasion are strongly influenced by the tissue context, the micro milieu factors, and the metabolism at the site of infection, which we collectively term the 'immunomicrotope'. Understanding the components and the impact of the immunomicrotope will enable the development of novel strategies for the treatment of chronic leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany.
| | - Noor-A-Kasida Islam
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - David Barinberg
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Baplu Rai
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| |
Collapse
|
30
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
31
|
Messina JM, Luo M, Hossan MS, Gadelrab HA, Yang X, John A, Wilmore JR, Luo J. Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine Growth Factor Rev 2024; 77:1-14. [PMID: 38184374 PMCID: PMC11923798 DOI: 10.1016/j.cytogfr.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
Collapse
Affiliation(s)
- Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Minghao Luo
- Department of Clinical Medicine, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Md Shanewaz Hossan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Hadil A Gadelrab
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Anna John
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
32
|
Kromer C, Katz A, Feldmann I, Laux P, Luch A, Tschiche HR. A targeted fluorescent nanosensor for ratiometric pH sensing at the cell surface. Sci Rep 2024; 14:12302. [PMID: 38811698 PMCID: PMC11137054 DOI: 10.1038/s41598-024-62976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The correlation between altered extracellular pH and various pathological conditions, including cancer, inflammation and metabolic disorders, is well known. Bulk pH measurements cannot report the extracellular pH value at the cell surface. However, there is a limited number of suitable tools for measuring the extracellular pH of cells with high spatial resolution, and none of them are commonly used in laboratories around the world. In this study, a versatile ratiometric nanosensor for the measurement of extracellular pH was developed. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with the pH-inert reference dye Nile red and is surface functionalized with a pH-responsive fluorescein dye. Equipped with a targeting moiety, the nanosensor can adhere to cell membranes, allowing direct measurement of extracellular pH at the cell surface. The nanosensor exhibits a sensitive ratiometric pH response within the range of 5.5-9.0, with a calculated pKa of 7.47. This range optimally covers the extracellular pH (pHe) of most healthy cells and cells in which the pHe is abnormal, such as cancer cells. In combination with the nanosensors ability to target cell membranes, its high robustness, reversibility and its biocompatibility, the pHe nanosensor proves to be well suited for in-situ measurement of extracellular pH, even over extended time periods. This pH nanosensor has the potential to advance biomedical research by improving our understanding of cellular microenvironments, where extracellular pH plays an important role.
Collapse
Affiliation(s)
- Charlotte Kromer
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Aaron Katz
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ines Feldmann
- Material-Microbiome Interactions, Department Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R Tschiche
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
33
|
Kelly JJ, Ankrom ET, Newkirk SE, Thévenin D, Pires MM. Targeted acidosis mediated delivery of antigenic MHC-binding peptides. Front Immunol 2024; 15:1337973. [PMID: 38665920 PMCID: PMC11043575 DOI: 10.3389/fimmu.2024.1337973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complex offers a promising strategy for immunotherapy due to their specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer using pH(low) insertion peptides (pHLIP). We demonstrated the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and activation of T cells. This work highlights the potential of pHLIP as a vehicle for the targeted delivery of antigenic peptides and its presentation via MHC-bound complexes on cancer cell surface for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Joey J. Kelly
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Emily T. Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sarah E. Newkirk
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
34
|
Hausmann M, Seuwen K, de Vallière C, Busch M, Ruiz PA, Rogler G. Role of pH-sensing receptors in colitis. Pflugers Arch 2024; 476:611-622. [PMID: 38514581 PMCID: PMC11006753 DOI: 10.1007/s00424-024-02943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland.
