1
|
Sun Y, Wu Q, Tang J, Liao Y. Predicting drug craving among ketamine-dependent users through machine learning based on brain structural measures. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111216. [PMID: 39662724 DOI: 10.1016/j.pnpbp.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Craving is a core factor driving drug-seeking and -taking, representing a significant risk factor for relapse. This study aims to identify neuroanatomical biomarkers for quantifying and predicting craving. METHODS The study enrolled 94 ketamine-dependent users and 103 healthy controls (HC). Utilizing support vector regression (SVR) with 10-fold cross-validated framework, we developed a neuroanatomical craving model based on measures of regional cortical thickness (CT), surface area (SA), and subcortical volume (SV) derived from T1 images. The generalizability of neuroanatomical craving model was examined in an independent set. Spatial correlation analysis was employed to assess the relationship between the regional contribution to craving and density maps of receptors/transporters from previous molecular imaging studies. RESULTS The neuroanatomical craving model identified neuroanatomical biomarkers that predicted self-report craving (r = 0.635). The most importance of predictors of craving included the SA of the left medial orbitofrontal cortex and the left supramarginal gyrus, CT in the left caudal anterior cingulate, the left cuneus, the right lateral occipital cortex and the right lingual gyrus, as well as the left amygdala GMV. Importantly, these predictors were generalized to an independent sample. Moreover, nodal contribution to predicted craving scores were associated with DA2, 5-HTa, 5-HTb receptor and serotonin reuptake transporter densities. CONCLUSION The results offer a key perspective on craving prediction among ketamine-dependent users, and identify neuroanatomical areas associated with craving in the frontal and parietal regions. Additionally, the underlying neuroanatomical structures involved in the craving process may be linked to the dopaminergic and serotonergic systems.
Collapse
Affiliation(s)
- Yunkai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Qiuxia Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Taracha E, Czarna M, Turzyńska D, Maciejak P. Amphetamine-induced prolonged disturbances in tissue levels of dopamine and serotonin in the rat brain. Pharmacol Rep 2023; 75:596-608. [PMID: 36944909 DOI: 10.1007/s43440-023-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND A hallmark of psychostimulants is the persistence of neurobiological changes they produce. The difficulty in reversing long-time effects of psychostimulants use is why addiction therapy is so ineffective. This study aimed to look for such drug-induced changes that can be detected even after many weeks of abstinence. METHODS Rats were given 12 doses of amphetamine (Amph) at 1.5 mg/kg. The rewarding effect of Amph was assessed using ultrasonic vocalization. After 14 and 28 days of abstinence, tissue levels of dopamine (DA), serotonin (5-HT), and their metabolites were measured in the prefrontal cortex (PFC), nucleus accumbens (Acb), dorsomedial (CPuM), and dorsolateral (CPuL) striatum. RESULTS After 28 days of abstinence, DA levels were increased in the dorsal striatum while 5-HT levels were decreased in all brain regions studied. The opposite direction of changes in DA and 5-HT tissue levels observed in the dorsal striatum may be related to the changes in the emotional state during abstinence and may contribute to the incubation of craving and relapses. Tissue levels of 5-HT and DA showed intra- and inter-structural correlations, most pronounced after 14 days of abstinence. Most of them were absent in the control group (ctrl), which may indicate that their appearance was related to the changes induced by earlier Amph administration. We did not find any associations between reward sensitivity and the persistence of Amph-induced neurochemical disturbances. CONCLUSIONS Administration of 12 moderate doses of Amph causes prolonged changes in DA and 5-HT tissue levels. The direction and severity of the changes are dependent on the brain region and the neurotransmitter studied.
