1
|
Wang Z, Lin X, Luo X, Xiao J, Zhang Y, Xu J, Wang S, Zhao F, Wang H, Zheng H, Zhang W, Lin C, Tan Z, Cao L, Wang Z, Tan Y, Chen W, Cao Y, Guo X, Pittenger C, Luo X. Pleiotropic Association of CACNA1C Variants With Neuropsychiatric Disorders. Schizophr Bull 2023; 49:1174-1184. [PMID: 37306960 PMCID: PMC10483336 DOI: 10.1093/schbul/sbad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuropsychiatric disorders are highly heritable and have overlapping genetic underpinnings. Single nucleotide polymorphisms (SNPs) in the gene CACNA1C have been associated with several neuropsychiatric disorders, across multiple genome-wide association studies. METHOD A total of 70,711 subjects from 37 independent cohorts with 13 different neuropsychiatric disorders were meta-analyzed to identify overlap of disorder-associated SNPs within CACNA1C. The differential expression of CACNA1C mRNA in five independent postmortem brain cohorts was examined. Finally, the associations of disease-sharing risk alleles with total intracranial volume (ICV), gray matter volumes (GMVs) of subcortical structures, cortical surface area (SA), and average cortical thickness (TH) were tested. RESULTS Eighteen SNPs within CACNA1C were nominally associated with more than one neuropsychiatric disorder (P < .05); the associations shared among schizophrenia, bipolar disorder, and alcohol use disorder survived false discovery rate correction (five SNPs with P < 7.3 × 10-4 and q < 0.05). CACNA1C mRNA was differentially expressed in brains from individuals with schizophrenia, bipolar disorder, and Parkinson's disease, relative to controls (three SNPs with P < .01). Risk alleles shared by schizophrenia, bipolar disorder, substance dependence, and Parkinson's disease were significantly associated with ICV, GMVs, SA, or TH (one SNP with P ≤ 7.1 × 10-3 and q < 0.05). CONCLUSION Integrating multiple levels of analyses, we identified CACNA1C variants associated with multiple psychiatric disorders, and schizophrenia and bipolar disorder were most strongly implicated. CACNA1C variants may contribute to shared risk and pathophysiology in these conditions.
Collapse
Affiliation(s)
- Zuxing Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Provincial Cancer Hospital, the Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, China
| | - Xinqun Luo
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300180, China
| | - Jianying Xu
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong 519000, China
| | - Shibin Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Fen Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Huifen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Hangxiao Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Chen Lin
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Zewen Tan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Wenzhong Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South University; China National Clinical Research Center on Mental Disorders, China National Technology Institute on Mental Disorders, Changsha, Hunan 410011, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| |
Collapse
|
2
|
Maboudian SA, Willbrand EH, Jagust WJ, Weiner KS. Defining overlooked structures reveals new associations between cortex and cognition in aging and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546558. [PMID: 37425904 PMCID: PMC10327001 DOI: 10.1101/2023.06.29.546558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we first manually defined 4,362 PMC sulci in 432 hemispheres in 216 participants. Tertiary sulci showed more age- and AD-related thinning than non-tertiary sulci, with the strongest effects for two newly uncovered tertiary sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci were most associated with memory and executive function scores in older adults. These findings support the retrogenesis hypothesis linking brain development and aging, and provide new neuroanatomical targets for future studies of aging and AD.
Collapse
Affiliation(s)
- Samira A. Maboudian
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
| | | |
Collapse
|
3
|
Song L, Zhou Z, Meng J, Zhu X, Wang K, Wei D, Qiu J. Rostral middle frontal gyrus thickness mediates the relationship between genetic risk and neuroticism trait. Psychophysiology 2020; 58:e13728. [PMID: 33226147 DOI: 10.1111/psyp.13728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Neuroticism is a robust personality trait associated with multiple mental disorders. Heretofore, research on the relationship among genes, brain, and behavior to explore individual differences in neuroticism is scarce. Hence, in this study (N = 630), genetic data, self-reported neuroticism, and brain structural data were combined to explore whether the cortical thickness (CT) of brain regions mediated the relationship between the polygenic risk score (PRS) of neuroticism and NEO neuroticism (NEO-N), and the enrichment analysis was performed to reveal the underlying mechanism of their relationship. Results showed that the PRSs were significantly associated with NEO-N scores (p < .05). The CT of left rostral middle frontal gyrus was negatively related to the best PRS in PRSice (PRSbest ) or the PRS at 0.05 threshold (PRS0.05 ) (corrected p < .05), which was also found to mediate the association between the PRS and NEO-N (PRSbest : ab = .012, p < .05; PRS0.05 : ab = .012, p < .05). Enrichment analysis revealed that these genes were mainly involved in biological adhesion, cell adhesion, neuron part, and synapse part, which were associated with the abnormal thickness of frontal cortex. By integrating genetic, brain imaging, and behavioral data, our research initially revealed the neurogenetic underpinnings of neuroticism, which is helpful for understanding individual differences in neuroticism.
Collapse
Affiliation(s)
- Li Song
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Zheyi Zhou
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Jie Meng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Xingxing Zhu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Kangcheng Wang
- School of psychology, Shandong Normal University, Shandong, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Faculty of Psychology, Southwest University (SWU), Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Hou J, Schmitt S, Meller T, Falkenberg I, Chen J, Wang J, Zhao X, Shi J, Nenadić I. Cortical Complexity in People at Ultra-High-Risk for Psychosis Moderated by Childhood Trauma. Front Psychiatry 2020; 11:594466. [PMID: 33244301 PMCID: PMC7685197 DOI: 10.3389/fpsyt.2020.594466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Subjects with ultra-high risk (UHR) states for psychosis show brain structural volume changes similar to first-episode psychosis and also elevated incidence of environmental risk factors like childhood trauma. It is unclear, however, whether early neurodevelopmental trajectories are altered in UHR. We screened a total of 12,779 first-year Chinese students to enroll 36 UHR subjects (based on clinical interviews) and 59 non-UHR healthy controls for a case-control study of markers of early neurodevelopment. Subjects underwent 3T MRI scanning and clinical characterization, including the childhood trauma questionnaire (CTQ). We then used the CAT12 toolbox to analyse structural brain scans for cortical surface complexity, a spherical harmonics-based marker of early neurodevelopmental changes. While we did not find statistically significant differences between the groups, a trend level finding for reduced cortical complexity (CC) in UHR vs. non-UHR subjects emerged in the left superior temporal cortex (and adjacent insular and transverse temporal cortices), and this trend level association was significantly moderated by childhood trauma (CTQ score). Our findings indicate that UHR subjects tend to show abnormal cortical surface morphometry, in line with recent research; more importantly, however, this association seems to be considerably modulated by early environmental impacts. Hence, our results provide an indication of environmental or gene × environment interactions on early neurodevelopment leading up to elevated psychosis risk.
Collapse
Affiliation(s)
- Jiaojiao Hou
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| | - Jianxing Chen
- Tongji University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Tongji University School of Medicine, Shanghai, China
| | - Xudong Zhao
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jingyu Shi
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
- Division of Medical Humanities & Behavioral Sciences, Tongji University School of Medicine, Shanghai, China
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and Marburg University Hospital, Marburg, Germany
- Center for Mind, Brain, and Behavior, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
5
|
Anterior cingulate morphology in people at genetic high-risk of schizophrenia. Eur Psychiatry 2020; 27:377-85. [DOI: 10.1016/j.eurpsy.2011.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 10/17/2011] [Accepted: 11/11/2011] [Indexed: 11/20/2022] Open
Abstract
AbstractBackgroundMorphological abnormalities of the anterior cingulate (AC) occur in patients with schizophrenia and in symptomatic high-risk individuals, and may be predictive of subsequent psychosis. We investigated AC sulcal morphology in the Edinburgh High Risk Study cohort to see if such abnormalities are evident and predict psychosis in patients’ relatives. We also investigated the association of the cingulate sulcus (CS) and paracingulate sulcus (PCS) variants with intelligence quotient (IQ).Patients and methodsWe compared cingulate and paracingulate sulcal anatomy, using reliable standardised measurements, blind to group membership, in those at high genetic risk (n = 146), first episode patients (n = 34) and healthy controls (n = 36); and compared high-risk subjects who did (n = 17) or did not develop schizophrenia.ResultsInterruptions of the cingulate sulcus were more common in high-risk individuals and in those with schizophrenia, in both hemispheres, compared to controls. When separated by gender, these results were only present in males in the left hemisphere and only in females in the right hemisphere. A well-formed paracingulate sulcus was less common in high-risk participants and patients with schizophrenia, compared to controls; but this association was only present in males. These morphological variants of the paracingulate sulcus and the continuous cingulate sulcus were also associated with the higher IQ in male high-risk individuals.ConclusionsAn interrupted cingulate sulcus pattern in both males and females and paracingulate morphology in males are associated with increased genetic risk of schizophrenia. Associations between cingulate and paracingulate morphology and premorbid IQ scores provide evidence that intellectual ability could be related to particular cytoarchitectural brain regions. Given that these sulci develop in early fetal life, such findings presumably reflect early neurodevelopmental abnormalities of genetic origin, although environmental effects and interactions cannot be ruled out.
