1
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
2
|
Dincel D, Darı Y. Sample Preparation Techniques for Analysis of Endocannabinoids in Biological Fluids and Tissues. Crit Rev Anal Chem 2024; 55:406-417. [PMID: 39620971 DOI: 10.1080/10408347.2024.2432998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This review discusses various sample pretreatment methods for the analytical assessment of endocannabinoids in biological fluids and tissues. Techniques like liquid-liquid extraction, protein precipitation, SALLE, SPME, and micro-solid phase extraction (µ-SPE) are investigated. The findings show that SALLE and SPME provide phase separation as a fast and environmentally friendly method and allow high sensitivity in the analyses. The analysis of endocannabinoids, particularly, 2-AG, is challenging due to its tendency to isomerize into 1-AG and its lack of stability. These challenges are highlighted, emphasizing the need for optimized analytical methods to ensure accurate and reliable results. In conclusion, this study demonstrates the applicability of effective extraction techniques as an alternative to traditional methods to obtain reliable results in endocannabinoid analyses and provides a new perspective to the literature.
Collapse
Affiliation(s)
- Demet Dincel
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkiye
| | - Yasin Darı
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkiye
- Department of Analytical Chemistry, Graduate School of Anadolu University, Eskişehir, Turkiye
| |
Collapse
|
3
|
Sens A, Thomas D, Schäfer SMG, König A, Pinter A, Tegeder I, Geisslinger G, Gurke R. Endocannabinoid analysis in GlucoEXACT plasma: Method validation and sample handling recommendations. Talanta 2024; 278:126518. [PMID: 39018759 DOI: 10.1016/j.talanta.2024.126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Endocannabinoids (ECs), such as anandamide and 2-arachidonyl glycerol (2-AG), contribute to the pathology of inflammatory, malignant, cardiovascular, metabolic and mental diseases. The reliability of quantitative analyses in biological fluids of ECs and endocannabinoid-like (EC-like) substances depends on pre-analytical conditions such as temperature and "time-to-centrifugation". Standardization of these parameters is critical for valid quantification and implementation in clinical research. In this study, we compared concentrations obtained with GlucoEXACT blood collection tubes versus K3EDTA tubes and employed the optimized procedure to assess ECs profiles in patients with inflammatory skin disease and healthy controls. A UHPLC-MS/MS method was validated for human plasma from GlucoEXACT blood collection tubes according to EMA and FDA guidelines, and pre-analytical conditions were systematically modified to assess analyte stability and optimize the procedures. The results showed significantly lower concentrations of ECs and EC-like substance concentrations with GlucoEXACT tubes compared with K3EDTA tubes, and GlucoEXACT extended the time window of stable concentrations. The strongest method-disagreement occurred for 1/2-AG suggesting that GlucoEXACT delayed ex vivo isomer rearrangement. Hence, GlucoExact tubes were superior in terms of stability and reliability. However, although absolute concentrations obtained with GlucoExact and K3EDTA differed, linear regression studies showed high agreement (except for 1/2-AG), and both methods showed similar EC profiles and similar disease-dependent pro-inflammatory patterns in dermatology patients. Hence, despite the obstacles in EC analyses, implementation of optimized pre-analytical blood collection and sample processing procedures provide reliable insight into peripheral ECs.
