1
|
Kirsch S, Maier S, Lin M, Guendelman S, Kaufmann C, Dziobek I, Tebartz van Elst L. The Alexithymia Hypothesis of Autism Revisited: Alexithymia Modulates Social Brain Activity During Facial Affect Recognition in Autistic Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00023-0. [PMID: 39827966 DOI: 10.1016/j.bpsc.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Both autism spectrum disorder (ASD) and alexithymia are linked to difficulties in facial affect recognition (FAR) together with differences in social brain activity. According to the alexithymia hypothesis, difficulties in emotion processing in ASD can be attributed to increased levels of co-occurring alexithymia. Despite substantial evidence supporting the hypothesis at the behavioral level, the effects of co-occurring alexithymia on brain function during FAR remain unexplored. METHODS Data from 120 participants (60 ASD, 60 control) who completed an FAR task were analyzed using functional magnetic resonance imaging and behavioral measures. The task included both explicit and implicit measures of FAR. Autistic participants were further categorized based on their alexithymia status. Group differences in FAR performance and associated brain activation were investigated. RESULTS Autistic participants showed lower FAR performance than control participants, regardless of alexithymia status. Imaging revealed 3 cortical clusters with reduced activation in participants with alexithymia compared with ASD participants without alexithymia during explicit FAR, including the left inferior parietal gyrus, cuneus, and middle temporal gyrus. During implicit FAR, ASD participants with alexithymia showed 3 cortical clusters of increased activation, including the left precentral gyrus, right precuneus, and temporoparietal junction. CONCLUSIONS Our study shows an unexpected dissociation between behavior and brain response: While ASD affects FAR performance, only co-occurring alexithymia modulates corresponding social brain activations. Although not supporting the alexithymia hypothesis on the behavioral level, the study highlights the complex relationship between ASD and co-occurring alexithymia, emphasizing the significance of co-occurring conditions in understanding emotion processing in ASD.
Collapse
Affiliation(s)
- Simon Kirsch
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinical Psychology of Social Interaction, Institute of Psychology, Humboldt, Universität zu Berlin, Berlin, Germany.
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Muyu Lin
- Clinical Psychology of Social Interaction, Institute of Psychology, Humboldt, Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt, Universität zu Berlin, Berlin, Germany
| | - Simón Guendelman
- Clinical Psychology of Social Interaction, Institute of Psychology, Humboldt, Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt, Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- Clinical Psychology of Social Interaction, Institute of Psychology, Humboldt, Universität zu Berlin, Berlin, Germany
| | - Isabel Dziobek
- Clinical Psychology of Social Interaction, Institute of Psychology, Humboldt, Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt, Universität zu Berlin, Berlin, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Gao S, Wang X, Su Y. Examining whether adults with autism spectrum disorder encounter multiple problems in theory of mind: a study based on meta-analysis. Psychon Bull Rev 2023; 30:1740-1758. [PMID: 37101097 DOI: 10.3758/s13423-023-02280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 04/28/2023]
Abstract
Theory of mind (ToM) represents a complex ability, while persons with autism spectrum disorder (ASD) encounter difficulties in the processing of ToM. The present ToM-focused studies on adults with ASD report inconsistent results, possibly owing to the differences between tasks. For instance, different ToM-related tasks involve different cognitive abilities, but the development of these cognitive abilities is different among adults with ASD, thereby leading to different behaviors by the same individual with ASD in different tasks. Therefore, it is of vital significance to explore the potential reasons for inconsistencies in the existing studies based on the task classification perspective. Hence, this study primarily reviews the existing ToM tasks used in studies on adults with ASD; afterward, based on the forms and characteristics of the task, the current ToM tasks are classified into four categories-reading comprehension, perceptual scene comprehension, comprehensive scene comprehension , and self-other processing. Subsequently, a meta-analysis is undertaken to determine the difference in each ToM task category between the ASD group and the typically developing (TD) group. As a result, 110 research papers (including 3,205 adults with ASD and 3,675 TD adults) that fulfilled the stated criteria are examined in this study. The study findings suggest that adults with ASD demonstrate worse performance in terms of all four ToM task categories as compared to TD adults. Furthermore, compared with tasks of self-other processing and perceptual scene comprehension, adults with ASD perform worse in reading comprehension and comprehensive scene comprehension. This shows that the differences between tasks may exert a potential influence on the study results. Future studies should focus on different abilities involved in ToM processing and the choice of ToM tasks, in order to elucidate the critical problems of ToM in adults with ASD.