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Moana Busch
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| |
Collapse
|
35
|
Ying T, Lai Y, Lu S, E S. Identification and validation of a glycolysis-related taxonomy for improving outcomes in glioma. CNS Neurosci Ther 2024; 30:e14601. [PMID: 38332637 PMCID: PMC10853657 DOI: 10.1111/cns.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Reprogramming of glucose metabolism is a prominent abnormal energy metabolism in glioma. However, the efficacy of treatments targeting glycolysis varies among patients. The present study aimed to classify distinct glycolysis subtypes (GS) of glioma, which may help to improve the therapy response. METHODS The expression profiles of glioma were downloaded from public datasets to perform an enhanced clustering analysis to determine the GS. A total of 101 combinations based on 10 machine learning algorithms were performed to screen out the most valuable glycolysis-related glioma signature (GGS). Through RSF and plsRcox algorithms, adrenomedullin (ADM) was eventually obtained as the most significant glycolysis-related gene for prognostic prediction in glioma. Furthermore, drug sensitivity analysis, molecular docking, and in vitro experiments were utilized to verify the efficacy of ADM and ingenol mebutate (IM). RESULTS Glioma patients were classified into five distinct GS (GS1-GS5), characterized by varying glycolytic metabolism levels, molecular expression, immune cell infiltration, immunogenic modulators, and clinical features. Anti-CTLA4 and anti-PD-L1 antibodies significantly improved the prognosis for GS2 and GS5, respectively. ADM has been identified as a potential biomarker for targeted glycolytic therapy in glioma patients. In vitro experiments demonstrated that IM inhibited glioma cell progression by inhibiting ADM. CONCLUSION This study elucidates that evaluating GS is essential for comprehending the heterogeneity of glioma, which is pivotal for predicting immune cell infiltration (ICI) characterization, prognosis, and personalized immunotherapy regimens. We also explored the glycolysis-related genes ADM and IM to develop a theoretical framework for anti-tumor strategies targeting glycolysis.
Collapse
Affiliation(s)
- Tianshu Ying
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Yaming Lai
- Department of UrologyGuangyuan Central HospitalGuangyuanChina
| | - Shiyang Lu
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shaolong E
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
36
|
Kadakia P, Valentin JDP, Hong L, Watts S, Hameed OA, Walch M, Salentinig S. Biocompatible Rhamnolipid Self-Assemblies with pH-Responsive Antimicrobial Activity. Adv Healthc Mater 2024; 13:e2302596. [PMID: 37935580 DOI: 10.1002/adhm.202302596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Indexed: 11/09/2023]
Abstract
There is an urgent need for alternative antimicrobial materials due to the growing challenge of bacteria becoming resistant to conventional antibiotics. This study demonstrates the creation of a biocompatible pH-switchable antimicrobial material by combining bacteria-derived rhamnolipids (RL) and food-grade glycerol monooleate (GMO). The integration of RL into dispersed GMO particles, with an inverse-type liquid crystalline cubic structure in the core, leads to colloidally stable supramolecular materials. The composition and pH-triggered structural transformations are studied with small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. The composition-structure-activity relationship is analyzed and optimized to target bacteria at acidic pH values of acute wounds. The new RL/GMO dispersions reduce Staphylococcus aureus (S. aureus) populations by 7-log after 24 h of treatment with 64 µg mL-1 of RL and prevent biofilm formation at pH = 5.0, but have no activity at pH = 7.0. Additionally, the system is active against methicillin-resistant S. aureus (MRSA) with minimum inhibitory concentration of 128 µg mL-1 at pH 5.0. No activity is found against several Gram-negative bacteria at pH 5.0 and 7.0. The results provide a fundamental understanding of lipid self-assembly and the design of lipid-based biomaterials, which can further guide the development of alternative bio-based solutions to combat bacteria.
