1
|
Skuljec J, Sardari M, Su C, Müller-Dahlke J, Singh V, Janjic MM, Kleinschnitz C, Pul R. Glatiramer Acetate Modifies the Immune Profiles of Monocyte-Derived Dendritic Cells In Vitro Without Affecting Their Generation. Int J Mol Sci 2025; 26:3013. [PMID: 40243628 PMCID: PMC11989142 DOI: 10.3390/ijms26073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Glatiramer acetate (GA) is the first-line therapy for relapsing-remitting multiple sclerosis (MS) and is increasingly demonstrating promising therapeutic benefits in a range of other conditions. Despite its extensive use, the precise pharmacological mechanism of GA remains unclear. In addition to T and B cells, dendritic cells (DCs) and monocytes play significant roles in the neuroinflammation associated with MS, positioning them as potential initial targets for GA. Here, we investigated GA's influence on the differentiation of human monocytes from healthy donors into monocyte-derived dendritic cells (moDCs) and assessed their activation status. Our results indicate that GA treatment does not hinder the differentiation of monocytes into moDCs or macrophages. Notably, we observed a significant increase in the expression of molecules required for antigen recognition, presentation, and co-stimulation in GA-treated moDCs. Conversely, there was a significant downregulation of CD1a, which is crucial for activating auto-aggressive T cells that respond to the lipid components of myelin. Furthermore, GA treatment resulted in an increased expression of CD68 on both CD14+CD16+ and CD14+CD16- monocyte subsets. These in vitro findings suggest that GA treatment does not impede the generation of moDCs under inflammatory conditions; however, it may modify their functional characteristics in potentially beneficial ways. This provides a basis for future clinical studies in MS patients to elucidate its precise mode of action.
Collapse
Affiliation(s)
- Jelena Skuljec
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Maryam Sardari
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Chuanxin Su
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | | | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| |
Collapse
|
2
|
Gharibi T, Babaloo Z, Hosseini A, Marofi F, Ebrahimi-Kalan A, Jahandideh S, Baradaran B. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology 2020; 160:325-335. [PMID: 32249925 DOI: 10.1111/imm.13198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is ongoing debate on how B cells contribute to the pathogenesis of multiple sclerosis (MS). The success of B-cell targeting therapies in MS highlighted the role of B cells, particularly the antibody-independent functions of these cells such as antigen presentation to T cells and modulation of the function of T cells and myeloid cells by secreting pathogenic and/or protective cytokines in the central nervous system. Here, we discuss the role of different antibody-dependent and antibody-independent functions of B cells in MS disease activity and progression proposing new therapeutic strategies for the optimization of B-cell targeting treatments.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Jahandideh
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018; 19:696-707. [PMID: 29925992 DOI: 10.1038/s41590-018-0135-x] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
There is growing recognition that B cell contributions to normal immune responses extend well beyond their potential to become antibody-producing cells, including roles at the innate-adaptive interface and their potential to modulate the responses of other immune cells such as T cells and myeloid cells. These B cell functions can have both pathogenic and protective effects in the context of central nervous system (CNS) inflammation. Here, we review recent advances in the field of multiple sclerosis (MS), which has traditionally been viewed as primarily a T cell-mediated disease, and we consider antibody-dependent and, particularly, emerging antibody-independent functions of B cells that may be relevant in both the peripheral and CNS disease compartments.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Abstract
Discussions of multiple sclerosis (MS) pathophysiology tend to focus on T cells and B cells of the adaptive immune response. The innate immune system is less commonly considered in this context, although dendritic cells, monocytes, macrophages and microglia - collectively referred to as myeloid cells - have prominent roles in MS pathogenesis. These populations of myeloid cells function as antigen-presenting cells and effector cells in neuroinflammation. Furthermore, a vicious cycle of interactions between T cells and myeloid cells exacerbates pathology. Several disease-modifying therapies are now available to treat MS, and insights into their mechanisms of action have largely focused on the adaptive immune system, but these therapies also have important effects on myeloid cells. In this Review, we discuss the evidence for the roles of myeloid cells in MS and the experimental autoimmune encephalomyelitis model of MS, and consider how interactions between myeloid cells and T cells and/or B cells promote MS pathology. Finally, we discuss the direct and indirect effects of existing MS medications on myeloid cells.
Collapse
Affiliation(s)
- Manoj K Mishra
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
5
|
Role and therapeutic value of dendritic cells in central nervous system autoimmunity. Cell Death Differ 2014; 22:215-24. [PMID: 25168240 DOI: 10.1038/cdd.2014.125] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that control the generation of adaptive immunity. Consequently, DCs have a central role in the induction of protective immunity to pathogens and also in the pathogenic immune response responsible for the development and progression of autoimmune disorders. Thus the study of the molecular pathways that control DC development and function is likely to result in new strategies for the therapeutic manipulation of the immune response. In this review, we discuss the role and therapeutic value of DCs in autoimmune diseases, with a special focus on multiple sclerosis.