Collapse
Affiliation(s)
- Shihuan Gao
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Xieshun Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
- School of Psychology, Shandong Normal University, Jinan, 250014, China
| | - Yanjie Su
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.
| |
Collapse
|
3
|
Rosenblau G, Frolichs K, Korn CW. A neuro-computational social learning framework to facilitate transdiagnostic classification and treatment across psychiatric disorders. Neurosci Biobehav Rev 2023; 149:105181. [PMID: 37062494 PMCID: PMC10236440 DOI: 10.1016/j.neubiorev.2023.105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Social deficits are among the core and most striking psychiatric symptoms, present in most psychiatric disorders. Here, we introduce a novel social learning framework, which consists of neuro-computational models that combine reinforcement learning with various types of social knowledge structures. We outline how this social learning framework can help specify and quantify social psychopathology across disorders and provide an overview of the brain regions that may be involved in this type of social learning. We highlight how this framework can specify commonalities and differences in the social psychopathology of individuals with autism spectrum disorder (ASD), personality disorders (PD), and major depressive disorder (MDD) and improve treatments on an individual basis. We conjecture that individuals with psychiatric disorders rely on rigid social knowledge representations when learning about others, albeit the nature of their rigidity and the behavioral consequences can greatly differ. While non-clinical cohorts tend to efficiently adapt social knowledge representations to relevant environmental constraints, psychiatric cohorts may rigidly stick to their preconceived notions or overly coarse knowledge representations during learning.
Collapse
Affiliation(s)
- Gabriela Rosenblau
- Department of Psychological and Brain Sciences, George Washington University, Washington DC, USA; Autism and Neurodevelopmental Disorders Institute, George Washington University, Washington DC, USA.
| | - Koen Frolichs
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Zhang Q, Li B, Jin S, Liu W, Liu J, Xie S, Zhang L, Kang Y, Ding Y, Zhang X, Cheng W, Yang Z. Comparing the Effectiveness of Brain Structural Imaging, Resting-state fMRI, and Naturalistic fMRI in Recognizing Social Anxiety Disorder in Children and Adolescents. Psychiatry Res Neuroimaging 2022; 323:111485. [PMID: 35567906 DOI: 10.1016/j.pscychresns.2022.111485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023]
Abstract
Social anxiety disorder (SAD) is a common anxiety disorder in childhood and adolescence. Studies on SAD in adults have reported both structural and functional aberrancies of the brain at the group level. However, evidence has shown differences in anxiety-related brain abnormalities between adolescents and adults. Since children and adolescents can afford limited scan time, optimizing the scan tasks is essential for SAD research in children and adolescents. Thus, we need to address whether brain structure, resting-state fMRI, and naturalistic imaging enable individualized identification of SAD in children and adolescents, which measurement is more effective, and whether pooling multi-modal features can improve the identification of SAD. We comprehensively addressed these questions by building machine learning models based on parcel-wise brain features. We found that naturalistic fMRI yielded higher classification accuracy (69.17%) than the other modalities and the classification performance showed dependence on the contents of the movie. The classification models also identified contributing brain regions, some of which exhibited correlations with the symptoms scores of SAD. However, pooling brain features from the three modalities did not help enhance the classification accuracy. These results support the application of carefully designed naturalistic imaging in recognizing children and adolescents at risk of SAD.