Collapse
Affiliation(s)
- Ewa Taracha
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland.
| | - Magdalena Czarna
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland
- Department of Experimental Oncology and Preclinical Research, The Maria Sklodowska-Curie National Research Institute of Oncology, 5 Wilhelma Roentgena St., 02-781, Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957, Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha St., 02-097, Warsaw, Poland
| |
Collapse
|
3
|
Levine MA, Mandeville JB, Calabro F, Izquierdo-Garcia D, Chonde DB, Chen KT, Hong I, Price JC, Luna B, Catana C. Assessment of motion and model bias on the detection of dopamine response to behavioral challenge. J Cereb Blood Flow Metab 2022; 42:1309-1321. [PMID: 35118904 PMCID: PMC9207487 DOI: 10.1177/0271678x221078616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Compartmental modeling analysis of 11C-raclopride (RAC) PET data can be used to measure the dopaminergic response to intra-scan behavioral tasks. Bias in estimates of binding potential (BPND) and its dynamic changes (ΔBPND) can arise both when head motion is present and when the compartmental model used for parameter estimation deviates from the underlying biology. The purpose of this study was to characterize the effects of motion and model bias within the context of a behavioral task challenge, examining the impacts of different mitigation strategies. Seventy healthy adults were administered bolus plus constant infusion RAC during a simultaneous PET/magnetic resonance (MR) scan with a reward task experiment. BPND and ΔBPND were estimated using an extension of the Multilinear Reference Tissue Model (E-MRTM2) and a new method (DE-MRTM2) was proposed to selectively discount the contribution of the initial uptake period. Motion was effectively corrected with a standard frame-based approach, which performed equivalently to a more complex reconstruction-based approach. DE-MRTM2 produced estimates of ΔBPND in putamen and nucleus accumbens that were significantly different from those estimated from E-MRTM2, while also decoupling ΔBPND values from first-pass k2' estimation and removing skew in the spatial bias distribution of parametric ΔBPND estimates within the striatum.
Collapse
Affiliation(s)
- Michael A Levine
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joseph B Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA.,Harvard-MIT Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel B Chonde
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kevin T Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Inki Hong
- Siemens Healthcare MI, Knoxville, Tennessee, USA
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
4
|
Strzelecki A, Weafer J, Stoops WW. Human behavioral pharmacology of stimulant drugs: An update and narrative review. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:77-103. [PMID: 35341574 DOI: 10.1016/bs.apha.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stimulant use disorders present an enduring public health concern. Chronic stimulant use is associated with a range of health problems, with notable increases in stimulant overdose that disproportionately affect marginalized populations. With these persistent problems, it is important to understand the behavioral and pharmacological factors that contribute to stimulant use in humans. The purpose of this chapter is to provide an update and narrative review on recent human laboratory research that has evaluated the behavioral pharmacology of stimulant drugs. We focus on two prototypic stimulants: cocaine as a prototype monoamine reuptake inhibitor and d-amphetamine as a prototype monoamine releaser. As such, placebo controlled human laboratory studies that involved administration of doses of cocaine or d-amphetamine and were published in peer reviewed journals within the last 10 years (i.e., since 2011) are reviewed. Primary outcomes from these studies are subjective effects, reinforcing effects, cognitive/behavioral effects, and discriminative stimulus effects. Both cocaine and d-amphetamine produce classical stimulant-like behavioral effects (e.g., increase positive subjective effects, function as reinforcers), but there are notable gaps in the literature including understanding sex differences in response to stimulant drugs, cognitive-behavioral effects of stimulants, and influence of use history (e.g., relatively drug naïve vs drug experienced) on stimulant effects.
Collapse
Affiliation(s)
- Ashley Strzelecki
- University of Kentucky, Department of Psychology, Lexington, KY, United States
| | - Jessica Weafer
- University of Kentucky, Department of Psychology, Lexington, KY, United States
| | - William W Stoops
- University of Kentucky, Department of Psychology, Lexington, KY, United States; University of Kentucky, Department of Behavioral Science, Lexington, KY, United States; University of Kentucky, Department of Psychiatry, Lexington, KY, United States; University of Kentucky, Center on Drug and Alcohol Research, Lexington, KY, United States.
