1
|
Chen J, Pan Q, Lu L, Huang X, Wang S, Liu X, Lun J, Xu X, Su H, Guo F, Yang L, You L, Xiao H, Luo W, Liu HF, Pan Q. Atg5 deficiency in basophils improves metabolism in lupus mice by regulating gut microbiota dysbiosis. Cell Commun Signal 2025; 23:40. [PMID: 39844180 PMCID: PMC11756211 DOI: 10.1186/s12964-025-02041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025] Open
Abstract
Autophagic activation in immune cells, gut microbiota dysbiosis, and metabolic abnormalities have been reported separately as characteristics of systemic lupus erythematosus (SLE). Elucidating the crosstalk among the immune system, commensal microbiota, and metabolites is crucial to understanding the pathogenesis of autoimmune diseases. Emerging evidence shows that basophil activation plays a critical role in the pathogenesis of SLE; however, the underlying mechanisms remain largely unknown. Here, we investigated the effects of autophagic inhibition on the pathogenesis of basophils in SLE using Autophagy-related gene 5 (Atg5) knockout (Atg5-/-) as an autophagic inhibitor. Specifically, we knocked out basophilic Atg5 in vivo to investigate its impact on lupus metabolism. Furthermore, Atg5-/- basophils were transferred to basophil-depleted MRL/MpJ-Faslpr (MRL/lpr) mice to study their effect on disease metabolism. Metagenomic and targeted metabolomic sequencing results indicated considerable reduction in the levels of plasma autoantibodies and inflammatory cytokines in the Atg5-/- basophil transfer group compared with that in the control group. Transplanting Atg5-/- basophils improved the gut microbiota balance in MRL/lpr mice, increasing the abundance of beneficial bacteria, such as Ligilactobacillus murinus and Faecalitalea rodentium, and reducing that of potentially pathogenic bacteria such as Phocaeicola salanitronis. The transplantation of Atg5-deficient basophils improved lupus symptoms by modulating lipid and amino acid metabolism. This improvement was linked to changes in the gut microbiota, particularly an increase in Ligilactobacillus murinus and Faecalitalea rodentium populations. These microbial shifts are believed to promote the production of beneficial metabolites, such as γ-linolenic acid and oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine, while reducing the levels of harmful metabolites such as arginine. These alterations in the metabolic profile contribute to the alleviation of lupus symptoms. Collectively, these findings reveal a novel role of basophil autophagy in SLE, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lu Lu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Huang
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuting Wang
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoxian Liu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Lun
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaowei Xu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongyong Su
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liuyong You
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wenying Luo
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Qingjun Pan
- Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Abstract
BACKGROUND Autoantibodies targeted against a variety of self-antigens are detected in autoimmune diseases and cancer. Emerging evidence has suggested the involvement of environmental factors such as infections and xenobiotics, and some dietary proteins and their antibodies in the pathogenesis of many autoimmune diseases. These antibodies appear in the blood years before presentation of symptoms in various disorders. Therefore, these antibodies may be used as biomarkers for early detection of various diseases. OBJECTIVE To provide an overview of antibody arrays that are measured against different human tissue antigens, crossreactive epitopes of infectious agents, dietary proteins, and haptenic chemicals in autoimmune diseases and cancer. METHOD Microarray analysis of antigen-antibody reaction. CONCLUSION The application of these antibody arrays to human autoimmune disease is expanding and is allowing for the identification of patterns or antibody signatures, thus establishing the premises for increased sensitivity and specificity of prediction, as well as positive predictive values. The presence of these antibodies would not necessarily mean that a patient would definitely become sick but may give a percentage of risk for different conditions that may develop over future months or years. Using this high-throughput microarray method, it is possible to screen rapidly for dozens of autoantibodies at low cost. This is an important factor in the implementation of autoantibody testing as a routine part of medical examinations.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 8693 Wilshire Blvd, Ste. 200, Beverly Hills, CA 90211, USA +1 310 657 1077 ; +1 310 657 1053 ;