Collapse
Affiliation(s)
- Parth Kadakia
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Jules D P Valentin
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Linda Hong
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Owais Abdul Hameed
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
37
|
Kostritskaia Y, Klüssendorf M, Pan YE, Hassani Nia F, Kostova S, Stauber T. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handb Exp Pharmacol 2024; 283:181-218. [PMID: 37468723 DOI: 10.1007/164_2023_673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Simona Kostova
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
38
|
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications. These unconventional energy devices are composed of biocompatible materials that harness the inherent chemistries of various biofluids to produce useable electrical energy. This work covers examples of such biofluid-activated energy devices in the form of biofuel cells, batteries, and supercapacitors. Advances in materials, design engineering, and biotechnology that form the basis for high-performance, biofluid-activated energy devices are discussed. Innovations in hybrid manufacturing and heterogeneous integration of device components to maximize power output are also included. Finally, key challenges and future scopes of this nascent field are provided.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
39
|
Li G, Lin J, Gao X, Su H, Lin R, Gao H, Feng Z, Wu H, Feng B, Zuo K, Li Y, Wu W, Fang L, Liu Z. Intestinal epithelial pH-sensing receptor GPR65 maintains mucosal homeostasis via regulating antimicrobial defense and restrains gut inflammation in inflammatory bowel disease. Gut Microbes 2023; 15:2257269. [PMID: 37749885 PMCID: PMC10524779 DOI: 10.1080/19490976.2023.2257269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
Intestinal epithelial cell (IEC) regulation of barrier function and mucosal homeostasis enables the establishment of a harmonious gut microenvironment. However, host-derived regulatory networks that modulate intestinal antimicrobial defenses have not been fully defined. Herein we generated mice with IEC-specific deletion of Gpr65 (Gpr65ΔIEC) and investigated the role of epithelial GPR65 using DSS- and C. rodentium-induced murine colitis models. RNA sequencing analysis was conducted on colonic IECs from Gpr65fl/fl and Gpr65ΔIEC mice, and colonoids and colonic epithelial cell lines were used to evaluate the pH-sensing effect of GPR65. The expression of GPR65 was determined in IECs from patients with inflammatory bowel disease (IBD) and DSS colitis mice by qRT-PCR, Western blot, and immunohistochemistry, respectively. We observed that the absence of GPR65 in IECs abrogated homeostatic antimicrobial programs, including the production of antimicrobial peptides (AMPs) and defense response-associated proteins. Gpr65ΔIEC mice displayed dysbiosis of the gut microbiota and were prone to DSS- and C. rodentium-induced colitis, as characterized by significantly disrupted epithelial antimicrobial responses, pathogen invasion, and increased inflammatory infiltrates in the inflamed colon. RNA sequencing analysis revealed that deletion of GPR65 in IECs provoked dramatic transcriptome changes with respect to the downregulation of immune and defense responses to bacteria. Forced AMP induction assays conducted in vivo or in ex vivo colonoids revealed that IEC-intrinsic GPR65 signaling drove antimicrobial defense. Mechanistically, GPR65 signaling promoted STAT3 phosphorylation to optimize mucosal defense responses. Epithelial cell line and colonoid assays further confirmed that epithelial GPR65 sensing pH synergized with IL-22 to facilitate antimicrobial responses. Finally, the expression of GPR65 was markedly decreased in the inflamed epithelia of IBD patients and DSS colitis mice. Our findings define an important role of epithelial GPR65 in regulating intestinal homeostasis and mucosal inflammation and point toward a potential therapeutic approach by targeting GPR65 in the treatment of IBD.
Collapse
Affiliation(s)
- Gengfeng Li
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Lin
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Xiang Gao
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huiling Su
- Department of Gastroenterology, Linfen Central Hospital of Shanxi Medical University, Linfen, China
| | - Ritian Lin
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Gao
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongsheng Feng
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huili Wu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keqiang Zuo
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingchuan Li
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Wu
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Leilei Fang
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Esperante D, Gutiérrez MIM, Issa ME, Schcolnik-Cabrera A, Mendlovic F. Similarities and divergences in the metabolism of immune cells in cancer and helminthic infections. Front Oncol 2023; 13:1251355. [PMID: 38044996 PMCID: PMC10690632 DOI: 10.3389/fonc.2023.1251355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mónica Itzel Martínez Gutiérrez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mark E. Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Mexico
| |
Collapse
|
41
|
Matsui T, Toda Y, Sato H, Itagaki R, Konishi K, Moshnikova A, Andreev OA, Hosogi S, Reshetnyak YK, Ashihara E. Targeting acidic pre-metastatic niche in lungs by pH low insertion peptide and its utility for anti-metastatic therapy. Front Oncol 2023; 13:1258442. [PMID: 38033489 PMCID: PMC10684925 DOI: 10.3389/fonc.2023.1258442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Dysregulated extracellular pH, the universal feature of tumor, works as an evolutional force to drive dissemination of tumor cells. It is well-established that tumor acidity is associated with tumor growth and metastasis. However, the pH of pre-metastatic niche remains unclear. We hypothesized that primary tumor cells remotely prime acidity in secondary organ to achieve metastatic colonization. Herein, we demonstrated that the pH responsive probe pH Low Insertion Peptide (pHLIP) was notably accumulated in pre-metastatic lungs of 4T1.2 breast tumor-bearing mice. The pHLIP-targeted lungs showed high amounts of lactate and overexpressed glycolysis-related proteins. Pharmacological inhibition of glycolysis suppressed the lung acidification induced by 4T1.2 cancer cell culture supernatant and delayed subsequent metastatic burden of disseminated tumor cells. In the acidic lungs, pHLIP was primarily localized in alveolar type 2 cells which strongly expressed glycolysis-related proteins. 4T1.2-derived extracellular vesicles expressed some of the glycolysis-related proteins, and their administration increased pHLIP accumulation and glycolytic enhancement in lungs. pHLIP-conjugated dexamethasone effectively attenuated lung metastatic burden by disrupting pro-inflammatory response in the acidic lungs. From these results, targeting the metastasis-supporting microenvironment by pHLIP technology creates possibility to identify pre-metastatic organ and prevent metastatic recurrence.
