1
|
Mezler M, Jones RS, Sangaraju D, Goldman DC, Hoffmann M, Heikkinen AT, Mannila J, Chang JH, Foquet L, Pusalkar S, Chothe PP, Scheer N. Analysis of the Bile Acid Composition in a Fibroblast Growth Factor 19-Expressing Liver-Humanized Mouse Model and Its Use for CYP3A4-Mediated Drug-Drug Interaction Studies. Drug Metab Dispos 2023; 51:1391-1402. [PMID: 37524541 DOI: 10.1124/dmd.123.001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.
Collapse
Affiliation(s)
- Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Robert S Jones
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Dewakar Sangaraju
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Devorah C Goldman
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Matthew Hoffmann
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Aki T Heikkinen
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Janne Mannila
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Jae H Chang
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Lander Foquet
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Sandeepraj Pusalkar
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Paresh P Chothe
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Nico Scheer
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| |
Collapse
|
2
|
Schmidt HC, Hagens J, Schuppert P, Appl B, Raluy LP, Trochimiuk M, Philippi C, Li Z, Reinshagen K, Tomuschat C. Biliatresone induces cholangiopathy in C57BL/6J neonates. Sci Rep 2023; 13:10574. [PMID: 37386088 PMCID: PMC10310722 DOI: 10.1038/s41598-023-37354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Exposure to plant toxins or microbiota that are able to digest common food ingredients to toxic structures might be responsible for biliary atresia (BA). An isoflavonoid, biliatresone is known to effectively alter the extrahepatic bile duct (EHBD) development in BALB/c mice. Biliatresone causes a reduction of Glutathione (GSH) levels, SOX17 downregulation and is effectively countered with N-Acetyl-L-cysteine treatment in vitro. Therefore, reversing GSH-loss appears to be a promising treatment target for a translational approach. Since BALB/c mice have been described as sensitive in various models, we evaluated the toxic effect of biliatresone in robust C57BL/6J mice and confirmed its toxicity. Comparison between BALB/c and C57BL/6J mice revealed similarity in the toxic model. Affected neonates exhibited clinical symptoms of BA, such as jaundice, ascites, clay-colored stools, yellow urine and impaired weight gain. The gallbladders of jaundiced neonates were hydropic and EHBD were twisted and enlarged. Serum and histological analysis proved cholestasis. No anomalies were seen in the liver and EHBD of control animals. With our study we join a chain of evidence confirming that biliatresone is an effective agent for cross-lineage targeted alteration of the EHBD system.
Collapse
Affiliation(s)
- Hans Christian Schmidt
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Johanna Hagens
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Pauline Schuppert
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Birgit Appl
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Laia Pagerols Raluy
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Magdalena Trochimiuk
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Clara Philippi
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Zhongwen Li
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Konrad Reinshagen
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Tomuschat
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
4
|
Sangaraju D, Katavolos P, Liang X, Chou C, Zabka TS, Dean B, Maher J. Establishment of baseline profiles of 50 bile acids in preclinical toxicity species: A comprehensive assessment of translational differences and study design considerations for biomarker development. Toxicol Appl Pharmacol 2022; 443:116008. [DOI: 10.1016/j.taap.2022.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
5
|
The Synbiotic Combination of Akkermansia muciniphila and Quercetin Ameliorates Early Obesity and NAFLD through Gut Microbiota Reshaping and Bile Acid Metabolism Modulation. Antioxidants (Basel) 2021; 10:antiox10122001. [PMID: 34943104 PMCID: PMC8698339 DOI: 10.3390/antiox10122001] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota plays a key role in obesity and non-alcoholic fatty liver disease (NAFLD), so synbiotics could be a therapeutic alternative. We aim to evaluate a nutritional intervention together with the administration of the bacteria Akkermansia muciniphila and the antioxidant quercetin in an in vivo model of early obesity and NAFLD. 21-day-old rats were fed with control or high-fat diet for six weeks. Then, all animals received control diet supplemented with/without quercetin and/or A. muciniphila for three weeks. Gut microbiota, NAFLD-related parameters, circulating bile acids (BAs) and liver gene expression were analyzed. The colonization with A. muciniphila was associated with less body fat, while synbiotic treatment caused a steatosis remission, linked to hepatic lipogenesis modulation. The synbiotic promoted higher abundance of Cyanobacteria and Oscillospira, and lower levels of Actinobacteria, Lactococcus, Lactobacillus and Roseburia. Moreover, it favored elevated unconjugated hydrophilic BAs plasma levels and enhanced hepatic expression of BA synthesis and transport genes. A. muciniphila correlated with circulating BAs and liver lipid and BA metabolism genes, suggesting a role of this bacterium in BA signaling. Beneficial effects of A. muciniphila and quercetin combination are driven by gut microbiota modulation, the shift in BAs and the gut-liver bile flow enhancement.
