1
|
Hurtado J, Sellak H, Joseph G, Lewis CV, Naudin CR, Garcia S, Wodicka JR, Archer DR, Taylor WR. Accelerated atherosclerosis in beta-thalassemia. Am J Physiol Heart Circ Physiol 2023; 325:H1133-H1143. [PMID: 37682237 PMCID: PMC10908407 DOI: 10.1152/ajpheart.00306.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Children with beta-thalassemia (BT) present with an increase in carotid intima-medial thickness, an early sign suggestive of premature atherosclerosis. However, it is unknown if there is a direct relationship between BT and atherosclerotic disease. To evaluate this, wild-type (WT, littermates) and BT (Hbbth3/+) mice, both male and female, were placed on a 3-mo high-fat diet with low-density lipoprotein receptor suppression via overexpression of proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation (D377Y). Mechanistically, we hypothesize that heme-mediated oxidative stress creates a proatherogenic environment in BT because BT is a hemolytic anemia that has increased free heme and exhausted hemopexin, heme's endogenous scavenger, in the vasculature. We evaluated the effect of hemopexin (HPX) therapy, mediated via an adeno-associated virus, to the progression of atherosclerosis in BT and a phenylhydrazine-induced model of intravascular hemolysis. In addition, we evaluated the effect of deferiprone (DFP)-mediated iron chelation in the progression of atherosclerosis in BT mice. Aortic en face and aortic root lesion area analysis revealed elevated plaque accumulation in both male and female BT mice compared with WT mice. Hemopexin therapy was able to decrease plaque accumulation in both BT mice and mice on our phenylhydrazine (PHZ)-induced model of hemolysis. DFP decreased atherosclerosis in BT mice but did not provide an additive benefit to HPX therapy. Our data demonstrate for the first time that the underlying pathophysiology of BT leads to accelerated atherosclerosis and shows that heme contributes to atherosclerotic plaque development in BT.NEW & NOTEWORTHY This work definitively shows for the first time that beta-thalassemia leads to accelerated atherosclerosis. We demonstrated that intravascular hemolysis is a prominent feature in beta-thalassemia and the resulting increases in free heme are mechanistically relevant. Adeno-associated virus (AAV)-hemopexin therapy led to decreased free heme and atherosclerotic plaque area in both beta-thalassemia and phenylhydrazine-treated mice. Deferiprone-mediated iron chelation led to deceased plaque accumulation in beta-thalassemia mice but provided no additive benefit to hemopexin therapy.
Collapse
Affiliation(s)
- Julian Hurtado
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Hassan Sellak
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Giji Joseph
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Caitlin V Lewis
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Crystal R Naudin
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Sergio Garcia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - James Robert Wodicka
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David R Archer
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Cardiology Division, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
2
|
Ibrahim HA, Zakaria SS, El-Batch MM, El-Shanshory MR, Alrayes ZR, Kabel AM, Eldardiry SA. The Value of SIRT1/FOXO1 Signaling Pathway in Early Detection of Cardiovascular Risk in Children with β-Thalassemia Major. Biomedicines 2022; 10:2601. [PMID: 36289866 PMCID: PMC9599077 DOI: 10.3390/biomedicines10102601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Atherosclerosis represents one of the major causes of morbidity in children with β-thalassemia major (β-TM). Aim: This study was designed to investigate SIRT1-FOXO1 signaling in β-TM children and their role in early detection of premature atherosclerosis. Methods: We equally subdivided 100 Egyptian children aged 6−14 years with β-TM according to carotid intima media thickness (CIMT) into 50 with CIMT < 0.5 mm and 50 with CIMT ≥ 0.5 mm, and 50 healthy children of matched age were included. They were subjected to evaluation of SIRT1, heat shock protein 72 (HSP72), and hepcidin levels via ELISA and forkhead box protein 1 (FOXO1) mRNA expression using real-time PCR in PBMCs; meanwhile, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase activities were evaluated spectrophotometrically. Results: Our results show significantly high values for CIMT, β-stiffness, atherogenic index of plasma (AIP), MDA, HSP72 and FOXO1, ferritin with significantly low hepcidin, SOD, catalase, and SIRT1 in β-TM as compared to controls with a more significant difference in β-TM with CIMT ≥ 0.5 mm than those with CIMT < 0.5 mm. A significant positive correlation between CIMT and MDA, HSP72, and FOXO1 gene expression was found, while a significant negative correlation with hepcidin, SOD, catalase, and SIRT1 was found. FOXO1 gene expression and HSP72 levels were the strongest independent determinants of CIMT. Conclusion: In β-TM, FOXO1 signaling is activated with low levels of SIRT1, and this is attributed to accelerated atherosclerosis in β-TM, which would be crucial in prediction of atherosclerosis.