Collapse
Affiliation(s)
- Toma Matsui
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Toda
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Haruka Sato
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Rina Itagaki
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuya Konishi
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Shigekuni Hosogi
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Eishi Ashihara
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
42
|
Semenza GL. Targeting intratumoral hypoxia to enhance anti-tumor immunity. Semin Cancer Biol 2023; 96:5-10. [PMID: 37717718 DOI: 10.1016/j.semcancer.2023.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Cancers express a large battery of genes by which they establish an immunosuppressive tumor microenvironment. Many of these genes are induced by intratumoral hypoxia through transcriptional activation mediated by hypoxia-inducible factors HIF-1 and HIF-2. This review summarizes several recent reports describing hypoxia-induced mechanisms of immune evasion in sarcoma and breast, colorectal, hepatocellular, prostate and uterine cancer. These studies point to several novel therapeutic approaches to improve anti-tumor immunity and increase responses to immunotherapy.
Collapse
Affiliation(s)
- Gregg L Semenza
- Department of Genetic Medicine, Institute for Cell Engineering, and Armstrong Oxygen Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Rahman A, Janic B, Rahman T, Singh H, Ali H, Rattan R, Kazi M, Ali MM. Immunotherapy Enhancement by Targeting Extracellular Tumor pH in Triple-Negative Breast Cancer Mouse Model. Cancers (Basel) 2023; 15:4931. [PMID: 37894298 PMCID: PMC10605606 DOI: 10.3390/cancers15204931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC), as one of the most aggressive forms of breast cancer, is characterized by a poor prognosis and a very low rate of disease-free and overall survival. In recent years, immunotherapeutic approaches targeting T cell checkpoint molecules, such as cytotoxic lymphocyte antigen-4 (CTLA-4), programmed death1 (PD-1) or its ligand, programmed death ligand 1 (PD-L1), have shown great potential and have been used to treat various cancers as single therapies or in combination with other modalities. However, despite this remarkable progress, patients with TNBC have shown a low response rate to this approach, commonly developing resistance to immune checkpoint blockade, leading to treatment failure. Extracellular acidosis within the tumor microenvironment (also known as the Warburg effect) is one of the factors preventing immune cells from mounting effective responses and contributing to immunotherapy treatment failure. Therefore, reducing tumor acidity is important for increasing cancer immunotherapy effectiveness and this has yet to be realized in the TNBC environment. In this study, the oral administration of sodium bicarbonate (NaHCO3) enhanced the antitumor effect of anti-PD-L1 antibody treatment, as demonstrated by generated antitumor immunity, tumor growth inhibition and enhanced survival in 4T1-Luc breast cancer model. Here, we show that NaHCO3 increased extracellular pH (pHe) in tumor tissues in vivo, an effect that was accompanied by an increase in T cell infiltration, T cell activation and IFN-γ, IL2 and IL12p40 mRNA expression in tumor tissues, as well as an increase in T cell activation in tumor-draining lymph nodes. Interestingly, these changes were further enhanced in response to combined NaHCO3 + anti-PD-L1 therapy. In addition, the acidic extracellular conditions caused a significant increase in PD-L1 expression in vitro. Taken together, these results indicate that alkalizing therapy holds potential as a new tumor microenvironment immunomodulator and we hypothesize that NaHCO3 can enhance the antitumor effects of anti-PD-L1 breast cancer therapy. The combination of these treatments may have an exceptional impact on future TNBC immunotherapeutic approaches by providing a powerful personalized medicine paradigm. Therefore, our findings have a great translational potential for improving outcomes in TNBC patients.