Collapse
|
6
|
Yan J, Cui Y, Li Q, Tian L, Liu B, Jiang T, Zhang D, Yan H. Cortical thinning and flattening in schizophrenia and their unaffected parents. Neuropsychiatr Dis Treat 2019; 15:935-946. [PMID: 31114205 PMCID: PMC6489638 DOI: 10.2147/ndt.s195134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Schizophrenia is a neurodevelopmental disorder with high heritability. Widespread cortical thinning has been identified in schizophrenia, suggesting that it is a result of cortical development deficit. However, the findings of other cortical morphological indexes of patients are inconsistent, and the research on their relationship with genetic risk factors for schizophrenia is rare. Methods: In order to investigate cortical morphology deficits and their disease-related genetic liability in schizophrenia, we analyzed a sample of 33 patients with schizophrenia, 60 biological parents of the patients, as well as 30 young controls for patients and 28 elderly controls for parents with age, sex and education level being well-matched. We calculated vertex-wise measurements of cortical thickness, surface area, local gyrification index, sulcal depth, and their correlation with the clinical and cognitive characteristics. Results: Widespread cortical thinning of the fronto-temporo-parietal region, sulcal flattening of the insula and gyrification reduction of the frontal cortex were observed in schizophrenia patients. Conjunction analysis revealed that patients with schizophrenia and their parents shared significant cortical thinning of bilateral prefrontal and insula, left lateral occipital and fusiform regions (Monte Carlo correction, P<0.05), as well as a trend-level sulcal depth reduction mainly in bilateral insula and occipital cortex. We observed comprehensive cognitive deficits in patients and similar impairment in the speed of processing of their unaffected parents. Significant associations between lower processing speed and thinning of the frontal cortex and flattening of the parahippocampal gyrus were found in patients and their parents, respectively. However, no significant correlation between abnormal measurements of cortical morphology and clinical characteristics was found. Conclusion: The results suggest that cortical morphology may be susceptible to a genetic risk of schizophrenia and could underlie the cognitive dysfunction in patients and their unaffected relatives. The abnormalities shared with unaffected parents allow us to better understand the disease-specific genetic effect on cortical development.
Collapse
Affiliation(s)
- Jing Yan
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China
| | - Yue Cui
- Brainnetome Center/National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qianqian Li
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China
| | - Lin Tian
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi 214151, People's Republic of China.,Wuxi Mental Health Center, Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, 214151, People's Republic of China
| | - Bing Liu
- Brainnetome Center/National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianzi Jiang
- Brainnetome Center/National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China.,Peking-Tsinghua Joint Center for Life Sciences & PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, People's Republic of China
| |
Collapse
|
7
|
Vandekar SN, Shinohara RT, Raznahan A, Hopson RD, Roalf DR, Ruparel K, Gur RC, Gur RE, Satterthwaite TD. Subject-level measurement of local cortical coupling. Neuroimage 2016; 133:88-97. [PMID: 26956908 PMCID: PMC4889557 DOI: 10.1016/j.neuroimage.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
The human cortex is highly folded to allow for a massive expansion of surface area. Notably, the thickness of the cortex strongly depends on cortical topology, with gyral cortex sometimes twice as thick as sulcal cortex. We recently demonstrated that global differences in thickness between gyral and sulcal cortex continue to evolve throughout adolescence. However, human cortical development is spatially heterogeneous, and global comparisons lack power to detect localized differences in development or psychopathology. Here we extend previous work by proposing a new measure - local cortical coupling - that is sensitive to differences in the localized topological relationship between cortical thickness and sulcal depth. After estimation, subject-level coupling maps can be analyzed using standard neuroimaging analysis tools. Capitalizing on a large cross-sectional sample (n=932) of youth imaged as part of the Philadelphia Neurodevelopmental Cohort, we demonstrate that local coupling is spatially heterogeneous and exhibits nonlinear development-related trajectories. Moreover, we uncover sex differences in coupling that indicate divergent patterns of cortical topology. Developmental changes and sex differences in coupling support its potential as a neuroimaging phenotype for investigating neuropsychiatric disorders that are increasingly conceptualized as disorders of brain development. R code to estimate subject-level coupling maps from any two cortical surfaces generated by FreeSurfer is made publicly available along with this manuscript.
Collapse
Affiliation(s)
- Simon N Vandekar
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Russell T Shinohara
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Child Psychiatry Branch, National Institutes of Mental Health, Bethesda, MD 20892, USA
| | - Ryan D Hopson
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Philadelphia Veterans Administration Medical Center, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
8
|
Wagstyl K, Ronan L, Whitaker KJ, Goodyer IM, Roberts N, Crow TJ, Fletcher PC. Multiple markers of cortical morphology reveal evidence of supragranular thinning in schizophrenia. Transl Psychiatry 2016; 6:e780. [PMID: 27070408 PMCID: PMC4872401 DOI: 10.1038/tp.2016.43] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/19/2016] [Indexed: 02/05/2023] Open
Abstract
In vivo structural neuroimaging can reliably identify changes to cortical morphology and its regional variation but cannot yet relate these changes to specific cortical layers. We propose, however, that by synthesizing principles of cortical organization, including relative contributions of different layers to sulcal and gyral thickness, regional patterns of variation in thickness of different layers across the cortical sheet and profiles of layer variation across functional hierarchies, it is possible to develop indirect morphological measures as markers of more specific cytoarchitectural changes. We developed four indirect measures sensitive to changes specifically occurring in supragranular cortical layers, and applied these to test the hypothesis that supragranular layers are disproportionately affected in schizophrenia. Our findings from the four different measures converge to indicate a predominance of supragranular thinning in schizophrenia, independent of medication and illness duration. We propose that these indirect measures offer novel ways of identifying layer-specific cortical changes, offering complementary in vivo observations to existing post-mortem studies.
Collapse
Affiliation(s)
- K Wagstyl
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK,Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Sir William Hardy Building, Downing Street, Cambridge, CB2 3EB, UK. E-mail:
| | - L Ronan
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - K J Whitaker
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - I M Goodyer
- Developmental and Life-course Research Group, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - N Roberts
- Clinical Research Imaging Centre, School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - T J Crow
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - P C Fletcher
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK,Cambridge and Peterborough Foundation Trust, Cambridge, UK
| |
Collapse
|
9
|
Barker V, Bois C, Johnstone EC, Owens DGC, Whalley HC, McIntosh AM, Lawrie SM. Childhood adversity and cortical thickness and surface area in a population at familial high risk of schizophrenia. Psychol Med 2016; 46:891-896. [PMID: 26654172 DOI: 10.1017/s0033291715002585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is now a well-established link between childhood adversity (CA) and schizophrenia. Similar structural abnormalities to those found in schizophrenia including alterations in grey-matter volume have also been shown in those who experience CA. METHOD We examined whether global estimates of cortical thickness or surface area were altered in those familial high-risk subjects who had been referred to a social worker or the Children's Panel compared to those who had not. RESULTS We found that the cortical surface area of those who were referred to the Children's Panel was significantly smaller than those who had not been referred, but cortical thickness was not significantly altered. There was also an effect of social work referral on cortical surface area but not on thickness. CONCLUSIONS Cortical surface area increases post-natally more than cortical thickness. Our findings suggest that CA can influence structural changes in the brain and it is likely to have a greater impact on cortical surface area than on cortical thickness.
