1
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Ju Z, Guo X, Li L, Tang Y, Qiu M, Zhang W, Ouyang Z, Ma Q. Improved Point-of-Care Mass Spectrometry Analysis with Thin-Layer Chromatography-Based Two-Dimensional Separation and Spray Ionization. Anal Chem 2025; 97:712-720. [PMID: 39722213 DOI: 10.1021/acs.analchem.4c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Point-of-care testing (POCT) involves administering rapid on-site analysis to provide fast biochemical testing results. POCT reduces delays in clinical decision-making and eliminates the need to transport and prepare clinical samples for immediate diagnosis or clinical intervention by healthcare professionals. Herein, a novel methodology integrating thin-layer chromatography-based two-dimensional separation with miniature mass spectrometry was developed for rapid on-site clinical analysis. As a proof-of-concept demonstration, γ-aminobutyric acid, 2-hydroxyglutarate, and N-acetyl-l-aspartic acid, which are widely known as biomarkers for brain gliomas, were selected as model analytes for method development and validation. The proposed approach exhibited satisfactory analytical performance, with 1 ng/mL limits of detection, 2 ng/mL limits of quantitation, and recoveries in the range of 85.9-107.2%. Additionally, on-TLC derivatization and reactive spray ionization strategies were utilized to enhance the mass spectrometric signals compared to underivatized analysis. This method was applied to analyze clinical samples, showcasing its attractive potential outside the laboratory.
Collapse
Affiliation(s)
- Zisheng Ju
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangyu Guo
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Linsen Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
3
|
Wilson ID, Poole CF. Planar chromatography - Current practice and future prospects. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123553. [PMID: 36495686 DOI: 10.1016/j.jchromb.2022.123553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Planar chromatography, in the form of thin-layer or high-performance thin-layer chromatography (TLC, HPTLC), continues to provide a robust and widely used separation technique. It is unrivaled as a simple and rapid qualitative method for mixture analysis, or for finding bioactive components in mixtures. The format of TLC/HPTLC also provides a unique method for preserving the separation, enabling further investigation of components of interest (including quantification/structure determination) separated in both time and space from the original analysis. The current practice of planar chromatography and areas of development of the technology are reviewed and promising future directions in the use of TLC/HPTLC are outlined.
Collapse
Affiliation(s)
- Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London W12 0NN, UK.
| | - Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Fukunaga Y, Okada T. Freeze Surface-Enhanced Raman Scattering Coupled with Thin-Layer Chromatography: Pesticide Detection and Quantification Case. Anal Chem 2022; 94:13507-13515. [PMID: 36136892 DOI: 10.1021/acs.analchem.2c02732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thin-layer chromatography (TLC) is widely used in various branches of chemical science to separate components in complex mixtures because of its simplicity. In most cases, analyte spots are visually detected by fluorescence, and the retention factor (Rf) is determined from the distance traveled by the analyte. Further characterizations are often necessary to identify separated chemicals because molecular information other than Rf is not available. Surface-enhanced Raman scattering (SERS) has been coupled with TLC to complement molecular information. In previously reported TLC-SERS, metal nanoparticle suspension was dropped onto analyte spots to obtain SERS spectra. This approach is simple and efficient for SERS measurements on the TLC plate but has limited sensitivity for several reasons, such as the low solubility of analytes in the dropped solution, difficult control of nanoparticle aggregation, and interference from the stationary phase. We recently showed that freezing enhances SERS sensitivity by a factor of ∼103. Freezing simultaneously concentrates analytes and silver nanoparticles (AgNPs) in a freeze concentrated solution, where aggregation of AgNPs is facilitated, allowing sensitive freeze SERS (FSERS) measurements. Here, we discuss FSERS measurements on TLC plates to demonstrate the superiority of this combination, i.e. TLC-FSERS. Freezing enhances SERS sensitivity by freeze concentration and facilitated aggregation of AgNPs and, in addition, eliminates interference from the stationary phase. Under the optimized condition, TLC-FSERS enables the on-site detection of pesticides at the nM level. The use of the SERS signal from adenine added as the internal standard allows us to quantify pesticides. Applications to a commercial green tea beverage are also demonstrated.