Collapse
Affiliation(s)
- A Sens
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - D Thomas
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - S M G Schäfer
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - A König
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - A Pinter
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - I Tegeder
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - G Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - R Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
5
|
Oddi S, Ciaramellano F, Scipioni L, Dainese E, Maccarrone M. Visualization of Endocannabinoids in the Cell. Methods Mol Biol 2023; 2576:453-459. [PMID: 36152209 DOI: 10.1007/978-1-0716-2728-0_37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A still unsolved, although critical, issue in endocannabinoid research is the mechanism by which the lipophilic anandamide (AEA) moves from its site of synthesis, crosses the aqueous milieu, and reaches the different intracellular membrane compartments, where its metabolic and signaling pathways take place. The difficulty of studying intracellular AEA transport and distribution results from the lack of specific probes and techniques to track and visualize this bioactive lipid within the cells. Herein, we describe the use of a biotinylated, non-hydrolyzable derivative of AEA (biotin-AEA, b-AEA) for visualizing the subcellular distribution of this endocannabinoid by means of confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Francesca Ciaramellano
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lucia Scipioni
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
Reynoso-Moreno I, Rau M, Chicca A, Nicolussi S, Gertsch J. Assay of Endocannabinoid Uptake. Methods Mol Biol 2023; 2576:329-348. [PMID: 36152200 DOI: 10.1007/978-1-0716-2728-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Endocannabinoids at nanomolar physiological concentrations cross cellular membranes by facilitated diffusion, a process that can be studied by measuring transport kinetics and endocannabinoid trafficking employing radioligands and mass spectrometry. Here, we describe radiosubstrate-based assays using arachidonoyl[1-3H]ethanolamine and 2-arachidonoyl[1,2,3-3H]glycerol to measure cellular endocannabinoid uptake in a three-phase assay with human U937 cells. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS)-based lipidomics was used to interrogate the roles of serum and albumin for endocannabinoid trafficking in U937 cells.
Collapse
Affiliation(s)
- Ines Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Mark Rau
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Quantification of endocannabinoids in human cerebrospinal fluid using a novel micro-flow liquid chromatography-mass spectrometry method. Anal Chim Acta 2022; 1210:339888. [DOI: 10.1016/j.aca.2022.339888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
|
8
|
Sonti S, Tolia M, Duclos RI, Loring RH, Gatley SJ. Metabolic studies of synaptamide in an immortalized dopaminergic cell line. Prostaglandins Other Lipid Mediat 2019; 141:25-33. [PMID: 30763677 DOI: 10.1016/j.prostaglandins.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Synaptamide, the N-acylethanolamine of docosahexaenoic acid (DHA), is structurally similar to the endocannabinoid N-arachidonoylethanolamine, anandamide. It is an endogenous ligand at the orphan G-protein coupled receptor 110 (GPR110; ADGRF1), and induces neuritogenesis and synaptogenesis in hippocampal and cortical neurons, as well as neuronal differentiation in neural stem cells. PURPOSE Our goal was to characterize the metabolic fate (synthesis and metabolism) of synaptamide in a dopaminergic cell line using immortalized fetal mesencephalic cells (N27 cells). Both undifferentiated and differentiating N27 cells were used in this study in an effort to understand synaptamide synthesis and metabolism in developing and adult cells. METHODS Radiotracer uptake and hydrolysis assays were conducted in N27 cells incubated with [1-14C]DHA or with one of two radioisotopomers of synaptamide: [α,β-14C2]synaptamide and [1-14C-DHA]synaptamide. RESULTS Neither differentiated nor undifferentiated N27 cells synthesized synaptamide from radioactive DHA, but both rapidly incorporated radioactivity from exogenous synaptamide into membrane phospholipids, regardless of which isotopomer was used. Pharmacological inhibition of fatty acid amide hydrolase (FAAH) reduced formation of labeled phospholipids in undifferentiated but not differentiated cells. CONCLUSIONS In undifferentiated cells, synaptamide uptake and metabolism is driven by its enzymatic hydrolysis (fatty acid amide hydrolase; FAAH), but in differentiating cells, the process seems to be FAAH independent. We conclude that differentiated and undifferentiated N27 cells utilize synaptamide via different mechanisms. This observation could be extrapolated to how different mechanisms may be in place for synaptamide uptake and metabolism in developing and adult dopaminergic cells.