Collapse
|
6
|
Sangaraju D, Shi Y, Van Parys M, Ray A, Walker A, Caminiti R, Milanowski D, Jaochico A, Dean B, Liang X. Robust and Comprehensive Targeted Metabolomics Method for Quantification of 50 Different Primary, Secondary, and Sulfated Bile Acids in Multiple Biological Species (Human, Monkey, Rabbit, Dog, and Rat) and Matrices (Plasma and Urine) Using Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2033-2049. [PMID: 33826317 DOI: 10.1021/jasms.0c00435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bile acids (BAs) are biomolecules synthesized in the liver from cholesterol and are constituents of bile. The in-vivo BA pool includes more than 50 known diverse BAs which are unconjugated, amino acid conjugated, sulfated, and glucuronidated metabolites. Hemostasis of bile acids is known to be highly regulated and an interplay between liver metabolism, gut microbiome function, intestinal absorption, and enterohepatic recirculation. Interruption of BA homeostasis has been attributed to several metabolic diseases and drug induced liver injury (DILI), and their use as potential biomarkers is increasingly becoming important. Speciated quantitative and comprehensive profiling of BAs in various biomatrices from humans and preclinical animal species are important to understand their significance and biological function. Consequently, a versatile one single bioanalytical method for BAs is required to accommodate quantitation in a broad range of biomatrices from human and preclinical animal species. Here we report a versatile, comprehensive, and high throughput liquid chromatography-high resolution mass spectrometry (LC-HRMS) targeted metabolomics method for quantitative analysis of 50 different BAs in multiple matrices including human serum, plasma, and urine and plasma and urine of preclinical animal species (rat, rabbit, dog, and monkey). The method has been sufficiently qualified for accuracy, precision, robustness, and ruggedness and addresses the issue of nonspecific binding of bile acids to plastic for urine samples. Application of this method includes comparison for BA analysis between matched plasma and serum samples, human and animal species differences in BA pools, data analysis, and visualization of complex BA data using BA indices or ratios to understand BA biology, metabolism, and transport.