Collapse
Affiliation(s)
- Yu Fukunaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.,National Institute of Technology (KOSEN), Numazu College, 3600 Ooka, Numazu, Shizuoka 410-8501, Japan
| |
Collapse
|
5
|
Engel KM, Schiller J. The value of coupling thin-layer chromatography to mass spectrometry in lipid research - a review. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:123001. [PMID: 34715571 DOI: 10.1016/j.jchromb.2021.123001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022]
Abstract
Mass spectrometry has emerged as an extremely powerful analytical tool, which is widely used in many fields. This broad application range became possible with the invention of MALDI and ESI as "soft ionization" techniques that keep fragmentation of the analyte to a minimum. However, when these techniques are applied to mixture analysis, less-sensitively detectable compounds may be suppressed by more sensitively detectable compounds, a process called "ion suppression". Thus, previous separation of the mixture into the individual lipid classes is necessary to be able to detect all compounds. This review summarizes the current knowledge in the field of combined TLC/MS and discusses the most important strengths and weaknesses of the different MS (particularly ionization) techniques with respect to phospholipids. This comprises techniques such as MALDI and ESI, but less established approaches such as plasma desorption will be also discussed.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Medical Faculty, Institute for Medical Physics and Biophysics, Germany.
| | - Jürgen Schiller
- Leipzig University, Medical Faculty, Institute for Medical Physics and Biophysics, Germany
| |
Collapse
|
6
|
Liu X, Wang J, Hu B, Yan P, Jia S, Du Z, Jiang H. Qualitative distribution of endogenous sphingolipids in plasma of human and rodent species by UPLC-Q-Exactive-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122684. [PMID: 33857888 DOI: 10.1016/j.jchromb.2021.122684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022]
Abstract
Sphingolipids (SLs) are endogenously bioactive molecules with diverse structures, and its metabolic disorders are involved in the progression of many diseases. In this study, an ultra-performance liquid chromatography quadrupole exactive mass spectrometry (UPLC-Q-Exactive-MS) method was established to comprehensively profile SLs in plasma. First, the fragment patterns of SL standards of each subclass were investigated. Then, the SL species in plasma were characterized based on the fragmentation rules. Finally, a total of 144 endogenous SL species consisting of 216 regioisomers were identified in plasma of human, golden hamster and C57BL/6 mice, which was the most comprehensive identification for SLs in plasma. In addition to the known species, 19 SL species that have never been reported were also identified. The profile of SLs in plasma of human and two rodent species was compared subsequently. It was worth noting that a total of 9 SL molecular species consisting of 11 regioisomers with low abundance were successfully identified in human plasma through comparison among species. Those findings contribute to a deeper understanding of SLs in human plasma and provide scientific basis for the selection of animal model. The established profile of SLs in plasma could be used for screening of lipid biomarkers of various diseases.
Collapse
Affiliation(s)
- Xuechen Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingchen Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingying Hu
- Zhejiang Academy of Medical Sciences (Hangzhou Medical College), 182 Tianmushan Road, Hangzhou, Zhejiang, China
| | - Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuailong Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Cebolla VL, Jarne C, Vela J, Garriga R, Membrado L, Galbán J. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1866600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, EINA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Jarne C, Membrado L, Savirón M, Vela J, Orduna J, Garriga R, Galbán J, Cebolla VL. Globotriaosylceramide-related biomarkers of fabry disease identified in plasma by high-performance thin-layer chromatography - densitometry- mass spectrometry. J Chromatogr A 2021; 1638:461895. [PMID: 33477028 DOI: 10.1016/j.chroma.2021.461895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
Identification of 19 molecular species of globotriaosylceramides (Gb3) in extracts from a Fabry's plasma patient and a healthy control was performed by High-Performance Thin-Layer Chromatography (HPTLC)-densitometry and online coupling to Mass Spectrometry (MS). Separation was carried out on LiChrospher plates using Automated Multiple Development (AMD). Densitometry was performed on twin plates by combining detection in the visible at 550 nm, through previous on-plate orcinol derivatization, and by Ultraviolet 190 nm, using a non-impregnated plate. The latter was directly coupled to an ion-trap mass spectrometer through an automated elution-based interface. Gb3 molecular species, which were identified by HPTLC- Electrospray Mass Spectrometry (+)-MS and confirmed by MS/MS or HPTLC-Atmospheric Pressure Chemical Ionization Mass Spectrometry (+)-MS, are: five isoforms of saturated Gb3; seven isoforms of methylated Gb3; and seven species with two additional double bonds. Twelve of these species were previously reported as biomarkers of Fabry's lysosomal disorder using a Liquid Chromatography-MS-based method, and the other seven are structurally similar, closely related to them. Saturated Gb3 isoforms migrated on LiChrospher plate in one of the separated peaks corresponding to the migration zone of ceramide trihexosides standard. Instead, methylated and unsaturated Gb3 species co-migrated with sphingomyelin species. Ion intensity ESI-MS profiles show that saturated Gb3 species in Fabry's plasma were in higher concentration than in control sample. Before applying the Thin-Layer Chromatography (TLC)-MS interface on HPTLC separated peaks, its positioning precision was first studied using ceramide tri-hexosides as model compound. This provided information on Gb3 peak broadening and splitting during its migration.