| |
Collapse
|
5
|
Tong J, Meyer JH, Boileau I, Ang LC, Fletcher PJ, Furukawa Y, Kish SJ. Serotonin transporter protein in autopsied brain of chronic users of cocaine. Psychopharmacology (Berl) 2020; 237:2661-2671. [PMID: 32494974 PMCID: PMC7502513 DOI: 10.1007/s00213-020-05562-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE The long-held speculation that the brain serotonin system mediates some behavioral effects of the psychostimulant cocaine is supported in part by the high affinity of cocaine for the serotonin transporter (SERT) and by reports that the serotonin transporter (SERT), estimated by SERT binding, is increased in brain of human chronic cocaine users. Excessive SERT activity and consequent synaptic serotonin deficiency might cause a behavioral (e.g., mood) abnormality in chronic users of the drug. OBJECTIVE AND METHODS Previous studies focused on changes in SERT binding, which might not necessarily reflect changes in SERT protein. Therefore, we compared levels of SERT protein, using a quantitative Western blot procedure, in autopsied brain (striatum, cerebral cortices) of chronic human cocaine users (n = 9), who all tested positive for the drug/metabolite in brain, to those in control subjects (n = 15) and, as a separate drug of abuse group, in chronic heroin users (n = 11). RESULTS We found no significant difference in protein levels of SERT or the serotonin synthesizing enzyme tryptophan hydroxylase-2 among the control and drug abuse groups. In the cocaine users, no significant correlations were observed between SERT and brain levels of cocaine plus metabolites, or with levels of serotonin or its metabolite 5-hydroxyindoleacetic acid. CONCLUSION Our postmortem data suggest that a robust increase in striatal/cerebral cortical SERT protein is not a common characteristic of chronic, human cocaine users.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada. .,Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Jeffrey H. Meyer
- Brain Health Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| | - Paul J. Fletcher
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Post Graduate University of Juntendo, Tokyo, Japan
| | - Stephen J. Kish
- Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
6
|
|
7
|
Valence-dependent influence of serotonin depletion on model-based choice strategy. Mol Psychiatry 2016; 21:624-9. [PMID: 25869808 PMCID: PMC4519524 DOI: 10.1038/mp.2015.46] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 03/01/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
Abstract
Human decision-making arises from both reflective and reflexive mechanisms, which underpin goal-directed and habitual behavioural control. Computationally, these two systems of behavioural control have been described by different learning algorithms, model-based and model-free learning, respectively. Here, we investigated the effect of diminished serotonin (5-hydroxytryptamine) neurotransmission using dietary tryptophan depletion (TD) in healthy volunteers on the performance of a two-stage decision-making task, which allows discrimination between model-free and model-based behavioural strategies. A novel version of the task was used, which not only examined choice balance for monetary reward but also for punishment (monetary loss). TD impaired goal-directed (model-based) behaviour in the reward condition, but promoted it under punishment. This effect on appetitive and aversive goal-directed behaviour is likely mediated by alteration of the average reward representation produced by TD, which is consistent with previous studies. Overall, the major implication of this study is that serotonin differentially affects goal-directed learning as a function of affective valence. These findings are relevant for a further understanding of psychiatric disorders associated with breakdown of goal-directed behavioural control such as obsessive-compulsive disorders or addictions.