Collapse
Affiliation(s)
- Qinjian Zhang
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Baobin Li
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Liu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
6
|
Reorganization of the Social Brain in Individuals with Only One Intact Cerebral Hemisphere. Brain Sci 2021; 11:brainsci11080965. [PMID: 34439583 PMCID: PMC8392565 DOI: 10.3390/brainsci11080965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 01/08/2023] Open
Abstract
Social cognition and emotion are ubiquitous human processes that recruit a reliable set of brain networks in healthy individuals. These brain networks typically comprise midline (e.g., medial prefrontal cortex) as well as lateral regions of the brain including homotopic regions in both hemispheres (e.g., left and right temporo-parietal junction). Yet the necessary roles of these networks, and the broader roles of the left and right cerebral hemispheres in socioemotional functioning, remains debated. Here, we investigated these questions in four rare adults whose right (three cases) or left (one case) cerebral hemisphere had been surgically removed (to a large extent) to treat epilepsy. We studied four closely matched healthy comparison participants, and also compared the patient findings to data from a previously published larger healthy comparison sample (n = 33). Participants completed standardized socioemotional and cognitive assessments to investigate social cognition. Functional magnetic resonance imaging (fMRI) data were obtained during passive viewing of a short, animated movie that distinctively recruits two social brain networks: one engaged when thinking about other agents’ internal mental states (e.g., beliefs, desires, emotions; so-called Theory of Mind or ToM network), and the second engaged when thinking about bodily states (e.g., pain, hunger; so-called PAIN network). Behavioral assessments demonstrated remarkably intact general cognitive functioning in all individuals with hemispherectomy. Social-emotional functioning was somewhat variable in the hemispherectomy participants, but strikingly, none of these individuals had consistently impaired social-emotional processing and none of the assessment scores were consistent with a psychiatric disorder. Using inter-region correlation analyses, we also found surprisingly typical ToM and PAIN networks, as well as typical differentiation of the two networks (in the intact hemisphere of patients with either right or left hemispherectomy), based on idiosyncratic reorganization of cortical activation. The findings argue that compensatory brain networks can process social and emotional information following hemispherectomy across different age levels (from 3 months to 20 years old), and suggest that social brain networks typically distributed across midline and lateral brain regions in this domain can be reorganized, to a substantial degree.
Collapse
|
7
|
Daedelow LS, Beck A, Romund L, Mascarell-Maricic L, Dziobek I, Romanczuk-Seiferth N, Wüstenberg T, Heinz A. Neural correlates of RDoC-specific cognitive processes in a high-functional autistic patient: a statistically validated case report. J Neural Transm (Vienna) 2021; 128:845-859. [PMID: 34003357 PMCID: PMC8205905 DOI: 10.1007/s00702-021-02352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
The level of functioning of individuals with autism spectrum disorder (ASD) varies widely. To better understand the neurobiological mechanism associated with high-functioning ASD, we studied the rare case of a female patient with an exceptional professional career in the highly competitive academic field of Mathematics. According to the Research Domain Criteria (RDoC) approach, which proposes to describe the basic dimensions of functioning by integrating different levels of information, we conducted four fMRI experiments targeting the (1) social processes domain (Theory of mind (ToM) and face matching), (2) positive valence domain (reward processing), and (3) cognitive domain (N-back). Patient’s data were compared to data of 14 healthy controls (HC). Additionally, we assessed the subjective experience of our case during the experiments. The patient showed increased response times during face matching and achieved a higher total gain in the Reward task, whereas her performance in N-back and ToM was similar to HC. Her brain function differed mainly in the positive valence and cognitive domains. During reward processing, she showed reduced activity in a left-hemispheric frontal network and cortical midline structures but increased connectivity within this network. During the working memory task patients’ brain activity and connectivity in left-hemispheric temporo-frontal regions were elevated. In the ToM task, activity in posterior cingulate cortex and temporo-parietal junction was reduced. We suggest that the high level of functioning in our patient is rather related to the effects in brain connectivity than to local cortical information processing and that subjective report provides a fruitful framework for interpretation.
Collapse
Affiliation(s)
- Laura S Daedelow
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne Beck
- Health and Medical University Potsdam, Potsdam, Germany
| | - Lydia Romund
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lea Mascarell-Maricic
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Berlin, Germany.,Department of Psychology, Humboldt-University of Berlin, Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany. .,Department of Clinical Psychology and Psychotherapy, Psychological Institute, Ruprecht-Karls-University Heidelberg, Hauptstr. 47-51, 69117, Heidelberg, Germany.