Collapse
Affiliation(s)
- Carmen Jarne
- Instituto de Carboquímica, CSIC, C/ Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, CSIC, C/ Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - María Savirón
- CEQMA-CSIC, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús Orduna
- CEQMA-CSIC, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Orgánica y Química-Física, Universidad de Zaragoza, 50009 Spain
| | - Javier Galbán
- Departamento de Química Analítica, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Vicente L Cebolla
- Instituto de Carboquímica, CSIC, C/ Miguel Luesma, 4, 50018 Zaragoza, Spain.
| |
Collapse
|
9
|
Wang H, Cui L, Jia Y, Gao Y, Zhang G, He C. Application of lipidomics to reveal differences of facial skin surface lipids between atopic dermatitis and healthy infants. J Cosmet Dermatol 2019; 19:1528-1534. [PMID: 31617666 DOI: 10.1111/jocd.13188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The current knowledge about potential risk factors for atopic dermatitis (AD) is primarily based on the structure and function of the stratum corneum, which is characterized by osmotic defects and abnormal antibacterial function. There are no studies on the difference between facial lipids in infants with AD and healthy infants. AIMS We sought to explore significantly different lipid markers for infants with AD presenting with lesions and healthy infants aged 0-2 years to guide treatment strategies. METHODS Twenty-eight patient infants with AD and 32 healthy infants were recruited. Each infant received its surface skin lipids (SSL) on the right cheek. The components of skin lipids were measured by ultra-performance liquid chromatography-quadrupoletime-of-flight mass spectrometry (UPLC-Q-TOF-MS) to explore significantly different lipid markers by analyzing the detection results using orthogonal partial least squares analysis(OPLS-DA). RESULTS There were clear distinctions in the components of SSL between the two groups. Twenty-nine significantly different lipid markers (P ≤ .05) were found. CONCLUSION This study confirmed that there were significant differences in the components of the SSL between AD infants with lesions and healthy infants, but also found lipid types, lipid contents, and lipid structures as AD-related risks.
Collapse
Affiliation(s)
- Hecong Wang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing, China
| | - Le Cui
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing, China
| | - Ying Gao
- Capital Institute of Paediatrics, Beijing, China
| | - Gaolei Zhang
- Capital Institute of Paediatrics, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing, China
| |
Collapse
|
10
|
Sarbu M, Dehelean L, Munteanu CVA, Ica R, Petrescu AJ, Zamfir AD. Human caudate nucleus exhibits a highly complex ganglioside pattern as revealed by high-resolution multistage Orbitrap MS. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1669632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirela Sarbu
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Liana Dehelean
- Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Raluca Ica
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Andrei J. Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alina D. Zamfir
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, Arad, Romania
| |
Collapse
|
11
|
Calvano CD, Ventura G, Sardanelli AM, Losito I, Palmisano F, Cataldi TRI. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Anal Biochem 2019; 581:113348. [PMID: 31251925 DOI: 10.1016/j.ab.2019.113348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are recognized as a valuable model of primary human cells able of mirroring the chronological and biological aging. Here, a lipidomic study of glycosphingolipids (GSL) occurring in the easily accessible human dermal fibroblasts (HDF) is presented. Reversed-phase liquid chromatography with negative electrospray ionization (RPLC-ESI) coupled to either orbitrap or linear ion-trap multiple-stage mass spectrometry was applied to characterize GSL in commercially adult and neonatal primary human fibroblast cells and in skin samples taken from an adult volunteer. Collision-induced dissociation in negative ion mode allowed us to get information on the monosaccharide number and ceramide composition, whereas tandem mass spectra on the ceramide anion was useful to identify the sphingoid base. Nearly sixty endogenous GSL species were successfully recognized, namely 33 hexosyl-ceramides (i.e., HexCer, Hex2Cer and Hex3Cer) and 24 gangliosides as monosialic acid GM1, GM2 and GM3, along with 5 globosides Gb4. An average content of GSLs was attained and the most representative GSL in skin fibroblasts were Hex3Cer, also known as Gb3Cer, followed by Gb4, HexCer and Hex2Cer , while gangliosides were barely quantifiable. The most abundant GSLs in the examined cell lines share the same ceramide base (i.e. d18:1) and the relative content was d18:1/24:1 > d18:1/24:0 > d18:1/16:0 > d18:1/22:0.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Italy; Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