Collapse
|
8
|
Marcinkiewcz CA. Serotonergic Systems in the Pathophysiology of Ethanol Dependence: Relevance to Clinical Alcoholism. ACS Chem Neurosci 2015; 6:1026-39. [PMID: 25654315 DOI: 10.1021/cn5003573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcoholism is a progressive brain disorder that is marked by increased sensitivity to the positive and negative reinforcing properties of ethanol, compulsive and habitual use despite negative consequences, and chronic relapse to alcohol drinking despite repeated attempts to reduce intake or abstain from alcohol. Emerging evidence from preclinical and clinical studies implicates serotonin (5-hydroxytryptamine; 5-HT) systems in the pathophysiology of alcohol dependence, suggesting that drugs targeting 5-HT systems may have utility in the treatment of alcohol use disorders. In this Review, we discuss the role of 5-HT systems in alcohol dependence with a focus on 5-HT interactions with neural circuits that govern all three stages of the addiction cycle. We attempt to clarify how 5-HT influences circuit function at these different stages with the goal of identifying neural targets for pharmacological treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Catherine A. Marcinkiewcz
- Bowles Center for
Alcohol
Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Badawy AAB, Dougherty DM. Standardization of formulations for the acute amino acid depletion and loading tests. J Psychopharmacol 2015; 29:363-71. [PMID: 25586395 PMCID: PMC5516789 DOI: 10.1177/0269881114565141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The acute tryptophan depletion and loading and the acute tyrosine plus phenylalanine depletion tests are powerful tools for studying the roles of cerebral monoamines in behaviour and symptoms related to various disorders. The tests use either amino acid mixtures or proteins. Current amino acid mixtures lack specificity in humans, but not in rodents, because of the faster disposal of branched-chain amino acids (BCAAs) by the latter. The high content of BCAA (30-60%) is responsible for the poor specificity in humans and we recommend, in a 50g dose, a control formulation with a lowered BCAA content (18%) as a common control for the above tests. With protein-based formulations, α-lactalbumin is specific for acute tryptophan loading, whereas gelatine is only partially effective for acute tryptophan depletion. We recommend the use of the whey protein fraction glycomacropeptide as an alternative protein. Its BCAA content is ideal for specificity and the absence of tryptophan, tyrosine and phenylalanine render it suitable as a template for seven formulations (separate and combined depletion or loading and a truly balanced control). We invite the research community to participate in standardization of the depletion and loading methodologies by using our recommended amino acid formulation and developing those based on glycomacropeptide.
Collapse
Affiliation(s)
| | - Donald M Dougherty
- Department of Psychiatry, University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7793, San Antonio, Texas, 78229, USA
| |
Collapse
|
10
|
Biskup CS, Gaber T, Helmbold K, Bubenzer-Busch S, Zepf FD. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids 2015; 47:651-83. [DOI: 10.1007/s00726-015-1919-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/09/2015] [Indexed: 01/16/2023]
|
11
|
Worbe Y, Savulich G, de Wit S, Fernandez-Egea E, Robbins TW. Tryptophan Depletion Promotes Habitual over Goal-Directed Control of Appetitive Responding in Humans. Int J Neuropsychopharmacol 2015; 18:pyv013. [PMID: 25663044 PMCID: PMC4648160 DOI: 10.1093/ijnp/pyv013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/27/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Optimal behavioral performance results from a balance between goal-directed and habitual systems of behavioral control, which are modulated by ascending monoaminergic projections. While the role of the dopaminergic system in behavioral control has been recently addressed, the extent to which changes in global serotonin neurotransmission could influence these 2 systems is still poorly understood. METHODS We employed the dietary acute tryptophan depletion procedure to reduce serotonin neurotransmission in 18 healthy volunteers and 18 matched controls. We used a 3-stage instrumental learning paradigm that includes an initial instrumental learning stage, a subsequent outcome-devaluation test, and a slip-of-action stage, which directly tests the balance between hypothetical goal-directed and habitual systems. We also employed a separate response inhibition control test to assess the behavioral specificity of the results. RESULTS Acute tryptophan depletion produced a shift of behavioral performance towards habitual responding as indexed by performance on the slip-of-action test. Moreover, greater habitual responding in the acute tryptophan depletion group was predicted by a steeper decline in plasma tryptophan levels. In contrast, acute tryptophan depletion left intact the ability to use discriminative stimuli to guide instrumental choice as indexed by the instrumental learning stage and did not impair inhibitory response control. CONCLUSIONS The major implication of this study is that serotonin modulates the balance between goal-directed and stimulus-response habitual systems of behavioral control. Our findings thus imply that diminished serotonin neurotransmission shifts behavioral control towards habitual responding.