Collapse
Affiliation(s)
- Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yao Shi
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Michael Van Parys
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Adam Ray
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Abigail Walker
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Rachel Caminiti
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Dennis Milanowski
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Allan Jaochico
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Dean
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaorong Liang
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Doerfler H, Botesteanu DA, Blech S, Laux R. Untargeted Metabolomic Analysis Combined With Multivariate Statistics Reveal Distinct Metabolic Changes in GPR40 Agonist-Treated Animals Related to Bile Acid Metabolism. Front Mol Biosci 2021; 7:598369. [PMID: 33521051 PMCID: PMC7843463 DOI: 10.3389/fmolb.2020.598369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolomics has been increasingly applied to biomarker discovery, as untargeted metabolic profiling represents a powerful exploratory tool for identifying causal links between biomarkers and disease phenotypes. In the present work, we used untargeted metabolomics to investigate plasma specimens of rats, dogs, and mice treated with small-molecule drugs designed for improved glycemic control of type 2 diabetes mellitus patients via activation of GPR40. The in vivo pharmacology of GPR40 is not yet fully understood. Compounds targeting this receptor have been found to induce drug-induced liver injury (DILI). Metabolomic analysis facilitating an integrated UPLC-TWIMS-HRMS platform was used to detect metabolic differences between treated and non-treated animals within two 4-week toxicity studies in rat and dog, and one 2-week toxicity study in mouse. Multivariate statistics of untargeted metabolomics data subsequently revealed the presence of several significantly upregulated endogenous compounds in the treated animals whose plasma level is known to be affected during DILI. A specific bile acid metabolite useful as endogenous probe for drug-drug interaction studies was identified (chenodeoxycholic acid-24 glucuronide), as well as a metabolic precursor indicative of acidic bile acid biosynthesis (7α-hydroxy-3-oxo-4-cholestenoic acid). These results correlate with typical liver toxicity parameters on the individual level.
Collapse
Affiliation(s)
- Hannes Doerfler
- Department of Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dana-Adriana Botesteanu
- Department of Drug Discovery Sciences, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Stefan Blech
- Department of Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Laux
- Department of Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
8
|
Axling U, Cavalera M, Degerman E, Gåfvels M, Eggertsen G, Holm C. Increased whole body energy expenditure and protection against diet-induced obesity in Cyp8b1-deficient mice is accompanied by altered adipose tissue features. Adipocyte 2020; 9:587-599. [PMID: 33016185 PMCID: PMC7553510 DOI: 10.1080/21623945.2020.1827519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to elucidate mechanisms whereby bile acids exert beneficial metabolic effects, using the Cyp8b1−/- mouse as model. These mice are unable to synthesize cholic acid, resulting in increased synthesis of chenodeoxycholic acid and enlarged bile acid pool. Cyp8b1−/- mice were found to be protected against high-fat diet induced obesity. Bomb calorimetry measurements showed increased faecal energy output in Cyp8b1−/mice. Indirect calorimetry measurements demonstrated increased energy expenditure in Cyp8b1−/- mice. Meal tolerance tests revealed no differences in glucose disposal, but the insulin response was lower in Cyp8b1−/- mice. Intravenous glucose tolerance tests, as well as static incubations of isolated islets, showed no difference between the groups, whereas insulin tolerance tests demonstrated improved insulin sensitivity in Cyp8b1−/- mice. The genes encoding mitochondrial transcription factor A (TFAM) and type 2-iodothyronine deiodinase were upregulated in brown adipose tissue of Cyp8b1/- mice and Western blot analyses showed increased abundance of TFAM, and a trend towards increased abundance of UCP1. The upregulation of TFAM and UCP1 was accompanied by increased mitochondrial density, as shown by transmission electron microscopy. White adipocytes of Cyp8b1−/- mice exhibited increased responsiveness to both catecholamines and insulin in lipolysis experiments and increased insulin-stimulated lipogenesis. In conclusion, increased energy expenditure, mitochondrial density of brown adipocytes and faecal energy output may all contribute to the protection against diet-induced obesity of Cyp8b1−/- mice. Enhanced insulin sensitivity of Cyp8b1−/- mice is accompanied by increased hormonal responsiveness of white adipocytes.