Collapse
Affiliation(s)
- V Barker
- Division of Psychiatry,Centre for Brain Sciences,School of Clinical Sciences,University of Edinburgh,Royal Edinburgh Hospital,Morningside Park,Edinburgh,UK
| | - C Bois
- Division of Psychiatry,Centre for Brain Sciences,School of Clinical Sciences,University of Edinburgh,Royal Edinburgh Hospital,Morningside Park,Edinburgh,UK
| | - E C Johnstone
- Division of Psychiatry,Centre for Brain Sciences,School of Clinical Sciences,University of Edinburgh,Royal Edinburgh Hospital,Morningside Park,Edinburgh,UK
| | - D G C Owens
- Division of Psychiatry,Centre for Brain Sciences,School of Clinical Sciences,University of Edinburgh,Royal Edinburgh Hospital,Morningside Park,Edinburgh,UK
| | - H C Whalley
- Division of Psychiatry,Centre for Brain Sciences,School of Clinical Sciences,University of Edinburgh,Royal Edinburgh Hospital,Morningside Park,Edinburgh,UK
| | - A M McIntosh
- Division of Psychiatry,Centre for Brain Sciences,School of Clinical Sciences,University of Edinburgh,Royal Edinburgh Hospital,Morningside Park,Edinburgh,UK
| | - S M Lawrie
- Division of Psychiatry,Centre for Brain Sciences,School of Clinical Sciences,University of Edinburgh,Royal Edinburgh Hospital,Morningside Park,Edinburgh,UK
| |
Collapse
|
10
|
Goghari VM, Truong W, Spilka MJ. A magnetic resonance imaging family study of cortical thickness in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168:660-8. [PMID: 26235705 DOI: 10.1002/ajmg.b.32354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/10/2015] [Indexed: 11/08/2022]
Abstract
Schizophrenia is associated with abnormalities in cortical thickness, including both thicker and thinner cortices than controls. Although less reliably than in patients, non-psychotic relatives of schizophrenia patients have also demonstrated both thicker and thinner cortices than controls, suggesting an effect of familial or genetic liability. We investigated cortical thickness in 25 schizophrenia patients, 26 adult non-psychotic first-degree biological relatives, and 23 community controls using the automated program FreeSurfer. Contrary to hypotheses, we found relatives of schizophrenia patients had greater cortical thickness in all lobes compared to patients and controls; however, this finding was not as widespread when compared to controls. In contrast, schizophrenia patients only demonstrated a thinner right fusiform region than controls and relatives. Our finding of greater thickness in adult biological relatives could represent a maladaptive abnormality or alternatively, a compensatory mechanism. Previous literature suggests that the nature of abnormalities in relatives can vary by the age of relatives and change across the developmental period. Abnormalities in patients may depend on lifestyle factors and on current and previous anti-psychotic medication use. Our results speak to the need to study various populations of patients and relatives across the lifespan to better understand different developmental periods and the impact of environmental factors. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vina M Goghari
- Department of Psychology, Clinical Neuroscience of Schizophrenia (CNS) Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Wanda Truong
- Department of Psychology, Clinical Neuroscience of Schizophrenia (CNS) Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Spilka
- Department of Psychology, Clinical Neuroscience of Schizophrenia (CNS) Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Geisler D, Walton E, Naylor M, Roessner V, Lim KO, Schulz SC, Gollub RL, Calhoun VD, Sponheim SR, Ehrlich S. Brain structure and function correlates of cognitive subtypes in schizophrenia. Psychiatry Res 2015; 234:74-83. [PMID: 26341950 PMCID: PMC4705852 DOI: 10.1016/j.pscychresns.2015.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 07/27/2015] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity.
Collapse
Affiliation(s)
- Daniel Geisler
- Technische Universität Dresden, Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | - Esther Walton
- Technische Universität Dresden, Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | - Melissa Naylor
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Veit Roessner
- Technische Universität Dresden, Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | - Kelvin O Lim
- Minneapolis VA Health Care System & Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - S Charles Schulz
- Minneapolis VA Health Care System & Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randy L Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America,The MIND Research Network, Albuquerque, New Mexico, United States of America
| | - Scott R Sponheim
- Minneapolis VA Health Care System & Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America.
| |
Collapse
|
12
|
McCarthy CS, Ramprashad A, Thompson C, Botti JA, Coman IL, Kates WR. A comparison of FreeSurfer-generated data with and without manual intervention. Front Neurosci 2015; 9:379. [PMID: 26539075 PMCID: PMC4612506 DOI: 10.3389/fnins.2015.00379] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023] Open
Abstract
This paper examined whether FreeSurfer-generated data differed between a fully-automated, unedited pipeline and an edited pipeline that included the application of control points to correct errors in white matter segmentation. In a sample of 30 individuals, we compared the summary statistics of surface area, white matter volumes, and cortical thickness derived from edited and unedited datasets for the 34 regions of interest (ROIs) that FreeSurfer (FS) generates. To determine whether applying control points would alter the detection of significant differences between patient and typical groups, effect sizes between edited and unedited conditions in individuals with the genetic disorder, 22q11.2 deletion syndrome (22q11DS) were compared to neurotypical controls. Analyses were conducted with data that were generated from both a 1.5 tesla and a 3 tesla scanner. For 1.5 tesla data, mean area, volume, and thickness measures did not differ significantly between edited and unedited regions, with the exception of rostral anterior cingulate thickness, lateral orbitofrontal white matter, superior parietal white matter, and precentral gyral thickness. Results were similar for surface area and white matter volumes generated from the 3 tesla scanner. For cortical thickness measures however, seven edited ROI measures, primarily in frontal and temporal regions, differed significantly from their unedited counterparts, and three additional ROI measures approached significance. Mean effect sizes for edited ROIs did not differ from most unedited ROIs for either 1.5 or 3 tesla data. Taken together, these results suggest that although the application of control points may increase the validity of intensity normalization and, ultimately, segmentation, it may not affect the final, extracted metrics that FS generates. Potential exceptions to and limitations of these conclusions are discussed.
Collapse
Affiliation(s)
- Christopher S McCarthy
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Avinash Ramprashad
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Carlie Thompson
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Jo-Anna Botti
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Neuroimaging, State University of New York at Upstate Medical University Syracuse, NY, USA
| |
Collapse
|
13
|
Bois C, Whalley HC, McIntosh AM, Lawrie SM. Structural magnetic resonance imaging markers of susceptibility and transition to schizophrenia: a review of familial and clinical high risk population studies. J Psychopharmacol 2015; 29:144-54. [PMID: 25049260 DOI: 10.1177/0269881114541015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a growing consensus that a symptomatology as complex and heterogeneous as schizophrenia is likely to be produced by widespread perturbations of brain structure, as opposed to isolated deficits in specific brain regions. Structural brain-imaging studies have shown that several features of the brain, such as grey matter, white matter integrity and the morphology of the cortex differ in individuals at high risk of the disorder compared to controls, but to a lesser extent than in patients, suggesting that structural abnormalities may form markers of vulnerability to the disorder. Research has had some success in delineating abnormalities specific to those individuals that transition to psychosis, compared to those at high risk that do not, suggesting that a general risk for the disorder can be distinguished from alterations specific to frank psychosis. In this paper, we review cross-sectional and longitudinal studies of individuals at familial or clinical high risk of the disorder. We conclude that the search for reliable markers of schizophrenia is likely to be enhanced by methods which amalgamate structural neuroimaging data into a coherent framework that takes into account the widespread distribution of brain alterations, and relates this to leading hypotheses of schizophrenia.
Collapse
Affiliation(s)
- C Bois
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - H C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - S M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Li G, Wang L, Shi F, Lyall AE, Ahn M, Peng Z, Zhu H, Lin W, Gilmore JH, Shen D. Cortical thickness and surface area in neonates at high risk for schizophrenia. Brain Struct Funct 2014; 221:447-61. [PMID: 25362539 DOI: 10.1007/s00429-014-0917-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 10/15/2014] [Indexed: 11/27/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly smaller cortical surface area in the right pars triangularis (before FDR correction), compared with control neonates. This preliminary study provides the first evidence that early development of cortical thickness and surface area might be abnormal in the neonates at genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA. .,Radiology and BRIC, UNC-CH School of Medicine, MRI Building, CB #7513 106 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Amanda E Lyall
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Mihye Ahn
- Department of Biostatistics and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Ziwen Peng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Hongtu Zhu
- Department of Biostatistics and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27154, USA. .,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea. .,Radiology and BRIC, UNC-CH School of Medicine, MRI Building, CB #7513 106 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
15
|
Goghari VM, Macdonald AW, Sponheim SR. Relationship between prefrontal gray matter volumes and working memory performance in schizophrenia: a family study. Schizophr Res 2014; 153:113-21. [PMID: 24529364 PMCID: PMC4144341 DOI: 10.1016/j.schres.2014.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Diffuse structural abnormalities in the prefrontal cortex have been reported in both schizophrenia patients and their nonpsychotic biological relatives. Additionally, working memory difficulties have long been documented in schizophrenia patients and have been associated with the genetic liability for the disorder. The present analysis investigated the relationship between prefrontal regional gray matter volumes and two facets of working memory in schizophrenia using a family study. Structural neuroimaging scans provided measurements of rostral middle, superior, and inferior prefrontal cortical gray matter volumes. Participants also completed a spatial working memory task that measured both short-term maintenance and manipulation of material in memory. Both schizophrenia patients and relatives had reduced superior and inferior frontal gray matter volumes. Schizophrenia patients demonstrated a spatial working memory deficit compared to both controls and relatives, with no greater impairment when required to manipulate material. Smaller prefrontal volumes in schizophrenia patients were associated with worse working memory performance. These relationships were absent in the nonpsychotic relatives and controls. Despite normative behavioral performance, nonpsychotic relatives demonstrated abnormalities in brain structure similar to those found in schizophrenia patients. Manipulation abilities were not more impaired than maintenance in schizophrenia patients. Consistent with other neuroimaging research, our results suggest that direct measures of the underlying biology may be more sensitive to the effects of the genetic liability for schizophrenia than behavioral measures.