Collapse
Affiliation(s)
- Yulia Worbe
- Behavioral and Clinical Neuroscience Institute (Drs Worbe, Fernandez-Egea, and Robbins), Department of Psychiatry (Drs Savulich and Fernandez-Egea), and Department of Psychology (Dr Robbins), University of Cambridge, Cambridge, United Kingdom; Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands (Dr de Wit).
| | - George Savulich
- Behavioral and Clinical Neuroscience Institute (Drs Worbe, Fernandez-Egea, and Robbins), Department of Psychiatry (Drs Savulich and Fernandez-Egea), and Department of Psychology (Dr Robbins), University of Cambridge, Cambridge, United Kingdom; Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands (Dr de Wit)
| | - Sanne de Wit
- Behavioral and Clinical Neuroscience Institute (Drs Worbe, Fernandez-Egea, and Robbins), Department of Psychiatry (Drs Savulich and Fernandez-Egea), and Department of Psychology (Dr Robbins), University of Cambridge, Cambridge, United Kingdom; Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands (Dr de Wit)
| | - Emilio Fernandez-Egea
- Behavioral and Clinical Neuroscience Institute (Drs Worbe, Fernandez-Egea, and Robbins), Department of Psychiatry (Drs Savulich and Fernandez-Egea), and Department of Psychology (Dr Robbins), University of Cambridge, Cambridge, United Kingdom; Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands (Dr de Wit)
| | - Trevor W Robbins
- Behavioral and Clinical Neuroscience Institute (Drs Worbe, Fernandez-Egea, and Robbins), Department of Psychiatry (Drs Savulich and Fernandez-Egea), and Department of Psychology (Dr Robbins), University of Cambridge, Cambridge, United Kingdom; Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands (Dr de Wit)
| |
Collapse
|
12
|
Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 2015; 67:176-97. [PMID: 25505168 PMCID: PMC4279075 DOI: 10.1124/pr.114.009514] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.
Collapse
MESH Headings
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/metabolism
- Behavior, Addictive/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Central Nervous System Stimulants/adverse effects
- Cocaine/adverse effects
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Cocaine-Related Disorders/psychology
- Disease Models, Animal
- Dopamine/metabolism
- Drug Design
- Humans
- Molecular Targeted Therapy
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Agents/therapeutic use
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Leonard L Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| | - Kathryn A Cunningham
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| |
Collapse
|
13
|
Kim TS, Kondo DG, Kim N, Renshaw PF. Altitude may contribute to regional variation in methamphetamine use in the United States: a population database study. Psychiatry Investig 2014; 11:430-6. [PMID: 25395974 PMCID: PMC4225207 DOI: 10.4306/pi.2014.11.4.430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Methamphetamine (MA) use rates in the United States (US) have consistently demonstrated geographical variation and have been higher in the West and Midwest. This uneven pattern of use could be explained by regional differences in MA manufacturing and distribution, but may also result from differences in altitude. The hypobaric hypoxia found at high altitude alters neurotransmitter synthesis in the brain, which may contribute to MA use. The present study investigated the relationship between mean altitude and MA use rate in the 48 contiguous US states and the District of Columbia. METHODS State-level estimates of past year MA use were extracted from the National Survey on Drug Use and Health report. The mean altitude of each state was calculated using the Shuttle Radar Topography Mission altitude data set. RESULTS There was a significant positive correlation between mean state altitude and MA use rate (r=0.66, p<0.0001). Multivariate linear regression analysis showed that altitude remained a significant predictor for MA use rate (β=0.36, p=0.02), after adjusting for age, ethnicity, education, socioeconomic level, employment, MA laboratory incidents, subpopulations, and other substance use. CONCLUSION Altitude appears to a possible contributing factor for regional variation of MA use in the US. Further studies will be required to determine biological changes in neurotransmission resulting from chronic mild hypoxia at high altitude in MA users.
