1
|
Yang S, Ma Y, Song Y, Wang X, Cong P, Meng N, Xu J, Xue C. Establishment of a targeted analysis method for gangliosides in mouse tissues by HILIC-ESI-MS/MS. Anal Bioanal Chem 2024; 416:5457-5471. [PMID: 38305860 DOI: 10.1007/s00216-024-05169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Gangliosides play an imperative role in cell signaling, neuronal recovery, apoptosis, and other physiological processes. For example, GM3 can regulate hypothalamic leptin resistance and control energy homeostasis, GD3 can mediate cell proliferation and differentiation and induce apoptosis, and GQ1b can stimulate neurogenesis. Therefore, the present study sought to establish and optimize the targeted analysis method for ganglioside subclasses and their molecular species using hydrophilic interaction liquid chromatography-triple quadrupole-MS/MS (HILIC-QQQ-MS/MS). Additionally, the fragmentation pattern of different ganglioside subclasses and their retention time patterns were analyzed, providing more accurate qualitative results. The limit of quantitation (LOQ) was as low as 10-4 ng. Moreover, the molecular species of gangliosides in the liver, cortex, and hypothalamus of C57BL/6 mice were analyzed using the established method. A total of 23 ganglioside subclasses with 164 molecular species, including 40 O-acetylated ganglioside molecular species and 28 NeuGc ganglioside molecular species, were identified using the semi-quantitative analysis method of an external standard curve corrected by an internal standard. In addition to NeuGc gangliosides, the contents of ganglioside subclasses were more abundant in the mouse brain than those in the mouse liver; especially, the contents of unsaturated gangliosides in the hypothalamus were much higher than those in the liver. Among them, O-acetylated gangliosides were detected only in the cortex and hypothalamus at a concentration of up to 100 μg/mg protein (40 molecular species). Overall, the proposed method expanded the detectable number of ganglioside subclasses and molecular species in biological samples and provided more opportunities for further study of the biological functions of gangliosides.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Yingxu Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China.
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, 266404, Shandong, China
- Qingdao Marine Science and Technology Center, Qingdao, 266235, China
| |
Collapse
|
2
|
Hewelt-Belka W, Młynarczyk M, Garwolińska D, Kot-Wasik A. Characterization of GM3 Gangliosides in Human Milk throughout Lactation: Insights from the Analysis with the Use of Reversed-Phase Liquid Chromatography Coupled to Quadrupole Time-Of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17899-17908. [PMID: 37955407 PMCID: PMC10682988 DOI: 10.1021/acs.jafc.3c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Gangliosides are complex lipids found in human milk that play important structural and biological functions. In this study, we utilized reversed-phase liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to evaluate the molecular distribution of GM3 in human milk samples collected at distinct lactation stages, ranging from colostrum to advanced lactation samples. Throughout lactation, GM3 d40:1 emerged as the most abundant GM3 species, except in colostrum, where GM3 d42:2 prevailed. The relative content of GM3 species containing very long N-fatty acyl (N-FA) substituents with >22 carbon atoms decreased, while the content of GM3 species containing 14:0, 18:0, 18:1, and 20:0 N-FA substituents increased in the later months of lactation. These findings highlight the divergence of GM3 profiles across the lactation period. Moreover, considerable interindividual variance was observed among the analyzed samples. The assessment of the GM3 profiles contributes to our understanding of the dynamic composition of human milk.
Collapse
Affiliation(s)
- Weronika Hewelt-Belka
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Michał Młynarczyk
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Dorota Garwolińska
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Agata Kot-Wasik
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
3
|
Baeza-Kallee N, Bergès R, Hein V, Cabaret S, Garcia J, Gros A, Tabouret E, Tchoghandjian A, Colin C, Figarella-Branger D. Deciphering the Action of Neuraminidase in Glioblastoma Models. Int J Mol Sci 2023; 24:11645. [PMID: 37511403 PMCID: PMC10380381 DOI: 10.3390/ijms241411645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) contains cancer stem cells (CSC) that are resistant to treatment. GBM CSC expresses glycolipids recognized by the A2B5 antibody. A2B5, induced by the enzyme ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl transferase 3 (ST8Sia3), plays a crucial role in the proliferation, migration, clonogenicity and tumorigenesis of GBM CSC. Our aim was to characterize the resulting effects of neuraminidase that removes A2B5 in order to target GBM CSC. To this end, we set up a GBM organotypic slice model; quantified A2B5 expression by flow cytometry in U87-MG, U87-ST8Sia3 and GBM CSC lines, treated or not by neuraminidase; performed RNAseq and DNA methylation profiling; and analyzed the ganglioside expression by liquid chromatography-mass spectrometry in these cell lines, treated or not with neuraminidase. Results demonstrated that neuraminidase decreased A2B5 expression, tumor size and regrowth after surgical removal in the organotypic slice model but did not induce a distinct transcriptomic or epigenetic signature in GBM CSC lines. RNAseq analysis revealed that OLIG2, CHI3L1, TIMP3, TNFAIP2, and TNFAIP6 transcripts were significantly overexpressed in U87-ST8Sia3 compared to U87-MG. RT-qPCR confirmed these results and demonstrated that neuraminidase decreased gene expression in GBM CSC lines. Moreover, neuraminidase drastically reduced ganglioside expression in GBM CSC lines. Neuraminidase, by its pleiotropic action, is an attractive local treatment against GBM.