Collapse
|
6
|
Nuyts AH, Lee WP, Bashir-Dar R, Berneman ZN, Cools N. Dendritic cells in multiple sclerosis: key players in the immunopathogenesis, key players for new cellular immunotherapies? Mult Scler 2013; 19:995-1002. [DOI: 10.1177/1352458512473189] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many studies have demonstrated the role of the adaptive immune system in the pathogenesis of multiple sclerosis (MS). Recent data suggest that dendritic cells (DCs), which are innate immune cells, also contribute to the pathogenesis of MS. In patients with MS, DCs are abundantly present in brain lesions, and display an altered phenotype and/or function as compared with this in healthy controls. DCs are thus in the position to pathologically influence the effector function of (auto-reactive) T and B cells. Interestingly, current first-line immunomodulating therapies for MS have been shown to restore DC phenotype and function, albeit in a non-specific manner. To date, clinical trials using agents specifically targeting DC function are ongoing. Moreover, several studies worldwide are currently investigating possible strategies to develop tolerogenic DCs. This review focuses on the phenotypic and functional alterations of conventional DCs and plasmacytoid DCs in patients with MS. Furthermore, we discuss how existing immunomodulating therapies for MS patients affect DC function and address future perspectives in the development of immunotherapies specifically targeting DCs.
Collapse
Affiliation(s)
- AH Nuyts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - WP Lee
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - R Bashir-Dar
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - ZN Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| | - N Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp University Hospital, Belgium
| |
Collapse
|
7
|
Bine S, Haziot A, Malikova I, Pelletier J, Charron D, Boucraut J, Mooney N, Gelin C. Alteration of CD1 expression in multiple sclerosis. Clin Exp Immunol 2012; 169:10-6. [PMID: 22670773 DOI: 10.1111/j.1365-2249.2012.04586.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Studies of multiple sclerosis (MS) have concentrated mainly on antigen presentation of peptides derived from the myelin sheath, while the implication of lipid antigen has been less explored in this pathology. As the extracellular environment regulates expression of the lipid antigen-presenting molecule CD1, we have examined whether sera from patients alters CD1 surface expression in monocyte-derived dendritic cells. We have shown that: (i) CD1 group 1 proteins were highly expressed in the presence of MS sera; (ii) sera from MS patients differentially regulated CD1 group 1 versus CD1 group 2 molecular expression; and (iii) CD1 was expressed strongly in monocytes from MS patients under immunosuppressive treatment. Overall, these results reveal that CD1 expression is modified in MS and provide novel information on the regulation of lipid antigen presentation in myeloid cells.
Collapse
Affiliation(s)
- S Bine
- INSERM, UMR-S, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Exogenous control of the expression of Group I CD1 molecules competent for presentation of microbial nonpeptide antigens to human T lymphocytes. Clin Dev Immunol 2011; 2011:790460. [PMID: 21603161 PMCID: PMC3095450 DOI: 10.1155/2011/790460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.
Collapse
|
9
|
Jamshidian A, Nikseresht AR, Vessal M, Kamali-Sarvestani E. Association of CD1A +622 T/C, +737 G/C and CD1E +6129 A/G Genes Polymorphisms with Multiple Sclerosis. Immunol Invest 2010; 39:874-89. [DOI: 10.3109/08820139.2010.503768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Liu J, Johnson TV, Lin J, Ramirez SH, Bronich TK, Caplan S, Persidsky Y, Gendelman HE, Kipnis J. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007; 37:3143-54. [PMID: 17948266 DOI: 10.1002/eji.200737398] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite active investigation of copolymer-1 (Cop-1) for nearly 40 years the mechanisms underlying its neuroprotective properties remain contentious. Nonetheless, current dogma for Cop-1 neuroprotective activities in autoimmune and neurodegenerative diseases include bystander suppression of autoimmune T cells and attenuation of microglial responses. In this report, we demonstrate that Cop-1 interacts directly with primary human neurons and decreases neuronal cell death induced by staurosporine or oxidative stress. This neuroprotection is mediated through protein kinase Calpha and brain-derived neurotrophic factor. Dendritic cells (DC) uptake Cop-1, deliver it to the injury site, and release it in an active form. Interactions between Cop-1 and DC enhance DC blood brain barrier migration. In a rat model with optic nerve crush injury, Cop-1-primed DC induce T cell independent neuroprotection. These findings may facilitate the development of neuroprotective approaches using DC-mediated Cop-1 delivery to diseased nervous tissue.