Collapse
Affiliation(s)
- Ulrika Axling
- Lund University Diabetes Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Michele Cavalera
- Lund University Diabetes Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Eva Degerman
- Lund University Diabetes Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mats Gåfvels
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Gösta Eggertsen
- Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Cecilia Holm
- Lund University Diabetes Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Wren SN, Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. A Villin-Driven Fxr Transgene Modulates Enterohepatic Bile Acid Homeostasis and Response to an n-6-Enriched High-Fat Diet. Int J Mol Sci 2020; 21:ijms21217829. [PMID: 33105708 PMCID: PMC7659968 DOI: 10.3390/ijms21217829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
A diet high in n-6 polyunsaturated fatty acids (PUFAs) may contribute to inflammation and tissue damage associated with obesity and pathologies of the colon and liver. One contributing factor may be dysregulation by n-6 fatty acids of enterohepatic bile acid (BA) metabolism. The farnesoid X receptor (FXR) is a nuclear receptor that regulates BA homeostasis in the liver and intestine. This study aims to compare the effects on FXR regulation and BA metabolism of a palm oil-based diet providing 28% energy (28%E) from fat and low n-6 linoleic acid (LA, 2.5%E) (CNTL) with those of a soybean oil-based diet providing 50%E from fat and high (28%E) in LA (n-6HFD). Wild-type (WT) littermates and a transgenic mouse line overexpressing the Fxrα1 isoform under the control of the intestine-specific Villin promoter (Fxrα1TG) were fed the CNTL or n-6HFD starting at weaning through 16 weeks of age. Compared to the CNTL diet, the n-6HFD supports higher weight gain in both WT and FxrαTG littermates; increases the expression of Fxrα1/2, and peroxisome proliferator-activated receptor-γ1 (Pparγ1) in the small intestine, Fxrα1/2 in the colon, and cytochrome P4507A1 (Cyp7a1) and small heterodimer protein (Shp) in the liver; and augments the levels of total BA in the liver, and primary chenodeoxycholic (CDCA), cholic (CA), and β-muricholic (βMCA) acid in the cecum. Intestinal overexpression of the Fxra1TG augments expression of Shp and ileal bile acid-binding protein (Ibabp) in the small intestine and Ibabp in the proximal colon. Conversely, it antagonizes n-6HFD-dependent accumulation of intestinal and hepatic CDCA and CA; hepatic levels of Cyp7a1; and expression of Pparγ in the small intestine. We conclude that intestinal Fxrα1 overexpression represses hepatic de novo BA synthesis and protects against n-6HFD-induced accumulation of human-specific primary bile acids in the cecum.
Collapse
Affiliation(s)
- Spencer N. Wren
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
| | - Micah G. Donovan
- Interdisciplinary Cancer Biology Graduate Program, The University of Arizona, Tucson, AZ 85724, USA;
| | - Ornella I. Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Tom C. Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA;
| | - Donato F. Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-520-626-9108
| |
Collapse
|
10
|
Fukizawa S, Yamashita M, Fujisaka S, Tobe K, Nonaka Y, Murayama N. Isoxanthohumol, a hop-derived flavonoid, alters the metabolomics profile of mouse feces. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:100-108. [PMID: 32775127 PMCID: PMC7392914 DOI: 10.12938/bmfh.2019-045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to verify the effect of treatment with isoxanthohumol (IX) on the metabolomics profile of mouse feces to explore the host-intestinal bacterial interactions at the molecular level. The fecal contents of several amino acids in the high-fat diet (HFD) + 0.1% IX group (treated with IX mixed in diets for 12 weeks) were significantly lower than in the HFD group. The fecal contents of the secondary bile acid deoxycholic acid (DCA) in the HFD + 180 mg/kg IX group (orally treated with IX for 8 weeks) were significantly lower than in the HFD group; the values in the HFD group were higher than those in the normal diet (ND) group. Administration of IX changed the fecal metabolomics profile. For some metabolites, IX normalized HFD-induced fluctuations.