12
|
Aoki K, Heaps AD, Strauss KA, Tiemeyer M. Mass spectrometric quantification of plasma glycosphingolipids in human GM3 ganglioside deficiency. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:106-114. [PMID: 34917767 DOI: 10.1016/j.clinms.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
Background Among Amish communities of North America, biallelic mutations of ST3GAL5 (c.694C > T) eliminate synthesis of GM3 and its derivative downstream a- and b-series gangliosides. Systemic ganglioside deficiency is associated with infantile onset psychomotor retardation, slow brain growth, intractable epilepsy, deafness, and cortical visual impairment. We developed a robust quantitative assay to simultaneously characterize glycan and ceramide moieties of plasma glycosphingolipids (GSLs) among ST3GAL5 c.694C > T homozygotes (n = 8), their heterozygous siblings (n = 24), and wild type control (n = 19) individuals. Methods Following extraction and saponification of total plasma lipids, GSLs were purified on a tC18 cartridge column, permethylated, and subjected to nanospray ionization mass spectrometry utilizing neutral loss scanning and data-dependent acquisition. Plasma GSLs were quantified against appropriate synthetic standards. Results Our method demonstrated linearity from 5 to 250 μl of plasma. Recovery of synthetic GSLs spiked into plasma was 99-104% with no matrix interference. Quantitative plasma GSL profiles discriminated among ST3GAL5 genotypes: GM3 and GD3 were undetectable in ST3GAL5 c.694C > T homozygotes, who had markedly elevated lactosylceramide (19.17 ± 4.20 nmol/ml) relative to heterozygous siblings (9.62 ± 2.46 nmol/ml) and wild type controls (6.55 ± 2.16 nmol/ml). Children with systemic ganglioside deficiency had a distinctive shift in ceramide composition toward higher mass species. Conclusions Our quantitative glycolipidomics method discriminates among ST3GAL5 c.694C > T genotypes, can reveal subtle structural heterogeneity, and represents a useful new strategy to diagnose and monitor GSL disorders in humans.
Collapse
Key Words
- CID, collision-induced dissociation
- Cer, ceramide
- Dp, degree of polymerization
- EGCase, endoglycosylceramidase
- ESI-MS, electrospray ionization mass spectrometry
- GD3, disialo-ganglioside GD3 (IUPAC-IUB: II3- α -(Neu5Ac)2-Gg2Cer)
- GM1b, monosialo-ganglioside GM1b (IUPAC-IUB: IV3-α-Neu5Ac-Gg4Cer)
- GM3
- GM3, monosialo-ganglioside GM3
- GSL, glycosphingolipid
- Gal, galactose
- GalNAc, N-acetylgalactosamine
- Ganglioside
- Gb3, globotriaosylceramide (IUPAC-IUB: Gb3Cer)
- Gb3-D, deuterated Gb3
- Gb4, globotetraosylceramide (IUPAC-IUB: Gb4Cer)
- Glc, glucose
- GlcCer, glucosylceramide
- Glycosphingolipid
- LacCer, lactosylceramide
- MS, mass spectrometry
- MSn, multidimensional mass spectrometry
- Mass spectrometry
- NL, neutral loss
- NSI, nanospray ionization
- Neu5Ac, sialic acid as N-5-acetylneuraminic acid
- Plasma
- ST3GAL5, CMP-Neu5Ac:Lactosylceramide alpha-2,3-sialyltransferase 5, previously known as SIAT9, SIATGM3S, ST3GalV, GM3-synthase
- TIM, total ion mapping
- UPLC, ultra-high pressure liquid chromatography
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, Greece
| | - Adam D Heaps
- Clinic for Special Children, Strasburg, PA, United States
| | - Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, United States.,Lancaster General Hospital, Lancaster, PA, United States
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, Greece.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, Greece
| |
Collapse
|
13
|
Guo XL, Liu LZ, Wang QQ, Liang JY, Lee WH, Xiang Y, Li SA, Zhang Y. Endogenous pore-forming protein complex targets acidic glycosphingolipids in lipid rafts to initiate endolysosome regulation. Commun Biol 2019; 2:59. [PMID: 30775460 PMCID: PMC6370762 DOI: 10.1038/s42003-019-0304-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. βγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of βγ-CAT remain elusive. Here, the actions of βγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of βγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of βγ-CAT. Finally, the ability of βγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.