Collapse
Affiliation(s)
- Vina M Goghari
- Clinical Neuroscience of Schizophrenia (CNS) Laboratory, Department of Psychology, Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Angus W Macdonald
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Road, Minneapolis, MN 55455, USA; Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue South, Minneapolis, MN 55454, USA
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System, 116B VAMC, One Veteran's Drive, Minneapolis, MN 55417, USA; Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue South, Minneapolis, MN 55454, USA; Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Road, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Ulloa A, Rodriguez P, Liu J, Calhoun V, Pattichis M. A quasi-local method for instantaneous frequency estimation with application to structural magnetic resonance images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:1477-1480. [PMID: 25570248 DOI: 10.1109/embc.2014.6943880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spatially-varying signal content can be effectively modeled using amplitude modulation-frequency modulation (AM-FM) representations. The AM-FM representation allow us to extract instantaneous amplitude (IA) and instantaneous frequency (IF) components that can be used to measure non-stationary content in biomedical images and videos. This paper introduces a new method for estimating the IA and the IF based on a quasi-local method (QLM). We provide an extensive comparison of AM-FM demodulation approaches based on QLM and a quasi-eigenfunction approximation method using three different filter-banks: (i) a separable, equiripple design, (ii) a Gabor filter bank, and (iii) a directional filter bank approach based on the Contourlet transform. The results document that the use of the new QLM method with an equiripple filter bank design gave the best IF magnitude estimates for a synthetic image. The new QLM method is then applied to a multi-site schizophrenia dataset (N=307). The dataset included structure magnetic resonance images from healthy controls and patients diagnosed with schizophrenia. The IF magnitude is shown to be less sensitive to variations across sites as opposed to the standard use of SMRI images that suffered from significant dependency on the scanner configurations on different collection sites. Furthermore, the regions of interest identified through the use of the IF magnitude are in agreement with previous studies.
Collapse
|
17
|
Edgar JC, Chen YH, Lanza M, Howell B, Chow VY, Heiken K, Liu S, Wootton C, Hunter MA, Huang M, Miller GA, Cañive JM. Cortical thickness as a contributor to abnormal oscillations in schizophrenia? NEUROIMAGE-CLINICAL 2013; 4:122-9. [PMID: 24371794 PMCID: PMC3871288 DOI: 10.1016/j.nicl.2013.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022]
Abstract
Introduction Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function–structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined. Methods Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time–frequency group differences and associations with STG structure and age were also examined. Results Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls. Discussion Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function–structure relationships observed in controls. Associations between brain oscillations and structure were investigated in SZ The present study examined how superior temporal gyrus (STG) structure and agerelate to auditory STG low-frequency and 40 Hz steady-state activity Decreased total power and inter-trial coherence in SZ were observed in the left STG for early low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms) Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG function-structure relationships observed in controls.
Collapse
Affiliation(s)
- J Christopher Edgar
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Yu-Han Chen
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Matthew Lanza
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Breannan Howell
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Vivian Y Chow
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Kory Heiken
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Song Liu
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra Wootton
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Michael A Hunter
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| | - Mingxiong Huang
- The University of California San Diego, Department of Radiology, San Diego, CA, USA ; San Diego VA Healthcare System, Department of Radiology, San Diego, CA, USA
| | - Gregory A Miller
- University of California, Los Angeles, Department of Psychology, USA
| | - José M Cañive
- The University of New Mexico School of Medicine, Department of Psychiatry, Center for Psychiatric Research, Albuquerque, NM, USA ; New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Albuquerque, NM, USA
| |
Collapse
|
18
|
Ratnanather JT, Poynton CB, Pisano DV, Crocker B, Postell E, Cebron S, Ceyhan E, Honeycutt NA, Mahon PB, Barta PE. Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophr Res 2013; 150:476-83. [PMID: 24012458 PMCID: PMC3825771 DOI: 10.1016/j.schres.2013.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
Abstract
Structural abnormalities in temporal lobe, including the superior temporal gyrus (STG) and planum temporale (PT), have been reported in schizophrenia (SCZ) and bipolar disorder (BPD) patients. While most MRI studies have suggested gray matter volume and surface area reduction in temporal lobe regions, few have explored changes in laminar thickness in PT and STG in SCZ and BPD. ROI subvolumes of the STG from 94 subjects were used to yield gray matter volume, gray/white surface area and laminar thickness for STG and PT cortical regions. Morphometric analysis suggests that there may be gender and laterality effects on the size and shape of the PT in BPD (n=36) and SCZ (n=31) with reduced laterality in PT in subjects with SCZ but not in BPD. In addition, PT surface area was seen to be larger in males, and asymmetry in PT surface area was larger in BPD. Subjects with SCZ had reduced thickness and smaller asymmetry in PT volume. Thus, the PT probably plays a more sensitive role than the STG in structural abnormalities seen in SCZ.
Collapse
Affiliation(s)
- J. Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218,Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218,Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21218
| | - Clare B. Poynton
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Dominic V. Pisano
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Britni Crocker
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Elizabeth Postell
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Shannon Cebron
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Elvan Ceyhan
- Dept of Mathematics, Koc University, Istanbul, Turkey
| | - Nancy A. Honeycutt
- Dept. of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Pamela B. Mahon
- Dept. of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Patrick E. Barta
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218,Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
19
|
Bartholomeusz CF, Whittle SL, Montague A, Ansell B, McGorry PD, Velakoulis D, Pantelis C, Wood SJ. Sulcogyral patterns and morphological abnormalities of the orbitofrontal cortex in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:168-77. [PMID: 23485592 DOI: 10.1016/j.pnpbp.2013.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/01/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Three types of OFC sulcogyral patterns have been identified in the general population. The distribution of these three types has been found altered in individuals at genetic risk of psychosis, first episode psychosis (FEP) and chronic schizophrenia. The aim of this study was to replicate and extend previous research by additionally investigating: intermediate and posterior orbital sulci, cortical thickness, and degree of gyrification/folding of the OFC, in a large sample of FEP patients and healthy controls. OFC pattern type was classified based on a method previously devised, using T1-weighted magnetic resonance images. Cortical thickness and local gyrification indices were calculated using FreeSurfer. Occurrence of Type I pattern was decreased and Type II pattern was increased in FEP patients for the right hemisphere. Interestingly, controls displayed an OFC pattern type distribution that was disparate to that previously reported. Significantly fewer intermediate orbital sulci were observed in the left hemisphere of patients. Grey matter thickness of orbitofrontal sulci was reduced bilaterally, and left hemisphere reductions were related to OFC pattern type in patients. There was no relationship between pattern type and degree of OFC gyrification. An interaction was found between the number of intermediate orbital sulci and OFC gyrification; however this group difference was specific to only the small subsample of people with three intermediate orbital sulci. Given that cortical folding is largely determined by birth, our findings suggest that Type II pattern may be a neurodevelopmental risk marker while Type I pattern may be somewhat protective. This finding, along with compromised orbitofrontal sulci thickness, may reflect early abnormalities in cortical development and point toward a possible endophenotypic risk marker of schizophrenia-spectrum disorders.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Byun MS, Kim JS, Jung WH, Jang JH, Choi JS, Kim SN, Choi CH, Chung CK, An SK, Kwon JS. Regional cortical thinning in subjects with high genetic loading for schizophrenia. Schizophr Res 2012; 141:197-203. [PMID: 22998933 DOI: 10.1016/j.schres.2012.08.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 07/31/2012] [Accepted: 08/27/2012] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Although recent studies have revealed regional cortical thinning in patients with schizophrenia, it is not clear whether cortical thinning reflects a genetic liability for schizophrenia. The present study investigated the change of cortical thickness in subjects at genetic high risk (GHR) for schizophrenia with a relatively high genetic loading compared with healthy controls (HC) and patients with schizophrenia. The effect of genetic loading on cortical thinning was also measured by comparing GHR subgroups according to the levels of genetic loading. METHODS Cortical thickness was measured by the Constrained Laplacian-based Automated Segmentation with Proximities algorithm using 1.5-T structural MRI scans. The cortical thickness of the subjects at GHR (n=31) was compared with that of HC (n=29) and patients with schizophrenia (n=31). We then compared the cortical thickness of the GHR subgroups according to the number of first-degree relatives with schizophrenia to measure the effect of genetic loading. RESULTS Relative to HC, GHR subjects showed significant cortical thinning in the right anterior cingulate cortex (ACC), left paracingulate and posterior cingulate regions; bilateral frontal regions including frontal pole and ventromedial prefrontal cortex; bilateral temporal regions including the left parahippocampal gyrus; and bilateral inferior parietal and occipital regions; however, patients with schizophrenia showed more widespread cortical thinning in the fronto-temporo-parietal region. GHR subjects who had two or more first-degree relatives with schizophrenia showed a greater reduction in cortical thickness in the right ACC and in the left paracingulate cortex than did those who had only one first-degree relative with schizophrenia. CONCLUSION Our findings suggest that the level of genetic loading may have a dose-dependent effect on cortical thinning in the right ACC and in the left paracingulate cortex and that cortical thinning in GHR subjects may represent neurodevelopmental alterations that result from genetic liability for schizophrenia.