Collapse
Affiliation(s)
- Hoda A. Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Soha S. Zakaria
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Medical Biochemistry Department, Imam Muhammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| | - Manal M. El-Batch
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Zahrah R. Alrayes
- Department of Biology, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Samia A. Eldardiry
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
4
|
Vinchi F, Sparla R, Passos ST, Sharma R, Vance SZ, Zreid HS, Juaidi H, Manwani D, Yazdanbakhsh K, Nandi V, Silva AMN, Agarvas AR, Fibach E, Belcher JD, Vercellotti GM, Ghoti H, Muckenthaler MU. Vasculo-toxic and pro-inflammatory action of unbound haemoglobin, haem and iron in transfusion-dependent patients with haemolytic anaemias. Br J Haematol 2021; 193:637-658. [PMID: 33723861 PMCID: PMC8252605 DOI: 10.1111/bjh.17361] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that free haem and iron exert vasculo‐toxic and pro‐inflammatory effects by activating endothelial and immune cells. In the present retrospective study, we compared serum samples from transfusion‐dependent patients with β‐thalassaemia major and intermedia, hereditary spherocytosis and sickle cell disease (SCD). Haemolysis, transfusions and ineffective erythropoiesis contribute to haem and iron overload in haemolytic patients. In all cohorts we observed increased systemic haem and iron levels associated with scavenger depletion and toxic ‘free’ species formation. Endothelial dysfunction, oxidative stress and inflammation markers were significantly increased compared to healthy donors. In multivariable logistic regression analysis, oxidative stress markers remained significantly associated with both haem‐ and iron‐related parameters, while soluble vascular cell adhesion molecule 1 (sVCAM‐1), soluble endothelial selectin (sE‐selectin) and tumour necrosis factor α (TNFα) showed the strongest association with haem‐related parameters and soluble intercellular adhesion molecule 1 (sICAM‐1), sVCAM‐1, interleukin 6 (IL‐6) and vascular endothelial growth factor (VEGF) with iron‐related parameters. While hereditary spherocytosis was associated with the highest IL‐6 and TNFα levels, β‐thalassaemia major showed limited inflammation compared to SCD. The sVCAM1 increase was significantly lower in patients with SCD receiving exchange compared to simple transfusions. The present results support the involvement of free haem/iron species in the pathogenesis of vascular dysfunction and sterile inflammation in haemolytic diseases, irrespective of the underlying haemolytic mechanism, and highlight the potential therapeutic benefit of iron/haem scavenging therapies in these conditions.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, New York Blood Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg University, Heidelberg, Germany
| | - Richard Sparla
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Sara T Passos
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - Richa Sharma
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - S Zebulon Vance
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - Hala S Zreid
- Department of Internal Medicine, Al Shifa Hospital, Gaza, Palestine
| | - Hesham Juaidi
- Department of Internal Medicine, Al Shifa Hospital, Gaza, Palestine
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,Pediatric Hematology, The Children's Hospital at Montefiore, New York, NY, USA
| | | | - Vijay Nandi
- Laboratory of Data Analytic Services, New York Blood Center, New York, NY, USA
| | - André M N Silva
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, University of Porto, Porto, Portugal
| | - Anand R Agarvas
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Eitan Fibach
- Department of Hematology, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Husam Ghoti
- European Center for Cancer and Cell Therapy (ECCT), Nicosia, Cyprus
| | - Martina U Muckenthaler
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg University, Heidelberg, Germany.,Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|