Collapse
Affiliation(s)
- Shinya Fukizawa
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Mai Yamashita
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| | - Yuji Nonaka
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Norihito Murayama
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
11
|
Shiffka SJ, Jones JW, Li L, Farese AM, MacVittie TJ, Wang H, Swaan PW, Kane MA. Quantification of common and planar bile acids in tissues and cultured cells. J Lipid Res 2020; 61:1524-1535. [PMID: 32718973 DOI: 10.1194/jlr.d120000726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bile acids (BAs) have been established as ubiquitous regulatory molecules implicated in a large variety of healthy and pathological processes. However, the scope of BA heterogeneity is often underrepresented in current literature. This is due in part to inadequate detection methods, which fail to distinguish the individual constituents of the BA pool. Thus, the primary aim of this study was to develop a method that would allow the simultaneous analysis of specific C24 BA species, and to apply that method to biological systems of interest. Herein, we describe the generation and validation of an LC-MS/MS assay for quantification of numerous BAs in a variety of cell systems and relevant biofluids and tissue. These studies included the first baseline level assessment for planar BAs, including allocholic acid, in cell lines, biofluids, and tissue in a nonhuman primate (NHP) laboratory animal, Macaca mulatta, in healthy conditions. These results indicate that immortalized cell lines make poor models for the study of BA synthesis and metabolism, whereas human primary hepatocytes represent a promising alternative model system. We also characterized the BA pool of M. mulatta in detail. Our results support the use of NHP models for the study of BA metabolism and pathology in lieu of murine models. Moreover, the method developed here can be applied to the study of common and planar C24 BA species in other systems.
Collapse
Affiliation(s)
- Stephanie J Shiffka
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Ann M Farese
- Department of Radiation Oncology, Division of Translational Radiation Science, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, Division of Translational Radiation Science, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
12
|
Fitzpatrick LR, Jenabzadeh P. IBD and Bile Acid Absorption: Focus on Pre-clinical and Clinical Observations. Front Physiol 2020; 11:564. [PMID: 32595517 PMCID: PMC7303840 DOI: 10.3389/fphys.2020.00564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) causes chronic inflammation affecting the GI tract. It is classified as consisting of Crohn’s Disease (CD) and Ulcerative Colitis (UC). Bile Acid absorption is altered in both pre-clinical models of Inflammatory Bowel Disease (IB) and in human IBD. The bile acid transporter apical sodium dependent bile acid transporter (ASBT) showed decreased expression in rats with TNBS colitis. Decreased ASBT expression has also been described in murine, canine and rabbit models of intestinal inflammation. Human IBD studies have shown that an inflamed ileum can interrupt enterohepatic recirculation of bile acid, which could be due to inflammatory cytokine induced repression of the ASBT promoter. There are different hypotheses as to why ASBT is downregulated during CD. In addition, one study has demonstrated the beneficial effect of a glucocorticoid on ASBT expression, when treating IBD. Our aim in this paper was to systematically review various aspects of bile acid malabsorption in animal models of intestinal inflammation, as well as in IBD.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA, United States
| | - Paniz Jenabzadeh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
13
|
Calderon G, McRae A, Rievaj J, Davis J, Zandvakili I, Linker-Nord S, Burton D, Roberts G, Reimann F, Gedulin B, Vella A, LaRusso NF, Camilleri M, Gribble FM, Acosta A. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine 2020; 55:102759. [PMID: 32344198 PMCID: PMC7186521 DOI: 10.1016/j.ebiom.2020.102759] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background The bile acid (BA) pathway plays a role in regulation of food intake and glucose metabolism, based mainly on findings in animal models. Our aim was to determine whether the BA pathway is altered and correctable in human obesity and diabetes. Methods We conducted 3 investigations: 1) BA receptor pathways were studied in NCI-H716 enteroendocrine cell (EEC) line, whole human colonic mucosal tissue and in human colonic EEC isolated by Fluorescence-activated Cell Sorting (ex vivo) from endoscopically-obtained biopsies colon mucosa; 2) We characterized the BA pathway in 307 participants by measuring during fasting and postprandial levels of FGF19, 7αC4 and serum BA; 3) In a placebo-controlled, double-blind, randomised, 28-day trial, we studied the effect of ileo-colonic delivery of conjugated BAs (IC-CBAS) on glucose metabolism, incretins, and lipids, in participants with obesity and diabetes. Findings Human colonic GLP-1-producing EECs express TGR5, and upon treatment with bile acids in vitro, human EEC differentially expressed GLP-1 at the protein and mRNA level. In Ussing Chamber, GLP-1 release was stimulated by Taurocholic acid in either the apical or basolateral compartment. FGF19 was decreased in obesity and diabetes compared to controls. When compared to placebo, IC-CBAS significantly decreased postprandial glucose, fructosamine, fasting insulin, fasting LDL, and postprandial FGF19 and increased postprandial GLP-1 and C-peptide. Increase in faecal BA was associated with weight loss and with decreased fructosamine. Interpretations In humans, BA signalling machinery is expressed in colonic EECs, deficient in obesity and diabetes, and when stimulated with IC-CBAS, improved glucose homeostasis. ClinicalTrials.gov number, NCT02871882, NCT02033876. Funding Research support and drug was provided by Satiogen Pharmaceuticals (San Diego, CA). AA, MC, and NFL report grants (AA- C-Sig P30DK84567, K23 DK114460; MC- NIH R01 DK67071; NFL- R01 DK057993) from the NIH. JR was supported by an Early Career Grant from Society for Endocrinology.