Collapse
Affiliation(s)
- Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jin-Yang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
14
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Sarbu M, Zamfir AD. Modern separation techniques coupled to high performance mass spectrometry for glycolipid analysis. Electrophoresis 2018; 39:1155-1170. [DOI: 10.1002/elps.201700461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter; Timisoara Romania
| | - Alina Diana Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter; Timisoara Romania
| |
Collapse
|
16
|
Abstract
This chapter describes protocols for mass spectrometry (MS) applied to the characterization of ganglioside structures and the determination of ganglioside contents. Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) are often used to ionize biological materials and this chapter covers three protocols for atmospheric pressure MALDI MS (AP-MALDI MS), liquid chromatography-ESI MS (LC-ESI MS), and LC-ESI MS with multiple reaction monitoring (MRM). Purified gangliosides were used in AP-MALDI MS analyses while crude preparations of gangliosides were subjected to LC-ESI MS and LC-ESI MS with MRM. The LC protocol includes conditions for both reversed-phase and normal-phase column chromatography.
Collapse
Affiliation(s)
- Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Minoru Suzuki
- School of Integrative and Global Majors, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - Emi Ito
- Brain Research Center, RIKEN, Wakō, Saitama, Japan
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Groux-Degroote S, Guérardel Y, Delannoy P. Gangliosides: Structures, Biosynthesis, Analysis, and Roles in Cancer. Chembiochem 2017; 18:1146-1154. [PMID: 28295942 DOI: 10.1002/cbic.201600705] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Gangliosides are acidic glycosphingolipids containing one or more sialic acid residues. They are essential compounds at the outer leaflet of the plasma membrane, where they interact with phospholipids, cholesterol, and transmembrane proteins, forming lipid rafts. They are involved in cell adhesion, proliferation, and recognition processes, as well as in the modulation of signal transduction pathways. These functions are mainly governed by the glycan moiety, and changes in the structures of gangliosides occur under pathological conditions, particularly in neuro-ectoderm-derived cancers. With the progress in mass spectrometry analysis of gangliosides, their role in cancer progression can be now investigated in more detail. In this review we summarize the current knowledge on the biosynthesis of gangliosides and their role in cancers, together with the recent development of cancer immunotherapy targeting gangliosides.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
18
|
Sarbu M, Dehelean L, Munteanu CV, Vukelić Ž, Zamfir AD. Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry. Anal Biochem 2017; 521:40-54. [DOI: 10.1016/j.ab.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
|
19
|
Rejšek J, Vrkoslav V, Vaikkinen A, Haapala M, Kauppila TJ, Kostiainen R, Cvačka J. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids. Anal Chem 2016; 88:12279-12286. [DOI: 10.1021/acs.analchem.6b03465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Rejšek
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo
nám. 2, 166 10 Prague 6, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | - Vladimír Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo
nám. 2, 166 10 Prague 6, Czech Republic
| | - Anu Vaikkinen
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Markus Haapala
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tiina J. Kauppila
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Risto Kostiainen
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Josef Cvačka
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo
nám. 2, 166 10 Prague 6, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| |
Collapse
|
20
|
Torretta E, Fania C, Vasso M, Gelfi C. HPTLC-MALDI MS for (glyco)sphingolipid multiplexing in tissues and blood: A promising strategy for biomarker discovery and clinical applications. Electrophoresis 2016; 37:2036-49. [DOI: 10.1002/elps.201600094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health; University of Milan; Milan Italy
- IRCCS Policlinico San Donato; Piazza Edmondo Malan; San Donato Milanese Milan Italy
| | - Chiara Fania
- IRCCS Policlinico San Donato; Piazza Edmondo Malan; San Donato Milanese Milan Italy
| | - Michele Vasso
- Institute of Molecular Bioimaging and Physiology (IBFM); CNR Milan Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health; University of Milan; Milan Italy
- IRCCS Policlinico San Donato; Piazza Edmondo Malan; San Donato Milanese Milan Italy
| |
Collapse
|
21
|
Martano C, Mugoni V, Dal Bello F, Santoro MM, Medana C. Rapid high performance liquid chromatography-high resolution mass spectrometry methodology for multiple prenol lipids analysis in zebrafish embryos. J Chromatogr A 2015; 1412:59-66. [PMID: 26283533 DOI: 10.1016/j.chroma.2015.07.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/25/2015] [Accepted: 07/29/2015] [Indexed: 11/13/2022]
Abstract
The analysis of lipid molecules in living organism is an important step in deciphering metabolic pathways. Recently, the zebrafish has been adopted as a valuable animal model system to perform in vivo metabolomics studies, however limited methodologies and protocols are currently available to investigate zebrafish lipidome and even fewer to analyze specific classes of lipids. Here we present an HPLC-HRMS based method to rapidly measure multiple prenol lipid molecules from zebrafish tissues. In particular, we have optimized our method for concurrent detection of ubiquinones (Coenzyme Q6, Coenzyme Q9, Coenzyme Q10), cholesterol, vitamin E (α-tocopherol), vitamin K1 and vitamin K2. The purpose of this study was to compare different ionization modes, mobile phases and stationary phases in order to optimize lipid molecules separation. After HPLC-HRMS parameters selection, several extraction conditions from zebrafish embryos were evaluated. We assessed our methodology by quantitation of analytical recovery on zebrafish extracts from wild-type or zebrafish mutants (barolo) affected by impaired biosynthesis of ubiquinones.