Collapse
Affiliation(s)
- Azizur Rahman
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Branislava Janic
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Tasnim Rahman
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Harshit Singh
- Women’s Health Services, Henry Ford Hospital, Detroit, MI 48202, USA (R.R.)
| | - Haythem Ali
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ramandeep Rattan
- Women’s Health Services, Henry Ford Hospital, Detroit, MI 48202, USA (R.R.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Meser M. Ali
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
44
|
Liu Y, Qi Y, Chen C, Jin Y, Du S, Qiao J, Yao J. Platelet-mimetic nano-sensor for combating postoperative recurrence and wound infection of triple-negative breast cancer. J Control Release 2023; 362:396-408. [PMID: 37657692 DOI: 10.1016/j.jconrel.2023.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Tumor recurrence mainly triggered by tumor residual cells significantly contributes to mortality following breast tumor resection, and meanwhile post-surgical bacterial wound infections may accelerate tumor recurrence due to a series of infection-related complications. In this study, a nano-sensor system, Van-ICG@PLT, is constructed by a membrane camouflage and small molecule drug self-assembly strategy. This nano-sensor harnesses the innate tropism of platelets (PLT) to deliver vancomycin (Van) and indocyanine green (ICG) to surgical incisions, effectively eliminating both residual tumor cells and bacterial infections. Our findings demonstrate that Van-ICG@PLT preferentially accumulates at surgical wound. Under near-infrared (NIR) laser irradiation, Van-ICG@PLT exhibits significant cytotoxicity against 4T1 cells. Additionally, it is found to significantly promote ROS production thus inhibiting Staphylococcus aureus (S. aureus) growth, underscoring the synergistic benefits of phototherapy in combination with antibiotic treatment. In the 4T1 post-surgery recurrence mice model, Van-ICG@PLT is shown to efficiently ablate tumors in tumor-bearing mice (tumor inhibition rate of about 83%), and it demonstrates an excellent anti-infective effect in mice abscess models. Taken together, Van-ICG@PLT represents a promising paradigm in post-surgical adjuvant therapy (PAT). Its dual benefit in inhibiting cancer growth and promoting antibacterial activity makes Van-ICG@PLT a valuable addition to the existing arsenal of therapeutic options available for breast cancer patients.
Collapse
Affiliation(s)
- Yufei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yao Qi
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chen Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yincheng Jin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Jianan Qiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
45
|
Cornwell AC, Tisdale AA, Venkat S, Maraszek KE, Alahmari AA, George A, Attwood K, George M, Rempinski D, Franco-Barraza J, Seshadri M, Parker MD, Cortes Gomez E, Fountzilas C, Cukierman E, Steele NG, Feigin ME. Lorazepam Stimulates IL6 Production and Is Associated with Poor Survival Outcomes in Pancreatic Cancer. Clin Cancer Res 2023; 29:3793-3812. [PMID: 37587561 PMCID: PMC10502465 DOI: 10.1158/1078-0432.ccr-23-0547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE This research investigates the association between benzodiazepines (BZD) and cancer patient survival outcomes, the pancreatic cancer tumor microenvironment, and cancer-associated fibroblast (CAF) signaling. EXPERIMENTAL DESIGN Multivariate Cox regression modeling was used to retrospectively measure associations between Roswell Park cancer patient survival outcomes and BZD prescription records. IHC, H&E, Masson's trichrome, RNAscope, and RNA sequencing were used to evaluate the impact of lorazepam (LOR) on the murine PDAC tumor microenvironment. ELISA and qPCR were used to determine the impact of BZDs on IL6 expression or secretion by human-immortalized pancreatic CAFs. PRESTO-Tango assays, reanalysis of PDAC single-cell sequencing/TCGA data sets, and GPR68 CRISPRi knockdown CAFs were used to determine the impact of BZDs on GPR68 signaling. RESULTS LOR is associated with worse progression-free survival (PFS), whereas alprazolam (ALP) is associated with improved PFS, in pancreatic cancer patients receiving chemotherapy. LOR promotes desmoplasia (fibrosis and extracellular matrix protein deposition), inflammatory signaling, and ischemic necrosis. GPR68 is preferentially expressed on human PDAC CAFs, and n-unsubstituted BZDs, such as LOR, significantly increase IL6 expression and secretion in CAFs in a pH and GPR68-dependent manner. Conversely, ALP and other GPR68 n-substituted BZDs decrease IL6 in human CAFs in a pH and GPR68-independent manner. Across many cancer types, LOR is associated with worse survival outcomes relative to ALP and patients not receiving BZDs. CONCLUSIONS We demonstrate that LOR stimulates fibrosis and inflammatory signaling, promotes desmoplasia and ischemic necrosis, and is associated with decreased pancreatic cancer patient survival.