Collapse
Affiliation(s)
- Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hoptman MJ, Zuo XN, D’Angelo D, Mauro CJ, Butler PD, Milham MP, Javitt DC. Decreased interhemispheric coordination in schizophrenia: a resting state fMRI study. Schizophr Res 2012; 141:1-7. [PMID: 22910401 PMCID: PMC3446206 DOI: 10.1016/j.schres.2012.07.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 01/22/2023]
Abstract
Schizophrenia has been increasingly conceptualized as a disorder of brain connectivity, in large part due to findings emerging from white matter and functional connectivity (FC) studies. This work has focused primarily on within-hemispheric connectivity, however some evidence has suggested abnormalities in callosal structure and interhemispheric interaction. Here we examined functional connectivity between homotopic points in the brain using a technique called voxel-mirrored homotopic connectivity (VMHC). We performed VMHC analyses on resting state fMRI data from 23 healthy controls and 25 patients with schizophrenia or schizoaffective disorder. We found highly significant reductions in VMHC in patients for a number of regions, particularly the occipital lobe, the thalamus, and the cerebellum. No regions of increased VMHC were detected in patients. VMHC in the postcentral gyrus extending into the precentral gyrus was correlated with PANSS Total scores. These results show substantial impairment of interhemispheric coordination in schizophrenia.
Collapse
Affiliation(s)
- Matthew J. Hoptman
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Xi-Nian Zuo
- Laboratory for Functional Connectome and Development, Key Laboratory of Behavioral Science, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Debra D’Angelo
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY
| | - Cristina J. Mauro
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY
| | - Pamela D. Butler
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Michael P. Milham
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Child Mind Institute, New York, NY
| | - Daniel C. Javitt
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
22
|
Edgar JC, Hunter MA, Huang M, Smith AK, Chen Y, Sadek J, Lu BY, Miller GA, Cañive JM. Temporal and frontal cortical thickness associations with M100 auditory activity and attention in healthy controls and individuals with schizophrenia. Schizophr Res 2012; 140:250-7. [PMID: 22766129 PMCID: PMC3423523 DOI: 10.1016/j.schres.2012.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although gray matter (GM) abnormalities are frequently observed in individuals with schizophrenia (SCZ), the functional consequences of these structural abnormalities are not yet understood. The present study sought to better understand GM abnormalities in SCZ by examining associations between GM and two putative functional SCZ biomarkers: weak 100 ms (M100) auditory responses and impairment on tests of attention. METHODS Data were available from 103 subjects (healthy controls=52, SCZ=51). GM cortical thickness measures were obtained for superior temporal gyrus (STG) and prefrontal cortex (PFC). Magnetoencephalography (MEG) provided measures of left and right STG M100 source strength. Subjects were administered the Trail Making Test A and the Connors' Continuous Performance Test to assess attention. RESULTS A strong trend indicated less GM cortical thickness in SCZ than controls in both regions and in both hemispheres (p=0.06). Individuals with SCZ had weaker M100 responses than controls bilaterally, and individuals with SCZ performed more poorly than controls on tests of attention. Across groups, left STG GM was positively associated with left M00 source strength. In SCZ only, less left and right STG and PFC GM predicted poorer performance on tests of attention. After removing variance in attention associated with age, associations between GM and attention remained significant only in left and right STG. CONCLUSIONS Reduced GM cortical thickness may serve as a common substrate for multiple functional abnormalities in SCZ, with structural-functional abnormalities in STG GM especially prominent. As suggested by others, functional abnormalities in SCZ may be a consequence of elimination of the neuropil (dendritic arbors and associated synaptic infrastructure) between neuron bodies.
Collapse
Affiliation(s)
- J. Christopher Edgar
- The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA,Corresponding Author: J. Christopher Edgar, Children’s Hospital of Philadelphia, 34 and Civic Center Blvd, Department of Neuroradiology, Wood Building (Room 2115), Philadelphia, PA 19104, 215-590-3573,
| | - Michael A. Hunter
- The University of New Mexico, Department of Psychology, Albuquerque, NM, USA,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA,The University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
| | - Mingxiong Huang
- San Diego VA Healthcare System, Department of Radiology, San Diego, CA, USA,The University of California, Department of Radiology, San Diego, CA, USA
| | - Ashley K. Smith
- The University of Colorado, Department of Psychology and Neuroscience, Boulder, CO, USA
| | - Yuhan Chen
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA,The University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
| | - Joseph Sadek
- New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA,The University of New Mexico School of Medicine, Department of Psychiatry, Albuquerque, NM, USA
| | - Brett Y Lu
- The University of Hawaii, Department of Psychiatry, Honolulu, HI, USA
| | - Gregory A. Miller
- The University of Illinois at Urbana-Champaign, Department of Psychology, USA, and the University of Delaware, Department of Psychology, USA
| | - José M. Cañive
- The University of New Mexico, Department of Psychology, Albuquerque, NM, USA,New Mexico Raymond G. Murphy VA Healthcare System, Psychiatry Research, Behavioral Health Care Line, Albuquerque, NM, USA
| |
Collapse
|
23
|
Ehrlich S, Brauns S, Yendiki A, Ho BC, Calhoun V, Schulz SC, Gollub RL, Sponheim SR. Associations of cortical thickness and cognition in patients with schizophrenia and healthy controls. Schizophr Bull 2012; 38:1050-62. [PMID: 21436318 PMCID: PMC3446215 DOI: 10.1093/schbul/sbr018] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have found varying relationships between cognitive functioning and brain volumes in patients with schizophrenia. However, cortical thickness may more closely reflect cytoarchitectural characteristics than gray matter density or volume estimates. Here, we aimed to compare associations between regional variation in cortical thickness and executive functions, memory, as well as verbal and spatial processing in patients with schizophrenia and healthy controls (HCs). We obtained magnetic resonance imaging and neuropsychological data for 131 patients and 138 matched controls. Automated cortical pattern matching methods allowed testing for associations with cortical thickness estimated as the shortest distance between the gray/white matter border and the pial surface at thousands of points across the entire cortical surface. Two independent measures of working memory showed robust associations with cortical thickness in lateral prefrontal cortex in HCs, whereas patients exhibited associations between working memory and cortical thickness in the right middle and superior temporal lobe. This study provides additional evidence for a disrupted structure-function relationship in schizophrenia. In line with the prefrontal inefficiency hypothesis, schizophrenia patients may engage a larger compensatory network of brain regions other than frontal cortex to recall and manipulate verbal material in working memory.
Collapse
Affiliation(s)
- Stefan Ehrlich
- Psychiatric Neuroimaging Research Program, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129-2000, USA.