Collapse
Affiliation(s)
- Tae-Suk Kim
- The Brain Institute, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Douglas G Kondo
- The Brain Institute, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- VISN 19 MIRECC, Salt Lake City Veterans Affairs Health Care System, Salt Lake City, UT, USA
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Perry F Renshaw
- The Brain Institute, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- VISN 19 MIRECC, Salt Lake City Veterans Affairs Health Care System, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW. Serotonin depletion induces 'waiting impulsivity' on the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology 2014; 39:1519-26. [PMID: 24385133 PMCID: PMC3988556 DOI: 10.1038/npp.2013.351] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Convergent results from animal and human studies suggest that reducing serotonin neurotransmission promotes impulsive behavior. Here, serotonin depletion was induced by the dietary tryptophan depletion procedure (TD) in healthy volunteers to examine the role of serotonin in impulsive action and impulsive choice. We used a novel translational analog of a rodent 5-choice serial reaction time task (5-CSRTT)-- the human 4-CSRTT--and a reward delay-discounting questionnaire to measure effects on these different forms of 'waiting impulsivity'. There was no effect of TD on impulsive choice as indexed by the reward delay-discounting questionnaire. However, TD significantly increased 4-CSRTT premature responses (or impulsive action), which is remarkably similar to the previous findings of effect of serotonin depletion on rodent 5-CSRTT performance. Moreover, the increased premature responding in TD correlated significantly with individual differences on the motor impulsivity subscale of the Barratt Impulsivity Scale. TD also improved the accuracy of performance and speeded responding, possibly indicating enhanced attention and reward processing. The results suggest: (i) the 4-CSRTT will be a valuable addition to the tests already available to measure impulsivity in humans in a direct translational analog of a test extensively used in rodents; (ii) TD in humans produces a qualitatively similar profile of effects to those in rodents (ie, enhancing premature responding), hence supporting the conclusion that TD in humans exerts at least some of its effects on central serotonin; and (iii) this manipulation of serotonin produces dissociable effects on different measures of impulsivity, suggesting considerable specificity in its modulatory role.
Collapse
Affiliation(s)
- Yulia Worbe
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Emilio Fernandez-Egea
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
16
|
Blum K, Oscar-Berman M, Badgaiyan RD, Khurshid KA, Gold MS. Dopaminergic Neurogenetics of Sleep Disorders in Reward Deficiency Syndrome (RDS). JOURNAL OF SLEEP DISORDERS & THERAPY 2014; 3:126. [PMID: 25657892 PMCID: PMC4314958 DOI: 10.4172/2167-0277.1000e126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is well-known that sleep has a vital function especially as it relates to prevention of substance-related disorders as discussed in the DSM-V. We are cognizant that certain dopaminergic gene polymorphisms have been associated with various sleep disorders. The importance of "normal dopamine homeostasis" is tantamount for quality of life especially for the recovering addict. Since it is now know that sleep per se has been linked with metabolic clearance of neurotoxins in the brain, it is parsonomiuos to encourage continued research in sleep science, which should ultimately result in attenuation of sleep deprivation especially associated with substance related disorders.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA
- Department of Nutrigenomics, IGENE, LLC, Austin, Texas, USA
- Dominion Diagnostics, LLC ., North Kingstown, Rhode Island, USA
- Department of Clinical Neurology, PATH Foundation NY., USA
| | - Marlene Oscar-Berman
- Department of Psychiatry and Anatomy & Neurobiology, Boston University School of Medicine and Boston VA Healthcare System, Boston, Massachusetts, USA
| | - Rajendra D Badgaiyan
- Department of Neuroimaging and Psychiatry, University of Buffalo College of Medicine, Buffalo, New York., USA
| | - Khurshid A. Khurshid
- Department of Psychiatry, & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mark S. Gold
- Department of Psychiatry, & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
17
|
Abstract
Neuroimaging, including PET, MRI, and MRS, is a powerful approach to the study of brain function. This article reviews neuroimaging findings related to alcohol and other drugs of abuse that have been published since 2011. Uses of neuroimaging are to characterize patients to determine who will fare better in treatment and to investigate the reasons underlying the effect on outcomes. Neuroimaging is also used to characterize the acute and chronic effects of substances on the brain and how those effects are related to dependence, relapse, and other drug effects. The data can be used to provide encouraging information for patients, as several studies have shown that long-term abstinence is associated with at least partial normalization of neurological abnormalities.