Collapse
Affiliation(s)
- Abigail C. Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Arwen A. Tisdale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kathryn E. Maraszek
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Abdulrahman A. Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Madison George
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Donald Rempinski
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark D. Parker
- Department of Physiology and Biophysics, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
- Department of Ophthalmology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Biostatistics, State University of New York at Buffalo, Buffalo, New York
| | - Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
46
|
Trujillo S, Kasper J, de Miguel-Jiménez A, Abt B, Bauer A, Mekontso J, Pearson S, del Campo A. Cytocompatibility Evaluation of PEG-Methylsulfone Hydrogels. ACS OMEGA 2023; 8:32043-32052. [PMID: 37692225 PMCID: PMC10483518 DOI: 10.1021/acsomega.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Methylsulfone derivatized poly(ethylene) glycol (PEG) macromers can be biofunctionalized with thiolated ligands and cross-linked with thiol-based cross-linkers to obtain bioactive PEG hydrogels for in situ cell encapsulation. Methylsulfonyl-thiol (MS-SH) reactions present several advantages for this purpose when compared to other thiol-based cross-linking systems. They proceed with adequate and tunable kinetics for encapsulation, they reach a high conversion degree with good selectivity, and they generate stable reaction products. Our previous work demonstrated the cytocompatibility of cross-linked PEG-MS/thiol hydrogels in contact with fibroblasts. However, the cytocompatibility of the in situ MS-SH cross-linking reaction itself, which generates methylsulfinic acid as byproduct at the cross-linked site, remains to be evaluated. These studies are necessary to evaluate the potential of these systems for in vivo applications. Here we perform an extensive cytocompatibility study of PEG hydrogels during in situ cross-linking by the methylsulfonyl-thiol reaction. We compare these results with maleimide-thiol cross-linked PEGs which are well established for cell culture and in vivo experiments and do not involve the release of a byproduct. We show that fibroblasts and endothelial cells remain viable after in situ polymerization of methylsulfonyl-thiol gels on the top of the cell layers. Cell viability seems better than after in situ cross-linking hydrogels with maleimide-thiol chemistry. The endothelial cell proinflammatory phenotype is low and similar to the one obtained by the maleimide-thiol reaction. Finally, no activation of monocytes is observed. All in all, these results demonstrate that the methylsulfonyl-thiol chemistry is cytocompatible and does not trigger high pro-inflammatory responses in endothelial cells and monocytes. These results make methylsulfonyl-thiol chemistries eligible for in vivo testing and eventually clinical application in the future.
Collapse
Affiliation(s)
- Sara Trujillo
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
| | - Jennifer Kasper
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
| | - Adrián de Miguel-Jiménez
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
- Chemistry
Department, Saarland University, Saarbrücken 66123, Germany
| | - Britta Abt
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
| | - Alina Bauer
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
| | - Joëlle Mekontso
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
- Chemistry
Department, Saarland University, Saarbrücken 66123, Germany
| | - Samuel Pearson
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
| | - Aránzazu del Campo
- INM-Leibniz
Institute for New Materials, campus D2 2, Saarbrücken 66123, Germany
- Chemistry
Department, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
47
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
48
|
Jardim-Perassi BV, Irrera P, Abrahams D, Estrella VC, Ordway B, Byrne SR, Ojeda AA, Whelan CJ, Kim J, Beatty MS, Damgaci-Erturk S, Longo DL, Gaspar KJ, Siegers GM, Centeno BA, Lau JYC, Ibrahim-Hashim A, Pilon-Thomas SA, Gillies RJ. L-DOS47 enhances response to immunotherapy in pancreatic cancer tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555194. [PMID: 37693389 PMCID: PMC10491210 DOI: 10.1101/2023.08.28.555194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds CEACAM6, a cell surface protein highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Our results demonstrate that combining L DOS47 with anti-PD1 significantly increases the efficacy of anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.