| | - Stefan Brauns
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Anastasia Yendiki
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa, Iowa City, IA
| | - Vince Calhoun
- The Mind Research Network, Image Analysis and MR Research, Albuquerque, NM,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - S. Charles Schulz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Randy L. Gollub
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA
| | - Scott R. Sponheim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN,Veterans Affairs Medical Center, Minneapolis, MN
| |
Collapse
|
24
|
Li X, Alapati V, Jackson C, Xia S, Bertisch HC, Branch CA, Delisi LE. Structural abnormalities in language circuits in genetic high-risk subjects and schizophrenia patients. Psychiatry Res 2012; 201:182-9. [PMID: 22512952 PMCID: PMC3361621 DOI: 10.1016/j.pscychresns.2011.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a severe psychiatric disorder with a strong genetic predisposition. Structural and functional brain deficits throughout the cerebral cortex, particularly in the language-processing associated brain regions, are consistently reported. Recently, increasing evidence from magnetic resonance imaging (MRI) studies suggests that healthy relatives of schizophrenia patients also show structural brain abnormalities in cortical gray matter (GM) volume and thickness, suggesting that this may be associated with an unexpressed genetic liability for the disorder. Unfortunately, the findings are not consistent, which may be caused by different age ranges of the cohorts studied. In the present study, we examined the voxel-based whole brain cortical thickness, area, GM volume densities, and regional cortical thickness-related laterality indices in 14 bilateral regions of interest (ROIs) from known language-processing circuits in 20 schizophrenia patients, 21 young non-psychotic subjects with heightened genetic risk for schizophrenia at the peak ages for development of the disorder, and 48 matched controls. The results showed widespread significant reductions in cortical thickness, cortical GM volume density, and scattered decreases in cortical surface area in the schizophrenia patients compared with those in the high-risk subjects and normal controls. Moreover, the genetic high-risk subjects showed significantly increased regional cortical thickness in 7 of the 14 ROIs in the language-processing pathway when compared with controls. They also had increased GM volume density in scattered regions associated with language-processing when compared with the normal controls. Laterality analyses showed that the spatial distribution of abnormal cortical thickness in the schizophrenia patients, as well as in the high-risk subjects, contributes to a decrease of the normal left-greater-than-right anatomical asymmetry in the inferior orbital frontal area, and a increased left-greater-than-right pattern in the inferior parietal and occipital regions. Together with the existing findings in the literature, the results of the present study suggest that developmental disruption of the anatomical differentiation of the hemispheres provides a basis for understanding the language impairment and symptoms of psychosis, and that these may arise because of abnormal left-right hemispherical communications that interrupt the normal flow of information processing. The early structural deficits in language-processing circuits may precede the appearance of psychotic symptoms and may be an indicator of an increased risk of developing schizophrenia.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Radiology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Oertel-Knochel V, Knochel C, Rotarska-Jagiela A, Reinke B, Prvulovic D, Haenschel C, Hampel H, Linden DEJ. Association between Psychotic Symptoms and Cortical Thickness Reduction across the Schizophrenia Spectrum. Cereb Cortex 2012; 23:61-70. [DOI: 10.1093/cercor/bhr380] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Waters-Metenier S, Toulopoulou T. Putative structural neuroimaging endophenotypes in schizophrenia: a comprehensive review of the current evidence. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic contribution to schizophrenia etiopathogenesis is underscored by the fact that the best predictor of developing schizophrenia is having an affected first-degree relative, which increases lifetime risk by tenfold, as well as the observation that when both parents are affected, the risk of schizophrenia increases to approximately 50%, compared with 1% in the general population. The search to elucidate the complex genetic architecture of schizophrenia has employed various approaches, including twin and family studies to examine co-aggregation of brain abnormalities, studies on genetic linkage and studies using genome-wide association to identify genetic variations associated with schizophrenia. ‘Endophenotypes’, or ‘intermediate phenotypes’, are potentially narrower constructs of genetic risk. Hypothetically, they are intermediate in the pathway between genetic variation and clinical phenotypes and can supposedly be implemented to assist in the identification of genetic diathesis for schizophrenia and, possibly, in redefining clinical phenomenology.
Collapse
Affiliation(s)
- Sheena Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London, UK
| | | |
Collapse
|
27
|
Crespo-Facorro B, Roiz-Santiáñez R, Pérez-Iglesias R, Rodriguez-Sanchez JM, Mata I, Tordesillas-Gutierrez D, Sanchez E, Tabarés-Seisdedos R, Andreasen N, Magnotta V, Vázquez-Barquero JL. Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features. Psychol Med 2011; 41:1449-60. [PMID: 20942995 PMCID: PMC3954972 DOI: 10.1017/s003329171000200x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The thickness of the cortical mantle is a sensitive measure for identifying alterations in cortical structure. We aimed to explore whether first episode schizophrenia patients already show a significant cortical thinning and whether cortical thickness anomalies may significantly influence clinical and cognitive features. METHOD We investigated regional changes in cortical thickness in a large and heterogeneous sample of schizophrenia spectrum patients (n=142) at their first break of the illness and healthy controls (n=83). Magnetic resonance imaging brain scans (1.5 T) were obtained and images were analyzed by using brains2. The contribution of sociodemographic, cognitive and clinical characterictics was investigated. RESULTS Patients showed a significant total cortical thinning (F=17.55, d=-0.62, p<0.001) and there was a diffuse pattern of reduced thickness (encompassing frontal, temporal and parietal cortices) (all p's<0.001, d's>0.53). No significant group×gender interactions were observed (all p's>0.15). There were no significant associations between the clinical and pre-morbid variables and cortical thickness measurements (all r's<0.12). A weak significant negative correlation between attention and total (r=-0.24, p=0.021) and parietal cortical thickness (r=-0.27, p=0.009) was found in patients (thicker cortex was associated with lower attention). Our data revealed a similar pattern of cortical thickness changes related to age in patients and controls. CONCLUSIONS Cortical thinning is independent of gender, age, age of onset and duration of the illness and does not seem to significantly influence clinical and functional symptomatology. These findings support a primary neurodevelopment disorder affecting the normal cerebral cortex development in schizophrenia.
Collapse
Affiliation(s)
- B Crespo-Facorro
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bhojraj TS, Prasad KM, Eack S, Rajarethinam R, Francis AN, Montrose DM, Keshavan MS. Progressive alterations of the auditory association areas in young non-psychotic offspring of schizophrenia patients. J Psychiatr Res 2011; 45:205-212. [PMID: 20541772 PMCID: PMC2982933 DOI: 10.1016/j.jpsychires.2010.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/10/2010] [Accepted: 05/17/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Schizophrenia may involve progressive alterations of structure and hemispheric lateralization of auditory association areas (AAA) within the superior temporal gyrus. These alterations may be greater in male patients. It is unclear if these deficits are state-dependent or whether they predate illness onset and reflect familial diathesis. AIMS We sought to compare AAA cortical thickness, surface area and lateralization across adolescent and young adult non-psychotic offspring of schizophrenia patients (OS) and healthy controls at baseline and one year follow-up. We also assessed the moderating effect of gender on these measures. METHODS Fifty-six OS and thirty-six control subjects were assessed at baseline and at follow-up on AAA surface area and thickness using FreeSurfer to process T1-MRI-images. We used repeated measures ANCOVAs, controlling intra cranial volume and age with assessment-time and side as within-subject factors and gender and study group as between-subject factors. RESULTS Surface area deficit in OS was greater on the left than on the right, as reflected in a lower surface area laterality-index (left-right/left + right × 100) in OS compared to controls. Left, but not right surface area and surface area laterality-index showed a longitudinal decline in OS compared to controls. Male OS declined more than controls on surface area and thickness. CONCLUSIONS Left AAA surface area may progressively decline in young non-psychotic offspring at familial diathesis for schizophrenia causing a continuing reversal of the leftward AAA lateralization. Progressive surface area reduction and thinning of AAA may be more prominent in young non-psychotic male offspring at risk for schizophrenia.
Collapse
Affiliation(s)
- Tejas S. Bhojraj
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center; Harvard Medical School, Boston, MA, USA
| | | | - Shaun Eack
- Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | | | - Alan N. Francis
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center; Harvard Medical School, Boston, MA, USA
| | - Debra M. Montrose
- Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center; Harvard Medical School, Boston, MA, USA
- Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
- Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
29
|
Venkatasubramanian G, Jayakumar PN, Keshavan MS, Gangadhar BN. Schneiderian first rank symptoms and inferior parietal lobule cortical thickness in antipsychotic-naïve schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:40-6. [PMID: 20688126 DOI: 10.1016/j.pnpbp.2010.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Inferior parietal lobule (IPL) is implicated in the pathogenesis of first rank symptoms (FRS) in schizophrenia by functional neuroimaging studies. However, the relationship between IPL cortical thickness and FRS is yet to be explored. In this study, cortical thickness of IPL was analyzed in antipsychotic-naïve schizophrenia patients (total number = 51) with [FRS(+); N = 25] and those without FRS [FRS(-); N = 26] in comparison with group-matched healthy controls (N = 47). FRS(+) patients showed significant cortical thickness deficit in right IPL (specifically angular gyrus) in comparison with both FRS(-) patients (p = 0.005) and healthy controls (p = 0.0002); lack of difference on the left side might possibly be related to larger variance in healthy controls. Deficient cortical thickness involving IPL in FRS(+) schizophrenia patients adds further support to the role of internal monitoring system in the pathogenesis of FRS in schizophrenia.