Collapse
Affiliation(s)
- Jianuo Liu
- Laboratory of Neuro-Immune Regulation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fernández O. Combination therapy in multiple sclerosis. J Neurol Sci 2007; 259:95-103. [PMID: 17507031 DOI: 10.1016/j.jns.2006.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/27/2006] [Accepted: 08/31/2006] [Indexed: 11/12/2022]
Abstract
Multiple sclerosis is an inflammatory/demyelinating and neurodegenerative disease. Treatment of MS is currently based on various different therapeutic algorithms of a sequential or escalating therapy with immunomodulators or immunosuppressants, generated partly from evidence based medicine and partly from expert's consensus. However, these therapies are not always effective as monotherapies. An alternative would be the combination of agents which already have some proven efficacy in MS therapy, are directed against different mechanisms of the pathogenic chain, and ideally result in synergic effects and a profile of reduced toxicity. Combination therapy in multiple sclerosis can be: Combination of two or more anti-inflammatory agents or combination of anti-inflammatory agents plus neuroprotective agents. Many combinations of drugs have been or are being tested in multiple sclerosis. Clinical trials have included a low number of patients for short periods of time. Preliminary studies on safety suggest that some combination therapies might be safe and efficacious. Ongoing and new phase III clinical trials involving a greater number of patients for longer periods of time are needed to verify this hypothesis. A wise balance between efficacy and safety and extremely clear information to patients should drive clinical decisions.
Collapse
Affiliation(s)
- Oscar Fernández
- Institute of Clinical Neurosciences, Hospital Regional Universitario Carlos Haya, Málaga, Spain. fernandez.sspa.@juntadeandalucia.es
| |
Collapse
|
12
|
Huang YM, Adikari S, Båve U, Sanna A, Alm G. Multiple sclerosis: interferon-beta induces CD123(+)BDCA2- dendritic cells that produce IL-6 and IL-10 and have no enhanced type I interferon production. J Neuroimmunol 2005; 158:204-12. [PMID: 15589055 DOI: 10.1016/j.jneuroim.2004.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 08/09/2004] [Accepted: 08/12/2004] [Indexed: 11/18/2022]
Abstract
Interferon-beta (IFN-beta), an approved drug for multiple sclerosis (MS), acts on dendritic cells (DC) by suppressing IL-12p40 and increasing IL-10. This results in Th2-biased immune responses. The nature of IFN-beta-modulated DC remains elusive. Previously, we observed that IFN-beta dose dependently induces expression of CD123, i.e., a classical marker for plasmacytoid DC, on human blood monocyte-derived myeloid DC. Such IFN-beta-modulated DCs produce predominantly IL-10 but are IL-12 deficient, with potent Th2 promotion. In the present study, we further characterize IFN-beta-modulated DC by using recently identified blood DC antigens (BDCA), and investigate their ability to produce type I IFN in response to virus stimulation. We show that IFN-beta induces development of CD123+ DC from human blood monocytes, which coexpress BDCA4+ but are negative for BDCA2-, a specific marker for plasmacytoid DC. Such IFN-beta-modulated DC can produce IL-6 and IL-10 but not IL-12p40, and have no enhanced IFN-alpha and IFN-beta production. The findings indicate that IFN-beta-modulated DCs represent a myeloid DC subset with diminished CD11c, BDCA-1 and CD1a expression. They may promote Th2 and B cell differentiation through IL-6 and IL-10 production, and suppression of IL-12p40, but they have no enhanced antiviral capacity.
Collapse
Affiliation(s)
- Y M Huang
- Division of Neuroimmunology, Karolinska Institute, Alfred Nobels allé 10, 141 83 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Singh RAK, Zhang JZ. Differential Activation of ERK, p38, and JNK Required for Th1 and Th2 Deviation in Myelin-Reactive T Cells Induced by Altered Peptide Ligand. THE JOURNAL OF IMMUNOLOGY 2004; 173:7299-307. [PMID: 15585853 DOI: 10.4049/jimmunol.173.12.7299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autoreactive T cells can be induced by altered peptide ligands to switch Th1 and Th2 phenotypes. The underlying molecular mechanism is critical for understanding of activation of autoreactive T cells and development of novel therapeutic strategies for autoimmune conditions. In this study, we demonstrated that analog peptides of an immunodominant epitope of myelin basic protein (residues 83-99) with alanine substitution at Val(86) and His(88) had a unique partial agonistic property in the induction of Th1 or Th2 deviation in MBP(83-99)-reactive T cell clones typical of Th0 phenotype. The observed phenotypic switch involved differential activation of ERK, p38, and JNK MAPKs. More specifically, Th1 deviation induced by peptide 86V-->A (86A) correlated with enhanced p38 and JNK activities, while Th2 deviation by peptide 88H-->A (88A) was associated with up-regulated ERK activity and a basal level of p38 and JNK activity. Further characterization revealed that a specific inhibitor for ERK selectively prevented Th2 deviation of MBP(83-99)-specific T cells. Conversely, specific inhibitors for p38 and JNK blocked Th1 deviation in the same T cell preparations induced by peptide 86A. The findings have important implications in our understanding of regulation of ERK, p38, and JNK by altered peptide ligands and their role in cytokine regulation and phenotype switch of autoreactive T cells.
Collapse
Affiliation(s)
- Rana A K Singh
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|