Collapse
Affiliation(s)
- Mark J Niciu
- National Institutes of Health and Department of Health and Human Services, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, 10 Center Dr., Building 10/CRC, Room 7-5545, Bethesda, MD 20892, USA
| | - Graeme F Mason
- Yale University Department of Diagnostic Radiology and Psychiatry, New Haven, CT, USA
| |
Collapse
|
18
|
Cunningham KA, Anastasio NC. Serotonin at the nexus of impulsivity and cue reactivity in cocaine addiction. Neuropharmacology 2014; 76 Pt B:460-78. [PMID: 23850573 PMCID: PMC4090081 DOI: 10.1016/j.neuropharm.2013.06.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/07/2023]
Abstract
Cocaine abuse and addiction remain great challenges on the public health agendas in the U.S. and the world. Increasingly sophisticated perspectives on addiction to cocaine and other drugs of abuse have evolved with concerted research efforts over the last 30 years. Relapse remains a particularly powerful clinical problem as, even upon termination of drug use and initiation of abstinence, the recidivism rates can be very high. The cycling course of cocaine intake, abstinence and relapse is tied to a multitude of behavioral and cognitive processes including impulsivity (a predisposition toward rapid unplanned reactions to stimuli without regard to the negative consequences), and cocaine cue reactivity (responsivity to cocaine-associated stimuli) cited as two key phenotypes that contribute to relapse vulnerability even years into recovery. Preclinical studies suggest that serotonin (5-hydroxytryptamine; 5-HT) neurotransmission in key neural circuits may contribute to these interlocked phenotypes well as the altered neurobiological states evoked by cocaine that precipitate relapse events. As such, 5-HT is an important target in the quest to understand the neurobiology of relapse-predictive phenotypes, to successfully treat this complex disorder and improve diagnostic and prognostic capabilities. This review emphasizes the role of 5-HT and its receptor proteins in key addiction phenotypes and the implications of current findings to the future of therapeutics in addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Kathryn A Cunningham
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
19
|
Yang K, Su J, Hu Z, Lang R, Sun X, Li X, Wang D, Wei M, Yin J. Serotonin transporter (5-HTT) gene polymorphisms and susceptibility to epilepsy: a meta-analysis and meta-regression. Genet Test Mol Biomarkers 2013; 17:890-7. [PMID: 24093801 DOI: 10.1089/gtmb.2013.0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Serotonin transporter (5-HTT) plays a central role in the regulation of serotonin (5-hydroxytryptamine [5-HT]) synaptic function. Disturbances in 5-HT transmission are the most frequently reported neurobiological substrates of suicidal behavior. Emerging evidence has shown that the common polymorphisms in the 5-HTT gene may contribute to the risk of epilepsy, but individually published studies showed inconclusive results. This meta-analysis aimed to derive a more precise estimation of the associations between 5-HTT gene polymorphisms and susceptibility to epilepsy. METHODS A literature search of PubMed, Embase, Web of Science, and China BioMedicine (CBM) databases was conducted on articles published before June 1st, 2013. Crude odds ratios with 95% confidence intervals were calculated. RESULTS Seven studies were assessed with a total 1303 epilepsy patients and 1288 healthy controls. The meta-analysis results indicated that there was no significant relationship between 5-HTT gene polymorphisms and an increased risk of epilepsy. Further subgroup analysis based on ethnicity also found no significant association between 5-HTT gene polymorphisms and epilepsy risk among both Caucasian and Asian populations. In addition, there was also no significant association between 5-HTT gene polymorphisms and the risk of psychiatric comorbidity in patients with epilepsy. CONCLUSION In conclusion, the current meta-analysis indicates that 5-HTT gene polymorphisms might not be the primary determinants of epilepsy susceptibility. 5-HTT genes might be expected to interact with other genes in different signaling pathways to initiate and promote the epileptogenic process.