Collapse
Affiliation(s)
- Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | | | | | | |
Collapse
|
30
|
Bhojraj TS, Francis AN, Montrose DM, Keshavan MS. Grey matter and cognitive deficits in young relatives of schizophrenia patients. Neuroimage 2011; 54 Suppl 1:S287-S292. [PMID: 20362681 PMCID: PMC3690305 DOI: 10.1016/j.neuroimage.2010.03.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/28/2010] [Accepted: 03/23/2010] [Indexed: 11/28/2022] Open
Abstract
Grey-matter volumetric and cognitive deficits in young, high-risk relatives of schizophrenia patients may be vulnerability markers of the illness. Although these markers may be correlated, it is unclear if their distributions in relatives overlap. We examined convergence of these markers in 94 young first and second-degree relatives (HR) and 81 healthy controls. Subjects were assessed using WCST, CPT-IP and Benton-Hamscher tests and on grey-matter volumes of brain regions related to language, attention and executive function using FreeSurfer to process T1-MR-images. K-means clustering using cognitive performance scores split relatives into sub-samples with better (HR+C, n=35) and worse (HR-C, n=59) cognition after controlling for age and gender. All regional volumes and language related regional laterality-indices were compared between HR-C, HR+C and control subjects, controlling for age, gender and intra-cranial volume. Volumes of caudate nuclei, thalami, hippocampi, inferior frontal gyri, Heschl's gyri, superior parietal cortices, supramarginal gyri, right angular gyrus, right middle frontal gyrus and right superior frontal gyrus, leftward laterality of supramarginal and inferior frontal gyri and rightward laterality of the angular gyrus were reduced in HR-C compared to controls. Volumes of Heschl's gyri, left supramarginal gyrus, inferior frontal gyri, hippocampi and caudate nuclei HR-C were smaller in HR-C compared to HR+C. HR+C showed deficits compared to controls only for the superior parietal and right angular volumes. Premorbid neuroanatomical and laterality alterations in schizophrenia may selectively manifest in cognitively compromised relatives. Overlapping structural and cognitive deficits may define a hyper vulnerable sub-sample among individuals at familial predisposition to schizophrenia.
Collapse
Affiliation(s)
- Tejas S. Bhojraj
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Alan N. Francis
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Debra M. Montrose
- Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
- Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
- Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Yang Y, Nuechterlein KH, Phillips O, Hamilton LS, Subotnik KL, Asarnow RF, Toga AW, Narr KL. The contributions of disease and genetic factors towards regional cortical thinning in schizophrenia: the UCLA family study. Schizophr Res 2010; 123:116-25. [PMID: 20817413 PMCID: PMC2988766 DOI: 10.1016/j.schres.2010.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Cortical thickness reductions in prefrontal and temporal cortices have been repeatedly observed in patients with schizophrenia. However, it remains unclear whether regional variations in cortical thickness may be attributable to disease-related or genetic-liability factors. METHOD The structural magnetic resonance imaging data of 48 adult-onset schizophrenia patients, 66 first-degree non-psychotic relatives of schizophrenia patients, 27 community comparison (CC) probands and 77 CC relatives were examined using cortical pattern matching methods to map and compare highly localized changes in cortical gray matter thickness between groups defined by biological risk for schizophrenia. RESULTS Schizophrenia patients showed marked cortical thinning primarily in frontal and temporal cortices when compared to unrelated CC probands. Results were similar, though less pronounced when patients were compared with their non-psychotic relatives. Cortical thickness reductions observed in unaffected relatives compared to age-similar CC relatives suggestive of schizophrenia-related genetic liability were marginal, surviving correction for the left parahippocampal gyrus and inferior occipital cortex only. CONCLUSIONS Observations of pronounced fronto/temporal cortical thinning in schizophrenia patients replicate prior findings. The lack of marked cortical thickness alterations in non-psychotic relatives of patients, suggests that disease processes are primary contributors toward cortical thickness reductions in the disorder. However, genetic factors may have a larger influence on abnormalities in the medial temporal lobe.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA 90024, United States.
| | - Keith H. Nuechterlein
- Department of Psychology, UCLA, Los Angeles, CA
,The Jane & Terry Semel Institute for Neuroscience and Human Behavior, Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Owen Phillips
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Liberty S. Hamilton
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kenneth L. Subotnik
- The Jane & Terry Semel Institute for Neuroscience and Human Behavior, Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Robert F. Asarnow
- Department of Psychology, UCLA, Los Angeles, CA
,The Jane & Terry Semel Institute for Neuroscience and Human Behavior, Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Katherine L. Narr
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
32
|
Gutiérrez-Galve L, Wheeler-Kingshott CA, Altmann DR, Price G, Chu EM, Leeson VC, Lobo A, Barker GJ, Barnes TR, Joyce EM, Ron MA. Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis. Biol Psychiatry 2010; 68:51-60. [PMID: 20452574 PMCID: PMC3025327 DOI: 10.1016/j.biopsych.2010.03.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters. METHODS Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function. RESULTS Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered. CONCLUSIONS Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases.
Collapse
Affiliation(s)
- Leticia Gutiérrez-Galve
- University College London Institute of Neurology, London, United Kingdom,Hospital Clínico Universitario and Universidad de Zaragoza, Centro de Investigación Biomédica en Red de Salud Mental and Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | | | - Daniel R. Altmann
- University College London Institute of Neurology, London, United Kingdom,Medical Statistics Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gary Price
- University College London Institute of Neurology, London, United Kingdom
| | - Elvina M. Chu
- University College London Institute of Neurology, London, United Kingdom
| | - Verity C. Leeson
- University College London Institute of Neurology, London, United Kingdom
| | - Antonio Lobo
- Hospital Clínico Universitario and Universidad de Zaragoza, Centro de Investigación Biomédica en Red de Salud Mental and Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Gareth J. Barker
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, Centre for Neuroimaging Sciences, London, United Kingdom
| | - Thomas R.E. Barnes
- Imperial College Faculty of Medicine, Charing Cross Campus, London, United Kingdom
| | - Eileen M. Joyce
- University College London Institute of Neurology, London, United Kingdom
| | - María A. Ron
- University College London Institute of Neurology, London, United Kingdom,Address correspondence to Maria A. Ron, Ph.D., FRCP, FRCPsych, University College London Institute of Neurology, London WC1N 3BG, United Kingdom
| |
Collapse
|
33
|
Schultz CC, Koch K, Wagner G, Roebel M, Schachtzabel C, Nenadic I, Albrecht C, Reichenbach JR, Sauer H, Schlösser RGM. Psychopathological correlates of the entorhinal cortical shape in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2010; 260:351-8. [PMID: 19898735 DOI: 10.1007/s00406-009-0083-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
Animal experiments have shown that early developmental lesions of the entorhinal cortex lead, after a prolonged interval, to an enhanced mesolimbic dopamine release and an increased locomotor activity in rats. Hence, disturbed shape of the entorhinal cortex might indicate maturational abnormalities relevant for psychotic symptoms in schizophrenia. We used an automated surface-based MRI method to perform a region of interest analysis of entorhinal cortical surface area, folding and thickness in 59 patients with schizophrenia and 59 healthy controls. We postulated the entorhinal cortical surface area, folding index, and thickness to be significantly smaller in patients with schizophrenia. Additionally, we expected the complexity of the entorhinal cortical shape to be associated with psychotic symptoms in schizophrenia. Our ROI analysis showed a significant thinner left entorhinal cortex. In addition, our data demonstrate a positive correlation between left entorhinal cortical surface area and folding index and severity of psychotic symptoms. In conclusion, we present new evidence for the involvement of the entorhinal cortex in the pathogenesis of schizophrenia. As cortical folding is a stable neuroanatomical parameter terminated in early neonatal stages, our data give reason to assume that the vulnerability to develop psychotic symptoms might be manifest at an early level of brain maturation.
Collapse
Affiliation(s)
- C Christoph Schultz
- Department of Psychiatry and Psychotherapy, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Bhojraj TS, Prasad KM, Eack S, Francis AN, Montrose DM, Keshavan MS. Do inter-regional gray-matter volumetric correlations reflect altered functional connectivity in high-risk offspring of schizophrenia patients? Schizophr Res 2010; 118:62-68. [PMID: 20171847 PMCID: PMC3397169 DOI: 10.1016/j.schres.2010.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Schizophrenia patients and their relatives show aberrant functional connectivity in default network regions (DRs) such as the medial prefrontal, lateral temporal, cingulate and inferior parietal cortices and executive regions such as the dorsolateral prefrontal cortex (DLPFC). Gray-matter volumetric alterations may be related to these functional connectivity deficits. Also, gray-matter volume inter-regional correlations may reflect altered inter-regional functional connectivity. AIMS To examine our prediction of alterations of gray-matter volumes and inter-regional volume correlations for DRs and the DLPFC in offspring of schizophrenia patients (OS). METHODS We assessed 64 adolescent and young adult OS and 80 healthy controls (HC) using T1-MRI. Regional gray-matter volumes and inter-regional volume correlations between the DRs and between the DLPFC and DRs on each side were compared across groups. RESULTS Compared to HC, OS had reductions in several DRs and the DLPFC after controlling age, gender, and intra-cranial volume, and correcting for multiple comparisons. OS had stronger (more positive) gray-matter volume inter-correlations between DRs and between DRs and the DLPFC. CONCLUSIONS Volumetric deficits in the default network and in the DLPFC may be related to familial diathesis in schizophrenia and to functional connectivity abnormalities in those at familial risk. Increased inter-correlations between DRs and between DR and DLPFC gray-matter volumes may serve as surrogate indices of abnormal functional connectivity.