Collapse
Affiliation(s)
- Shilpa Sonti
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| | - Mansi Tolia
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Richard I Duclos
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Ralph H Loring
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Samuel J Gatley
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| |
Collapse
|
9
|
Abstract
A still unsolved, although critical, issue in endocannabinoid research is the mechanism by which the lipophilic compound anandamide (AEA) moves from its site of synthesis, crosses the aqueous milieu, and reaches the different intracellular compartments, where its metabolic and signaling pathways take place. The difficulty of studying intracellular AEA transport and distribution results from the lack of specific probes and techniques to track and visualize this bioactive lipid within the cell. Here, we describe the use of a biotinylated, non-hydrolyzable derivative of AEA (biotin-AEA, b-AEA) for visualizing the subcellular distribution of this endocannabinoid by means of confocal fluorescence microscopy.
Collapse
|
10
|
Angelini R, Argueta DA, Piomelli D, DiPatrizio NV. Identification of a Widespread Palmitoylethanolamide Contamination in Standard Laboratory Glassware. Cannabis Cannabinoid Res 2017; 2:123-132. [PMID: 28861512 PMCID: PMC5510777 DOI: 10.1089/can.2017.0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Introduction: Fatty acid ethanolamides (FAEs) are a family of lipid mediators that participate in a host of biological functions. Procedures for the quantitative analysis of FAEs include organic solvent extraction from biological matrices (e.g., blood), followed by purification and subsequent quantitation by liquid chromatography–mass spectrometry (LC/MS) or gas chromatography–mass spectrometry. During the validation process of a new method for LC/MS analysis of FAEs in biological samples, we observed unusually high levels of the FAE, palmitoylethanolamide (PEA), in blank samples that did not contain any biological material. Materials and Methods: We investigated a possible source of this PEA artifact via liquid chromatography coupled to tandem mass spectrometry, as well as accurate mass analysis. Results: We found that high levels of a contaminant indistinguishable from PEA is present in new 5.75″ glass Pasteur pipettes, which are routinely used by laboratories to carry out lipid extractions. This artifact might account for discrepancies found in the literature regarding PEA levels in human blood serum and other tissues. Conclusions: It is recommended to take into account this pitfall by analyzing potential contamination of the disposable glassware during the validation process of any method used for analysis of FAEs.
Collapse
Affiliation(s)
- Roberto Angelini
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Anatomy and Neurobiology, University of California, Irvine, California.,Department of Pharmacology and Biological Chemistry, University of California, Irvine, California
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California.,Department of Pharmacology and Biological Chemistry, University of California, Irvine, California
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| |
Collapse
|
11
|
Abstract
Endocannabinoids at physiological concentrations are crossing cellular membranes by facilitated diffusion, a process that can be studied by measuring transport kinetics. Here, we describe a radiosubstrate-based assay using arachidonoyl[1-(3)H]ethanolamine or arachidonoyl[1,2,3-(3)H]glycerol to measure the cellular endocannabinoid uptake in a three-phase assay with human U937 cells.
Collapse
Affiliation(s)
- Mark Rau
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Nicolussi S, Gertsch J. Endocannabinoid transport revisited. VITAMINS AND HORMONES 2015; 98:441-85. [PMID: 25817877 DOI: 10.1016/bs.vh.2014.12.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocannabinoids are arachidonic acid-derived endogenous lipids that activate the endocannabinoid system which plays a major role in health and disease. The primary endocannabinoids are anandamide (AEA, N-arachidonoylethanolamine) and 2-arachidonoyl glycerol. While their biosynthesis and metabolism have been studied in detail, it remains unclear how endocannabinoids are transported across the cell membrane. In this review, we critically discuss the different models of endocannabinoid trafficking, focusing on AEA cellular uptake which is best studied. The evolution of the current knowledge obtained with different AEA transport inhibitors is reviewed and the confusions caused by the lack of their specificity discussed. A comparative summary of the most important AEA uptake inhibitors and the studies involving their use is provided. Based on a comprehensive literature analysis, we propose a model of facilitated AEA membrane transport followed by intracellular shuttling and sequestration. We conclude that novel and more specific probes will be essential to identify the missing targets involved in endocannabinoid membrane transport.