Collapse
Affiliation(s)
- Kang Yang
- Department of Neurosurgery, Second Affiliated Hospital of Dalian Medical University , Dalian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
D’Agostino AE, Small DM. Neuroimaging the interaction of mind and metabolism in humans. Mol Metab 2012; 1:10-20. [PMID: 24024114 PMCID: PMC3757655 DOI: 10.1016/j.molmet.2012.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 01/01/2023] Open
Abstract
Hormonal and metabolic signals interact with neural circuits orchestrating behavior to guide food intake. Neuroimaging techniques such as functional magnetic resonance imaging (fMRI) enable the identification of where in the brain particular mental processes like desire, satiety and pleasure occur. Once these neural circuits are described it then becomes possible to determine how metabolic and hormonal signals can alter brain response to influence psychological states and decision-making processes to guide intake. Here, we provide an overview of the contributions of functional neuroimaging to the understanding of how subjective and neural responses to food and food cues interact with metabolic/hormonal factors.
Collapse
Affiliation(s)
| | - Dana M. Small
- The John B Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Bogenschutz MP, Pommy JM. Therapeutic mechanisms of classic hallucinogens in the treatment of addictions: from indirect evidence to testable hypotheses. Drug Test Anal 2012; 4:543-55. [PMID: 22761106 DOI: 10.1002/dta.1376] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 12/12/2022]
Abstract
Alcohol and drug addiction are major public health problems, and existing treatments are only moderately effective. Although there has been interest for over half a century in the therapeutic use of classic hallucinogens to treat addictions, clinical research with these drugs was halted at an early stage in the early 1970s, leaving many fundamental questions unanswered. In the past two decades, clinical research on classic hallucinogens has resumed, although addiction treatment trials are only now beginning. The purpose of this paper is to provide a targeted review of the research most relevant to the therapeutic potential of hallucinogens, and to integrate this information with current thinking about addiction and recovery. On the basis of this information, we present a heuristic model which organizes a number of hypotheses that may be tested in future research. We conclude that existing evidence provides a convincing rationale for further research on the effects of classic hallucinogens in the treatment of addiction.
Collapse
Affiliation(s)
- Michael P Bogenschutz
- University of New Mexico Health Sciences Center, Department of Psychiatry Center for Psychiatric Research, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | |
Collapse
|
22
|
Liang CS, Ho PS, Xenitidis K, Campbell C. Tryptophan depletion in addictive behaviours. Br J Psychiatry 2012; 201:73; author reply 73-4. [PMID: 22753855 DOI: 10.1192/bjp.201.1.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Herman AI, Balogh KN. Polymorphisms of the serotonin transporter and receptor genes: susceptibility to substance abuse. Subst Abuse Rehabil 2012; 3:49-57. [PMID: 22933845 PMCID: PMC3427938 DOI: 10.2147/sar.s25864] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter implicated in regulating substance-use disorder (SUD) acquisition, maintenance, and recovery. During the past several years, an abundance of research has begun discovering and describing specific 5-HT genetic polymorphisms associated with SUDs. Genetic variations in the 5-HT system, such as SLC6A4, HTR1B, HTR2A, HTR2C, HTR3 (HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E), likely play a role contributing to SUD patient heterogeneity. The 5-HT transporter-linked polymorphic region S allele, located in SLC6A4, has now been modestly associated with alcohol dependence in two large meta-analyses. Additional 5-HT genes may also play a role but have not been extensively investigated. A limited number of SUD treatment studies have included 5-HT gene variation as moderating treatment outcomes, but the results have been equivocal. Future research on 5-HT addiction genetics should adopt whole-genome sequencing technology, utilize large study samples, and collect data from multiple ethnic groups. Together, these methods will build on the work already conducted with the aim of utilizing 5-HT genetics in SUD treatment settings.
Collapse
Affiliation(s)
- Aryeh I Herman
- Department of Psychiatry, VA Connecticut Healthcare/Yale University School of Medicine, West Haven, CT, USA
| | | |
Collapse
|
24
|
Measuring Dopamine Synaptic Transmission with Molecular Imaging and Pharmacological Challenges: The State of the Art. MOLECULAR IMAGING IN THE CLINICAL NEUROSCIENCES 2012. [DOI: 10.1007/7657_2012_45] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Abstract
Cox et al's paper addresses an issue that has long been assumed to be a central aspect of brain function - the interplay of different neurotransmitters - but for which we have very little evidence so far. It is currently unclear whether these findings will have implications for the treatment of those with cocaine or other substance dependence.
Collapse
|