Collapse
Affiliation(s)
- Tejas S. Bhojraj
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center; Harvard Medical School, Boston, MA, USA
| | | | - Shaun Eack
- Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Alan N. Francis
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center; Harvard Medical School, Boston, MA, USA
| | - Debra M. Montrose
- Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center; Harvard Medical School, Boston, MA, USA
- Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
- Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
36
|
Prasad KM, Goradia D, Eack S, Rajagopalan M, Nutche J, Magge T, Rajarethinam R, Keshavan MS. Cortical surface characteristics among offspring of schizophrenia subjects. Schizophr Res 2010; 116:143-51. [PMID: 19962858 PMCID: PMC2818600 DOI: 10.1016/j.schres.2009.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND A systematic study of cortical surface parameters in adolescent offspring of schizophrenia subjects before clinical manifestation could clarify neurodevelopmental antecedents of increased genetic risk. We examined these measures obtained on structural magnetic resonance imaging (MRI) scans at baseline and one year on a series of offspring of schizophrenia parents and healthy subjects. METHODS We measured cortical surface area, curvature and thickness using BRAINS2 on structural MRI scans acquired using 1.5 T GE whole body scanner on all subjects. We examined the differences between study groups at baseline using mixed-effects models, and longitudinal trajectory of these measures using linear mixed-effects models. RESULTS At baseline, offspring of schizophrenia parents showed reduced gyral surface area in the fronto-parietal lobes along with increased sulcal curvature and parietal gyral cortical thinning compared to healthy subjects. Prospective follow up of these subjects for one year showed shrinking of the total surface area, especially in the bilateral frontal and occipital regions along with preservation of cortical thickness among offspring of schizophrenia parents whereas healthy subjects showed preserved or increased surface area and cortical thinning. Correlation of these measures with lobar volumes was not observed at baseline cross-sectional comparisons but was observed in longitudinal examinations. DISCUSSION Our observations suggest that adolescents with genetically elevated risk for schizophrenia show altered cortical surface measures affecting cortical surface area and thickness differentially suggesting a divergent trajectory of neurodevelopment. Cortical surface measures appear to be more sensitive to genetic liability to schizophrenia compared to volumetric measures.
Collapse
Affiliation(s)
- Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Dhruman Goradia
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Shaun Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA 15213
| | - Malolan Rajagopalan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jeffrey Nutche
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tara Magge
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Rajaprabhakaran Rajarethinam
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201
| | - Matcheri S. Keshavan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
37
|
Pantelis C, Yücel M, Bora E, Fornito A, Testa R, Brewer WJ, Velakoulis D, Wood SJ. Neurobiological markers of illness onset in psychosis and schizophrenia: The search for a moving target. Neuropsychol Rev 2010; 19:385-98. [PMID: 19728098 DOI: 10.1007/s11065-009-9114-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/16/2009] [Indexed: 11/30/2022]
Abstract
In this review, we describe neuropsychological and brain imaging findings in the early stages of psychosis and schizophrenia. We focus on recent clinical high-risk studies and consider whether the evidence supports these as 'endophenotypes' of a vulnerability to the illness or as 'biomarkers' of illness onset and transition. The findings suggest that there are a number of processes at psychosis onset that may represent biomarkers of incipient illness. These neurobiological indices particularly implicate the integrity of frontal and temporal cortices, which may or may not be related to the genetics of psychosis (i.e. potential 'endophenotypes'). However, these brain regions are dynamically changing during normal maturation, meaning that any putative neurobiological markers identified at the earliest stages of illness may be relatively unstable.We suggest that, while such measures maybe readily identified as potential neurobiological markers of established illness, they are inconsistent at (or around) the time of illness onset when assessed cross-sectionally. Instead,identification of more valid risk markers may require longitudinal assessment to ascertain normal or abnormal trajectories of neurodevelopment. Accordingly, we assert that the current conceptualisations of potential biomarkers and/or 'endophenotypes' for schizophrenia may need to be reconsidered in the context of normal and abnormal brain maturational processes at the time of onset of psychotic disorders.
Collapse
|
38
|
Joshi AA, Pantazis D, Li Q, Damasio H, Shattuck DW, Toga AW, Leahy RM. Sulcal set optimization for cortical surface registration. Neuroimage 2010; 50:950-9. [PMID: 20056160 DOI: 10.1016/j.neuroimage.2009.12.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 11/30/2022] Open
Abstract
Flat mapping based cortical surface registration constrained by manually traced sulcal curves has been widely used for inter subject comparisons of neuroanatomical data. Even for an experienced neuroanatomist, manual sulcal tracing can be quite time consuming, with the cost increasing with the number of sulcal curves used for registration. We present a method for estimation of an optimal subset of size N(C) from N possible candidate sulcal curves that minimizes a mean squared error metric over all combinations of N(C) curves. The resulting procedure allows us to estimate a subset with a reduced number of curves to be traced as part of the registration procedure leading to optimal use of manual labeling effort for registration. To minimize the error metric we analyze the correlation structure of the errors in the sulcal curves by modeling them as a multivariate Gaussian distribution. For a given subset of sulci used as constraints in surface registration, the proposed model estimates registration error based on the correlation structure of the sulcal errors. The optimal subset of constraint curves consists of the N(C) sulci that jointly minimize the estimated error variance for the subset of unconstrained curves conditioned on the N(C) constraint curves. The optimal subsets of sulci are presented and the estimated and actual registration errors for these subsets are computed.
Collapse
Affiliation(s)
- Anand A Joshi
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kapogiannis D, Barbey AK, Su M, Krueger F, Grafman J. Neuroanatomical variability of religiosity. PLoS One 2009; 4:e7180. [PMID: 19784372 PMCID: PMC2746321 DOI: 10.1371/journal.pone.0007180] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/26/2009] [Indexed: 01/05/2023] Open
Abstract
We hypothesized that religiosity, a set of traits variably expressed in the population, is modulated by neuroanatomical variability. We tested this idea by determining whether aspects of religiosity were predicted by variability in regional cortical volume. We performed structural magnetic resonance imaging of the brain in 40 healthy adult participants who reported different degrees and patterns of religiosity on a survey. We identified four Principal Components of religiosity by Factor Analysis of the survey items and associated them with regional cortical volumes measured by voxel-based morphometry. Experiencing an intimate relationship with God and engaging in religious behavior was associated with increased volume of R middle temporal cortex, BA 21. Experiencing fear of God was associated with decreased volume of L precuneus and L orbitofrontal cortex BA 11. A cluster of traits related with pragmatism and doubting God's existence was associated with increased volume of the R precuneus. Variability in religiosity of upbringing was not associated with variability in cortical volume of any region. Therefore, key aspects of religiosity are associated with cortical volume differences. This conclusion complements our prior functional neuroimaging findings in elucidating the proximate causes of religion in the brain.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Clinical Research Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
- Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Aron K. Barbey
- Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- Department of Psychology, Georgetown University, Washington, D. C., United States of America
| | - Michael Su
- Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Frank Krueger
- Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jordan Grafman
- Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Chen Q, Weinberger DR, Meyer-Lindenberg A. Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. ACTA ACUST UNITED AC 2009; 66:467-77. [PMID: 19414706 DOI: 10.1001/archgenpsychiatry.2009.24] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Schizophrenia is a brain disorder with predominantly genetic risk factors, and previous research has identified heritable cortical and subcortical reductions in local brain volume. To our knowledge, cortical thickness, a measure of particular interest in schizophrenia, has not previously been evaluated in terms of its heritability in relationship to risk for schizophrenia. OBJECTIVE To quantify the distribution and heritability of cortical thickness changes in schizophrenia. DESIGN We analyzed a large sample of normal controls, affected patients, and unaffected siblings using a surface-based approach. Cortical thickness was compared between diagnosis groups on a surfacewide node-by-node basis. Heritability related to disease risk was assessed in regions derived from an automated cortical parcellation algorithm by calculating the Risch lambda. SETTING Research hospital. PARTICIPANTS One hundred ninety-six normal controls, 115 affected patients with schizophrenia, and 192 unaffected siblings. MAIN OUTCOME MEASURE Regional cortical thickness. RESULTS Node-by-node mapping statistics revealed widespread thickness reductions in the patient group, most pronouncedly in the frontal lobe and temporal cortex. Unaffected siblings did not significantly differ from normal controls at the chosen conservative threshold. Risch lambda analysis revealed widespread evidence for heritability for cortical thickness reductions throughout the brain. CONCLUSIONS To our knowledge, the present study provides the first evidence of broadly distributed and heritable reductions of cortical thickness alterations in schizophrenia. However, since only trend-level reductions of thickness were observed in siblings, cortical thickness per se (at least as measured by this approach) is not a strong intermediate phenotype for schizophrenia.
Collapse
Affiliation(s)
- Aaron L Goldman
- Neuroimaging Core Facility, Genes, Cognition, and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|