Collapse
Affiliation(s)
- Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
14
|
Larsen EKU, Larsen NB. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems. LAB ON A CHIP 2013; 13:669-75. [PMID: 23254780 DOI: 10.1039/c2lc40750g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes including hydrophobic and hydrophilic drugs (0.23 < ClogP < 8.95), small and large proteins (insulin, albumin, IgG), and DNA. The coating is shown to limit the adsorption of even highly hydrophobic drugs (ClogP > 8) in their pharmaceutically relevant concentration range ≤100 nM. The low adsorption is mediated by photochemical conjugation, where polyethylene glycol (PEG) polymers in aqueous solution are covalently bound to the surface by UV illumination of dissolved benzophenone and a functionalized PEG. The method can coat the interior of polymer systems made from a range of materials commonly used in microanalytical systems, including polystyrene (PS), cyclic olefin copolymer (COC), liquid crystalline polymer (LCP), and polyimide (PI).
Collapse
Affiliation(s)
- Esben Kjær Unmack Larsen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Ørsteds Plads 345E, DK-2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
15
|
Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 2012; 287:34660-82. [PMID: 22879589 DOI: 10.1074/jbc.m112.373241] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
16
|
Brighton PJ, Marczylo TH, Rana S, Konje JC, Willets JM. Characterization of the endocannabinoid system, CB(1) receptor signalling and desensitization in human myometrium. Br J Pharmacol 2012; 164:1479-94. [PMID: 21486283 DOI: 10.1111/j.1476-5381.2011.01425.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid plays vital roles in several aspects of reproduction, including gametogenesis, fertilization and parturition. However, little is known regarding the presence or role of the endocannabinoid system in myometrial function. Here the presence of the endocannabinoid system and signalling properties of cannabinoid receptors were characterized. EXPERIMENTAL APPROACH Components of the endocannabinoid system were identified using qRT-PCR, immunohistochemical, immunoblotting and radioligand binding experiments. Cannabinoid receptor signalling pathways were characterized using standard MAPK and second messenger assays. KEY RESULTS Primary myometrium expresses the endocannabinoid synthesizing enzyme N-acyl-phosphatidyl ethanolamine-specific phospholipase D, endocannabinoid degrading enzyme fatty acid amide hydrolase and cannabinoid CB(1) , but not CB(2) receptors or transient receptor potential vanilloid-type-1 channels. The CB(1) receptor ligand anandamide caused a Gα(i/o) -dependent inhibition of adenylate cyclase reducing intracellular cAMP levels, and Gα(i/o) , phosphoinositide-3-kinase, Src-kinase-dependent ERK activation. CB(1) receptor-generated signals declined following continual anandamide stimulation, possibly due to ligand metabolism since free anandamide concentrations declined during the experiment from 2.5 µM initially, to 500 nM after >30 min. However, identical loss of CB(1) receptor responsiveness occurred in the presence of the metabolically stable derivative methanandamide. Moreover, RNAi-mediated depletion of arrestin3 (a negative regulator of receptor signalling) prevented loss of CB(1) receptor activity, enhancing and prolonging ERK signals. CONCLUSIONS AND IMPLICATIONS The myometrium has the capacity to synthesize, respond to and degrade endocannabinoids. Furthermore, reduced CB(1) receptor responsiveness occurs as a consequence of receptor desensitization, not agonist depletion and we identify a key role for arrestin3 in this process.
Collapse
Affiliation(s)
- Paul J Brighton
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | | | | | | | | |
Collapse
|
17
|
Zoerner AA, Gutzki FM, Batkai S, May M, Rakers C, Engeli S, Jordan J, Tsikas D. Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: A comprehensive review from an analytical and biological perspective. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:706-23. [DOI: 10.1016/j.bbalip.2011.08.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 11/26/2022]
|