Collapse
Affiliation(s)
- Gerardo Calderon
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Alison McRae
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Juraj Rievaj
- University of Cambridge, UK; Current affiliation: Dosage Form Design & Development, AstraZeneca Granta Park, Cambridge CB21 6GH, UK
| | - Judith Davis
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Inuk Zandvakili
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Sara Linker-Nord
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Geoffrey Roberts
- Current affiliation: Dosage Form Design & Development, AstraZeneca Granta Park, Cambridge CB21 6GH, UK
| | | | | | - Adrian Vella
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | | | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States.
| |
Collapse
|
14
|
Straniero S, Laskar A, Savva C, Härdfeldt J, Angelin B, Rudling M. Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J Lipid Res 2020; 61:480-491. [PMID: 32086245 DOI: 10.1194/jlr.ra119000307] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Compared with humans, rodents have higher synthesis of cholesterol and bile acids (BAs) and faster clearance and lower levels of serum LDL-cholesterol. Paradoxically, they increase BA synthesis in response to bile duct ligation (BDL). Another difference is the production of hydrophilic 6-hydroxylated muricholic acids (MCAs), which may antagonize the activation of FXRs, in rodents versus humans. We hypothesized that the presence of MCAs is key for many of these metabolic differences between mice and humans. We thus studied the effects of genetic deletion of the Cyp2c70 gene, previously proposed to control MCA formation. Compared with WT animals, KO mice created using the CRISPR/Cas9 system completely lacked MCAs, and displayed >50% reductions in BA and cholesterol synthesis and hepatic LDL receptors, leading to a marked increase in serum LDL-cholesterol. The doubling of BA synthesis following BDL in WT animals was abolished in KO mice, despite extinguished intestinal fibroblast growth factor (Fgf)15 expression in both groups. Accumulation of cholesterol-enriched particles ("Lp-X") in serum was almost eliminated in KO mice. Livers of KO mice were increased 18% in weight, and serum markers of liver function indicated liver damage. The human-like phenotype of BA metabolism in KO mice could not be fully explained by the activation of FXR-mediated changes. In conclusion, the presence of MCAs is critical for many of the known metabolic differences between mice and humans. The Cyp2c70-KO mouse should be useful in studies exploring potential therapeutic targets for human disease.