Collapse
Affiliation(s)
- Chiara Martano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Vera Mugoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
22
|
Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. J Chromatogr A 2015; 1428:16-38. [PMID: 26275862 DOI: 10.1016/j.chroma.2015.07.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
Collapse
Affiliation(s)
- Núria Canela
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pol Herrero
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Sílvia Mariné
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pedro Nadal
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Maria Rosa Ras
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | | | - Lluís Arola
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain.
| |
Collapse
|
23
|
Groux-Degroote S, Guérardel Y, Julien S, Delannoy P. Gangliosides in breast cancer: New perspectives. BIOCHEMISTRY (MOSCOW) 2015; 80:808-19. [DOI: 10.1134/s0006297915070020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Mirabelli MF, Coviello G, Volmer DA. Determining fatty acids by desorption/ionization mass spectrometry using thin-layer chromatography substrates. Anal Bioanal Chem 2015; 407:4513-22. [DOI: 10.1007/s00216-015-8630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
|
25
|
Krüger S, Bürmann L, Morlock GE. Comparison and characterization of soybean and sunflower lecithins used for chocolate production by high-performance thin-layer chromatography with fluorescence detection and electrospray mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2893-901. [PMID: 25727461 DOI: 10.1021/jf506332f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The scarce availability of nongenetically modified soybeans on the world market represents a growing problem for food manufacturers. Hence, in this study the effects of substituting soybean with sunflower lecithin were investigated with regard to chocolate production. The glycerophospholipid pattern of the different lecithin samples was investigated by high-performance thin-layer chromatography fluorescence detection (HPTLC-FLD) and by HPTLC-positive ion electrospray ionization mass spectrometry (ESI(+)-MS) via the TLC-MS Interface and by scanning HPTLC-matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOFMS). Especially, the contents of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were of interest due to the influencing effects of these two glycerophospholipids on the rheological parameters of chocolate production. The lecithin substitution led to only slight differences in the rheological parameters of milk and dark chocolate. Limits of detection (LODs) and limits of quantification (LOQs) of seven glycerophospholipids were studied for three detection modes. Mean LODs ranged from 8 to 40 mg/kg for HPTLC-FLD and, using a single-quadrupole MS, from 10 to 280 mg/kg for HPTLC-ESI(+)-MS as well as from 15 to 310 mg/kg for HPTLC-FLD-ESI(+)-MS recorded after derivatization with the primuline reagent.
Collapse
Affiliation(s)
- Stephanie Krüger
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Laura Bürmann
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
26
|
Characterisation of sphingolipids in the human lens by thin layer chromatography–desorption electrospray ionisation mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1285-91. [DOI: 10.1016/j.bbalip.2014.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022]
|
27
|
Zhou Y, Park H, Kim P, Jiang Y, Costello CE. Surface oxidation under ambient air--not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing. Anal Chem 2014; 86:5697-705. [PMID: 24832382 PMCID: PMC4066906 DOI: 10.1021/ac404214a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple, fast approach elucidated carbon-carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development.
Collapse
Affiliation(s)
- Ying Zhou
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | | | | | | | | |
Collapse
|