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Frontotemporal dementia, music perception and social cognition share neurobiological circuits: A meta-analysis. Brain Cogn 2021; 148:105660. [PMID: 33421942 DOI: 10.1016/j.bandc.2020.105660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023]
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease that presents with profound changes in social cognition. Music might be a sensitive probe for social cognition abilities, but underlying neurobiological substrates are unclear. We performed a meta-analysis of voxel-based morphometry studies in FTD patients and functional MRI studies for music perception and social cognition tasks in cognitively normal controls to identify robust patterns of atrophy (FTD) or activation (music perception or social cognition). Conjunction analyses were performed to identify overlapping brain regions. In total 303 articles were included: 53 for FTD (n = 1153 patients, 42.5% female; 1337 controls, 53.8% female), 28 for music perception (n = 540, 51.8% female) and 222 for social cognition in controls (n = 5664, 50.2% female). We observed considerable overlap in atrophy patterns associated with FTD, and functional activation associated with music perception and social cognition, mostly encompassing the ventral language network. We further observed overlap across all three modalities in mesolimbic, basal forebrain and striatal regions. The results of our meta-analysis suggest that music perception and social cognition share neurobiological circuits that are affected in FTD. This supports the idea that music might be a sensitive probe for social cognition abilities with implications for diagnosis and monitoring.
Collapse
|
9
|
Rosenblau G, O'Connell G, Heekeren HR, Dziobek I. Neurobiological mechanisms of social cognition treatment in high-functioning adults with autism spectrum disorder. Psychol Med 2020; 50:2374-2384. [PMID: 31551097 DOI: 10.1017/s0033291719002472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The promise of precision medicine for autism spectrum disorder (ASD) hinges on developing neuroscience-informed individualized interventions. Taking an important step in this direction, we investigated neuroplasticity in response to an ecologically-valid, computer-based social-cognitive training (SCOTT). METHODS In an active control group design, 48 adults with ASD were randomly assigned to a 3-month SCOTT or non-social computer training. Participants completed behavioral tasks, a functional and structural magnetic resonance imaging session before and after the training period. RESULTS The SCOTT group showed social-cognitive improvements on close and distant generalization tasks. The improvements scaled with reductions in functional activity and increases in cortical thickness in prefrontal regions. CONCLUSION In sum, we provide evidence for the sensitivity of neuroscientific methods to reflect training-induced social-cognitive improvements in adults with ASD. These results encourage the use of neuroimaging data to describe and quantify treatment-related changes more broadly.
Collapse
Affiliation(s)
- Gabriela Rosenblau
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin14195, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin14195, Germany
- Autism and Neurodevelopmental Disorders Institute, The George Washington University and Children's National Health System, 2115 G St NW, Washington, DC20052, USA
| | - Garret O'Connell
- Berlin School of Mind and Brain, Institute of Psychology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Hauke R Heekeren
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin14195, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin14195, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Isabel Dziobek
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin14195, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin14195, Germany
- Berlin School of Mind and Brain, Institute of Psychology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
10
|
Seghier ML, Fahim MA, Habak C. Educational fMRI: From the Lab to the Classroom. Front Psychol 2019; 10:2769. [PMID: 31866920 PMCID: PMC6909003 DOI: 10.3389/fpsyg.2019.02769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
Functional MRI (fMRI) findings hold many potential applications for education, and yet, the translation of fMRI findings to education has not flowed. Here, we address the types of fMRI that could better support applications of neuroscience to the classroom. This 'educational fMRI' comprises eight main challenges: (1) collecting artifact-free fMRI data in school-aged participants and in vulnerable young populations, (2) investigating heterogenous cohorts with wide variability in learning abilities and disabilities, (3) studying the brain under natural and ecological conditions, given that many practical topics of interest for education can be addressed only in ecological contexts, (4) depicting complex age-dependent associations of brain and behaviour with multi-modal imaging, (5) assessing changes in brain function related to developmental trajectories and instructional intervention with longitudinal designs, (6) providing system-level mechanistic explanations of brain function, so that useful individualized predictions about learning can be generated, (7) reporting negative findings, so that resources are not wasted on developing ineffective interventions, and (8) sharing data and creating large-scale longitudinal data repositories to ensure transparency and reproducibility of fMRI findings for education. These issues are of paramount importance to the development of optimal fMRI practices for educational applications.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Mohamed A Fahim
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Claudine Habak