| |
Collapse
|
5
|
Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, Shoenfeld Y. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 2012; 12:726-40. [PMID: 23266520 PMCID: PMC7105216 DOI: 10.1016/j.autrev.2012.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 02/06/2023]
Abstract
The "exposome" is a term recently used to describe all environmental factors, both exogenous and endogenous, which we are exposed to in a lifetime. It represents an important tool in the study of autoimmunity, complementing classical immunological research tools and cutting-edge genome wide association studies (GWAS). Recently, environmental wide association studies (EWAS) investigated the effect of environment in the development of diseases. Environmental triggers are largely subdivided into infectious and non-infectious agents. In this review, we introduce the concept of the "infectome", which is the part of the exposome referring to the collection of an individual's exposures to infectious agents. The infectome directly relates to geoepidemiological, serological and molecular evidence of the co-occurrence of several infectious agents associated with autoimmune diseases that may provide hints for the triggering factors responsible for the pathogenesis of autoimmunity. We discuss the implications that the investigation of the infectome may have for the understanding of microbial/host interactions in autoimmune diseases with long, pre-clinical phases. It may also contribute to the concept of the human body as a superorganism where the microbiome is part of the whole organism, as can be seen with mitochondria which existed as microbes prior to becoming organelles in eukaryotic cells of multicellular organisms over time. A similar argument can now be made in regard to normal intestinal flora, living in symbiosis within the host. We also provide practical examples as to how we can characterise and measure the totality of a disease-specific infectome, based on the experimental approaches employed from the "immunome" and "microbiome" projects.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bassi N, Ghirardello A, Iaccarino L, Zampieri S, Rampudda ME, Atzeni F, Sarzi-Puttini P, Shoenfeld Y, Doria A. OxLDL/beta2GPI-anti-oxLDL/beta2GPI complex and atherosclerosis in SLE patients. Autoimmun Rev 2007; 7:52-58. [PMID: 17967726 DOI: 10.1016/j.autrev.2007.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
It has been demonstrated that atherosclerosis (ATS) is enhanced in autoimmune rheumatic diseases, such as systemic lupus erythematosus (SLE). The reason for this accelerated process is still debatable and, although traditional risk factors are more prevalent in SLE patients than in general population, they do not seem to fully explain the enhanced risk. ATS has the characteristics of an autoimmune chronic disease, involving both the innate and the adaptive immunity. Moreover, it satisfies the four criteria defining an autoimmune disease, proposed by Witebsky and Rose. It has been shown that some autoantibodies, including anti-oxLDL, anti-beta(2)GPI, anti-HSP60/65, and more recently anti-oxLDL/beta(2)GPI, play a key role in the pathogenesis of ATS. However the role of these autoantibodies in accelerated ATS in SLE patients is still controversial. In fact, some of them seem to be proatherogenic and other protective; moreover, it has been demonstrated that induced oral tolerance has a protective role against ATS. We have recently observed that the levels of oxLDL/beta(2)GPI antigenic complexes and their antibodies were higher in patients with SLE than in healthy subjects, but we did not find a clear association between oxLDL/beta(2)GPI complexes and IgG or IgM anti-oxLDL/beta(2)GPI autoantibodies and subclinical ATS in SLE patients. Many other studies are required to explain the role of autoantibodies in the pathogenesis of ATS in SLE patients, because the characteristics of SLE seem to mask their effects for atherogenesis.
Collapse
Affiliation(s)
- N Bassi
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - A Ghirardello
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - L Iaccarino
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - S Zampieri
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - M E Rampudda
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - F Atzeni
- Rheumatology Unit, L Sacco University Hospital, Milan, Italy
| | - P Sarzi-Puttini
- Rheumatology Unit, L Sacco University Hospital, Milan, Italy
| | - Y Shoenfeld
- Department of Medicine 'B', Chaim Sheba Medical Center, Tel-Hashomer, Sakler Faculty of Medicine, Tel-Aviv University, Israel
| | - A Doria
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|