Collapse
Affiliation(s)
- Sara Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Amit Laskar
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Christina Savva
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Jennifer Härdfeldt
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
15
|
Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T, Ueda H, Mizuno S, Sugiyama F, Takahashi S, Ikegami T. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J Lipid Res 2019; 61:54-69. [PMID: 31645370 DOI: 10.1194/jlr.ra119000395] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The bile acid (BA) composition in mice is substantially different from that in humans. Chenodeoxycholic acid (CDCA) is an end product in the human liver; however, mouse Cyp2c70 metabolizes CDCA to hydrophilic muricholic acids (MCAs). Moreover, in humans, the gut microbiota converts the primary BAs, cholic acid and CDCA, into deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. In contrast, the mouse Cyp2a12 reverts this action and converts these secondary BAs to primary BAs. Here, we generated Cyp2a12 KO, Cyp2c70 KO, and Cyp2a12/Cyp2c70 double KO (DKO) mice using the CRISPR-Cas9 system to study the regulation of BA metabolism under hydrophobic BA composition. Cyp2a12 KO mice showed the accumulation of DCAs, whereas Cyp2c70 KO mice lacked MCAs and exhibited markedly increased hepatobiliary proportions of CDCA. In DKO mice, not only DCAs or CDCAs but also DCAs, CDCAs, and LCAs were all elevated. In Cyp2c70 KO and DKO mice, chronic liver inflammation was observed depending on the hepatic unconjugated CDCA concentrations. The BA pool was markedly reduced in Cyp2c70 KO and DKO mice, but the FXR was not activated. It was suggested that the cytokine/c-Jun N-terminal kinase signaling pathway and the pregnane X receptor-mediated pathway are the predominant mechanisms, preferred over the FXR/small heterodimer partner and FXR/fibroblast growth factor 15 pathways, for controlling BA synthesis under hydrophobic BA composition. From our results, we hypothesize that these KO mice can be novel and useful models for investigating the roles of hydrophobic BAs in various human diseases.
Collapse
Affiliation(s)
- Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Junichi Iwamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Takeshi Hirayama
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Yukio Morishita
- Diagnostic Pathology Division, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tadakuni Monma
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hajime Ueda
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Tadashi Ikegami
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
16
|
Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.
Collapse
Affiliation(s)
- Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
17
|
Rzagalinski I, Hainz N, Meier C, Tschernig T, Volmer DA. MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:711-722. [PMID: 29417494 PMCID: PMC5889423 DOI: 10.1007/s13361-017-1886-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 05/07/2023]
Abstract
Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Nadine Hainz
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123, Saarbrücken, Germany.
- Department of Chemistry, Humboldt University of Berlin, 12489, Berlin, Germany.
| |
Collapse
|
18
|
Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017; 45:86-100. [PMID: 28279860 PMCID: PMC5466893 DOI: 10.1016/j.anaerobe.2017.03.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/18/2022]
Abstract
The changing epidemiology of Clostridium difficile infection over the past decades presents a significant challenge in the management of C. difficile associated diseases. The gastrointestinal tract microbiota provides colonization resistance against C. difficile, and growing evidence suggests that gut microbial derived secondary bile acids (SBAs) play a role. We hypothesized that the C. difficile life cycle; spore germination and outgrowth, growth, and toxin production, of strains that vary by age and ribotype will differ in their sensitivity to SBAs. C. difficile strains R20291 and CD196 (ribotype 027), M68 and CF5 (017), 630 (012), BI9 (001) and M120 (078) were used to define taurocholate (TCA) mediated spore germination and outgrowth, growth, and toxin activity in the absence and presence of gut microbial derived SBAs (deoxycholate, isodeoxycholate, lithocholate, isolithocholate, ursodeoxycholate, ω-muricholate, and hyodeoxycholate) found in the human and mouse large intestine. C. difficile strains varied in their rates of germination, growth kinetics, and toxin activity without the addition of SBAs. C. difficile M120, a highly divergent strain, had robust germination, growth, but significantly lower toxin activity compared to other strains. Many SBAs were able to inhibit TCA mediated spore germination and outgrowth, growth, and toxin activity in a dose dependent manner, but the level of inhibition and resistance varied across all strains and ribotypes. This study illustrates how clinically relevant C. difficile strains can have different responses when exposed to SBAs present in the gastrointestinal tract.
Collapse
Affiliation(s)
- Rajani Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Research Building 424, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Jenessa A Winston
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Research Building 424, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Research Building 424, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| |
Collapse
|