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Ciaramidaro A, Bölte S, Schlitt S, Hainz D, Poustka F, Weber B, Freitag C, Walter H. Transdiagnostic deviant facial recognition for implicit negative emotion in autism and schizophrenia. Eur Neuropsychopharmacol 2018; 28:264-275. [PMID: 29275843 DOI: 10.1016/j.euroneuro.2017.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/21/2017] [Accepted: 12/02/2017] [Indexed: 11/19/2022]
Abstract
Impaired facial affect recognition (FAR) is observed in schizophrenia and autism spectrum disorder (ASD) and has been linked to amygdala and fusiform gyrus dysfunction. ASD patient's impairments seem to be more pronounced during implicit rather than explicit FAR, whereas for schizophrenia data are inconsistent. However, there are no studies comparing both patient groups in an identical design. The aim of this three-group study was to identify (i) whether FAR alterations are equally present in both groups, (ii) whether they are present rather during implicit or explicit FAR, (iii) and whether they are conveyed by similar or disorder-specific neural mechanisms. Using fMRI, we investigated neural activation during explicit and implicit negative and neutral FAR in 33 young-adult individuals with ASD, 20 subjects with paranoid-schizophrenia and 25 IQ- and gender-matched controls individuals. Differences in activation patterns between each clinical group and controls, respectively were found exclusively for implicit FAR in amygdala and fusiform gyrus. In addition, the ASD group additionally showed reduced activations in medial prefrontal cortex (PFC), bilateral dorso-lateral PFC, ventro-lateral PFC, posterior-superior temporal sulcus and left temporo-parietal junction. Although subjects with ASD showed more widespread altered activation patterns, a direct comparison between both patient groups did not show disorder-specific deficits in neither patient group. In summary, our findings are consistent with a common neural deficit during implicit negative facial affect recognition in schizophrenia and autism spectrum disorders.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Dept. of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe-University, Frankfurt/M, Germany; Department of Computer, Control and Management Engineering, Univ. of Rome "Sapienza", Rome, Italy.
| | - Sven Bölte
- Dept. of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe-University, Frankfurt/M, Germany; Dept. of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Karolinska Institutet, & Center of Psychiatry Research (CPF), Stockholm, Sweden
| | - Sabine Schlitt
- Dept. of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe-University, Frankfurt/M, Germany
| | - Daniela Hainz
- Dept. of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe-University, Frankfurt/M, Germany
| | - Fritz Poustka
- Dept. of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe-University, Frankfurt/M, Germany
| | - Bernhard Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-University, Frankfurt/M, Germany; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Christine Freitag
- Dept. of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Goethe-University, Frankfurt/M, Germany
| | - Henrik Walter
- Dept. of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
12
|
A Computational Account of Optimizing Social Predictions Reveals That Adolescents Are Conservative Learners in Social Contexts. J Neurosci 2017; 38:974-988. [PMID: 29255008 DOI: 10.1523/jneurosci.1044-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/30/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
As adolescents transition to the complex world of adults, optimizing predictions about others' preferences becomes vital for successful social interactions. Mounting evidence suggests that these social learning processes are affected by ongoing brain development across adolescence. A mechanistic understanding of how adolescents optimize social predictions and how these learning strategies are implemented in the brain is lacking. To fill this gap, we combined computational modeling with functional neuroimaging. In a novel social learning task, male and female human adolescents and adults predicted the preferences of peers and could update their predictions based on trial-by-trial feedback about the peers' actual preferences. Participants also rated their own preferences for the task items and similar additional items. To describe how participants optimize their inferences over time, we pitted simple reinforcement learning models against more specific "combination" models, which describe inferences based on a combination of reinforcement learning from past feedback and participants' own preferences. Formal model comparison revealed that, of the tested models, combination models best described how adults and adolescents update predictions of others. Parameter estimates of the best-fitting model differed between age groups, with adolescents showing more conservative updating. This developmental difference was accompanied by a shift in encoding predictions and the errors thereof within the medial prefrontal and fusiform cortices. In the adolescent group, encoding of own preferences and prediction errors scaled with parent-reported social traits, which provides additional external validity for our learning task and the winning computational model. Our findings thus help to specify adolescent-specific social learning processes.SIGNIFICANCE STATEMENT Adolescence is a unique developmental period of heightened awareness about other people. Here we probe the suitability of various computational models to describe how adolescents update their predictions of others' preferences. Within the tested model space, predictions of adults and adolescents are best described by the same learning model, but adolescents show more conservative updating. Compared with adults, brain activity of adolescents is modulated less by predictions themselves and more by prediction errors per se, and this relationship scales with adolescents' social traits. Our findings help specify social learning across adolescence and generate hypotheses about social dysfunctions in psychiatric populations.