Collapse
|
49
|
Wardi G, Holgren S, Gupta A, Sobel J, Birch A, Pearce A, Malhotra A, Tainter C. A Review of Bicarbonate Use in Common Clinical Scenarios. J Emerg Med 2023; 65:e71-e80. [PMID: 37442665 PMCID: PMC10530341 DOI: 10.1016/j.jemermed.2023.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND The use of sodium bicarbonate to treat metabolic acidosis is intuitive, yet data suggest that not all patients benefit from this therapy. OBJECTIVE In this narrative review, we describe the physiology behind commonly encountered nontoxicologic causes of metabolic acidosis, highlight potential harm from the indiscriminate administration of sodium bicarbonate in certain scenarios, and provide evidence-based recommendations to assist emergency physicians in the rational use of sodium bicarbonate. DISCUSSION Sodium bicarbonate can be administered as a hypertonic push, as a resuscitation fluid, or as an infusion. Lactic acidosis and cardiac arrest are two common scenarios where there is limited benefit to routine use of sodium bicarbonate, although certain circumstances, such as patients with concomitant acute kidney injury and lactic acidosis may benefit from sodium bicarbonate. Patients with cardiac arrest secondary to sodium channel blockade or hyperkalemia also benefit from sodium bicarbonate therapy. Recent data suggest that the use of sodium bicarbonate in diabetic ketoacidosis does not confer improved patient outcomes and may cause harm in pediatric patients. Available evidence suggests that alkalinization of urine in rhabdomyolysis does not improve patient-centered outcomes. Finally, patients with a nongap acidosis benefit from sodium bicarbonate supplementation. CONCLUSIONS Empiric use of sodium bicarbonate in patients with nontoxicologic causes of metabolic acidosis is not warranted and likely does not improve patient-centered outcomes, except in select scenarios. Emergency physicians should reserve use of this medication to conditions with clear benefit to patients.
Collapse
Affiliation(s)
- Gabriel Wardi
- Department of Emergency Medicine, University of California at San Diego, San Diego, California; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California at San Diego, San Diego, California.
| | - Sarah Holgren
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology. University of California at San Diego, San Diego, California
| | - Arnav Gupta
- Department of Emergency Medicine, University of California at San Diego, San Diego, California
| | - Julia Sobel
- Department of Emergency Medicine, University of California at San Diego, San Diego, California
| | - Aaron Birch
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California at San Diego, San Diego, California
| | - Alex Pearce
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California at San Diego, San Diego, California
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California at San Diego, San Diego, California
| | - Christopher Tainter
- Division of Anesthesiology Critical Care Medicine, Department of Anesthesiology. University of California at San Diego, San Diego, California
| |
Collapse
|
50
|
Goldmann O, Medina E. Myeloid-derived suppressor cells impair CD4+ T cell responses during chronic Staphylococcus aureus infection via lactate metabolism. Cell Mol Life Sci 2023; 80:221. [PMID: 37480485 PMCID: PMC10363054 DOI: 10.1007/s00018-023-04875-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
Staphylococcus aureus is an important cause of chronic infections resulting from the failure of the host to eliminate the pathogen. Effective S. aureus clearance requires CD4+ T cell-mediated immunity. We previously showed that myeloid-derived suppressor cells (MDSC) expand during staphylococcal infections and support infection chronicity by inhibiting CD4+ T cell responses. The aim of this study was to elucidate the mechanisms underlying the suppressive effect exerted by MDSC on CD4+ T cells during chronic S. aureus infection. It is well known that activated CD4+ T cells undergo metabolic reprogramming from oxidative metabolism to aerobic glycolysis to meet their increased bioenergetic requirements. In this process, pyruvate is largely transformed into lactate by lactate dehydrogenase with the concomitant regeneration of NAD+, which is necessary for continued glycolysis. The by-product lactate needs to be excreted to maintain the glycolytic flux. Using SCENITH (single-cell energetic metabolism by profiling translation inhibition), we demonstrated here that MDSC inhibit CD4+ T cell responses by interfering with their metabolic activity. MDSC are highly glycolytic and excrete large amount of lactate in the local environment that alters the transmembrane concentration gradient and prevent removal of lactate by activated CD4+ T. Accumulation of endogenous lactate impedes the regeneration of NAD+, inhibit NAD-dependent glycolytic enzymes and stop glycolysis. Together, the results of this study have uncovered a role for metabolism on MDSC suppression of CD4+ T cell responses. Thus, reestablishment of their metabolic activity may represent a mean to improve the functionality of CD4+ T cells during chronic S. aureus infection.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|