Collapse
|
13
|
Rosenblau G, Kliemann D, Dziobek I, Heekeren HR. Emotional prosody processing in autism spectrum disorder. Soc Cogn Affect Neurosci 2017; 12:224-239. [PMID: 27531389 PMCID: PMC5390729 DOI: 10.1093/scan/nsw118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/12/2016] [Indexed: 01/10/2023] Open
Abstract
Individuals with Autism Spectrum Disorder (ASD) are characterized by severe deficits in social communication, whereby the nature of their impairments in emotional prosody processing have yet to be specified. Here, we investigated emotional prosody processing in individuals with ASD and controls with novel, lifelike behavioral and neuroimaging paradigms. Compared to controls, individuals with ASD showed reduced emotional prosody recognition accuracy on a behavioral task. On the neural level, individuals with ASD displayed reduced activity of the STS, insula and amygdala for complex vs basic emotions compared to controls. Moreover, the coupling between the STS and amygdala for complex vs basic emotions was reduced in the ASD group. Finally, groups differed with respect to the relationship between brain activity and behavioral performance. Brain activity during emotional prosody processing was more strongly related to prosody recognition accuracy in ASD participants. In contrast, the coupling between STS and anterior cingulate cortex (ACC) activity predicted behavioral task performance more strongly in the control group. These results provide evidence for aberrant emotional prosody processing of individuals with ASD. They suggest that the differences in the relationship between the neural and behavioral level of individuals with ASD may account for their observed deficits in social communication.
Collapse
Affiliation(s)
- Gabriela Rosenblau
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany.,Yale Child Study Center, Yale University, 230 S. Frontage Road, New Haven, CT 06519, USA
| | - Dorit Kliemann
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.,Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Isabel Dziobek
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Hauke R Heekeren
- Cluster of Excellence 'Languages of Emotion', Freie Universität Berlin, Berlin 14195, Germany.,Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany.,Dahlem Institute for Neuroimaging of Emotion, Freie Universität, Berlin, Germany
| |
Collapse
|
14
|
Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S. The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 2017; 128:262-282. [PMID: 28950734 DOI: 10.1080/00207454.2017.1385614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic system plays a key role in perception, which is an important executive function of the brain. Modulation in dopaminergic system forms an important biochemical underpinning of neural mechanisms of time perception in a very wide range, from milliseconds to seconds to longer daily rhythms. Distinct types of temporal experience are poorly understood, and the relationship between processing of different intervals by the brain has received little attention. A comprehensive understanding of interval timing functions should be sought within a wider context of temporal processing, involving genetic aspects, pharmacological models, cognitive aspects, motor control and the neurological diseases with impaired dopaminergic system. Particularly, an unexplored question is whether the role of dopamine in interval timing can be integrated with the role of dopamine in non-interval timing temporal components. In this review, we explore a wider perspective of dopaminergic system, involving genetic polymorphisms, pharmacological models, executive functions and neurological diseases on the time perception. We conclude that the dopaminergic system has great participation in impact on time perception and neurobiological basis of the executive functions and neurological diseases.
Collapse
Affiliation(s)
- Victor Marinho
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Thomaz Oliveira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Kaline Rocha
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Jéssica Ribeiro
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Francisco Magalhães
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Thalys Bento
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Giovanny R Pinto
- b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Bruna Velasques
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Pedro Ribeiro
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Luiza Di Giorgio
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Marco Orsini
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,d Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center (UNISUAM) , Rio de Janeiro , Brazil
| | - Daya S Gupta
- e Department of Biology , Camden County College , Blackwood , NJ , USA
| | - Juliana Bittencourt
- f Biomedical Engineering Program (COPPE), Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Victor Hugo Bastos
- g Brain Mapping and Functionality Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Silmar Teixeira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| |
Collapse
|