Collapse
Affiliation(s)
| | - Raphaël Bergès
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Victoria Hein
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Stéphanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, InstitutAgro, CNRS, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jeremy Garcia
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Abigaëlle Gros
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Emeline Tabouret
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service de Neurooncologie, 13005 Marseille, France
| | | | - Carole Colin
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | |
Collapse
|
4
|
Khoury S, Soubeyre V, Cabaret S, Grégoire S, Mézière E, Masson E, Grosmaitre X, Bretillon L, Berdeaux O, Acar N, Le Bon AM. Impact of dietary n-3 polyunsaturated fatty acid intake during the perinatal and post-weaning periods on the phospholipid and ganglioside composition of olfactory tissues. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102556. [PMID: 36870298 DOI: 10.1016/j.plefa.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The olfactory mucosa (OM) and olfactory bulb (OB) are neuronal tissues that contribute to the early processing of olfactory information. They contain significant amounts of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are crucial for neuronal tissue development. In this study, we evaluated the impact of feeding mice diets that are either deficient in α-linolenic acid (ALA) or supplemented with n-3 long-chain PUFAs from gestation to adolescence on the phospholipid and ganglioside composition of these tissues. Both diets modified the levels of some phospholipid classes, notably the phosphatidylserine and phosphatidylethanolamine levels. In addition, the low-ALA diet enriched n-6 PUFAs in the main phospholipid classes of both tissues, while the diet supplemented with n-3 PUFAs enhanced the n-3 PUFA-containing phospholipid species level, mainly in OM. The diets also modulated the levels and profiles of several ganglioside classes in OM and OB. These modifications may have repercussions on the olfactory sensitivity.
Collapse
Affiliation(s)
- Spiro Khoury
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Esther Mézière
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
5
|
Hohenwallner K, Troppmair N, Panzenboeck L, Kasper C, El Abiead Y, Koellensperger G, Lamp LM, Hartler J, Egger D, Rampler E. Decoding Distinct Ganglioside Patterns of Native and Differentiated Mesenchymal Stem Cells by a Novel Glycolipidomics Profiling Strategy. JACS AU 2022; 2:2466-2480. [PMID: 36465531 PMCID: PMC9709940 DOI: 10.1021/jacsau.2c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Gangliosides are an indispensable glycolipid class concentrated on cell surfaces with a critical role in stem cell differentiation. Nonetheless, owing to the lack of suitable methods for scalable analysis covering the full scope of ganglioside molecular diversity, their mechanistic properties in signaling and differentiation remain undiscovered to a large extent. This work introduces a sensitive and comprehensive ganglioside assay based on liquid chromatography, high-resolution mass spectrometry, and multistage fragmentation. Complemented by an open-source data evaluation workflow, we provide automated in-depth lipid species-level and molecular species-level annotation based on decision rule sets for all major ganglioside classes. Compared to conventional state-of-the-art methods, the presented ganglioside assay offers (1) increased sensitivity, (2) superior structural elucidation, and (3) the possibility to detect novel ganglioside species. A major reason for the highly improved sensitivity is the optimized spectral readout based on the unique capability of two parallelizable mass analyzers for multistage fragmentation. We demonstrated the high-throughput universal capability of our novel analytical strategy by identifying 254 ganglioside species. As a proof of concept, 137 unique gangliosides were annotated in native and differentiated human mesenchymal stem cells including 78 potential cell-state-specific markers and 38 previously unreported gangliosides. A general increase of the ganglioside numbers upon differentiation was observed as well as cell-state-specific clustering based on the ganglioside species patterns. The combination of the developed glycolipidomics assay with the extended automated annotation tool enables comprehensive in-depth ganglioside characterization as shown on biological samples of interest. Our results suggest ganglioside patterns as a promising quality control tool for stem cells and their differentiation products. Additionally, we believe that our analytical workflow paves the way for probing glycolipid-based biochemical processes shedding light on the enigmatic processes of gangliosides and glycolipids in general.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Nina Troppmair
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Lisa Panzenboeck
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Cornelia Kasper
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Yasin El Abiead
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth − University
of Graz, Graz 8010, Austria
| | - Dominik Egger
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
6
|
Ali AH, Wei W, Wang X. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
7
|
Liang N, Nečasová L, Zhao YY, Curtis JM. Advances in the separation of gangliosides by counter-current chromatography (CCC). J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122701. [PMID: 33957356 DOI: 10.1016/j.jchromb.2021.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Gangliosides play critical roles in the development of many progressive diseases. Due to their structural diversity, efficient methods are needed to separate individual gangliosides for studies of their functions, and for use as standards in the analysis of ganglioside mixtures. This proof-of-concept study reports a useful analytical-semi-preparative scale counter-current chromatography (CCC) enrichment of multiple ganglioside homologues of various species and classes at the milligram level. Since few individual ganglioside standards were available, this research aimed to achieve analytical-semi-preparative scale separation of gangliosides by differences in saccharide monomer compositions (classes), their arrangements (species), or ceramide compositions (homologues), using CCC. The solvent system composition, addition of solvent modifiers, and elution modes were all adjusted to separate porcine gangliosides, mainly GM1 (d36:1), GD1a (d36:1), GD1b (d36:1) and their (d38:1) homologues as a demonstration. The eluted compounds were analyzed by flow-injection analysis (FIA)-MS and LC-MS/MS. A two-phase solvent system, consisting of butanol/methyl t-butyl ether/acetonitrile/water at a ratio of 2:4:3:8 (v/v/v/v) with 0.5% (v/v) acetic acid added to the lower phase, was used to separate mg-levels of porcine gangliosides under dual-mode elution. The relative abundances of the above 6 gangliosides increased from 10 to 21% in the ganglioside extract to 55-73% in the collected fractions through the purification.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Lucie Nečasová
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Yuan-Yuan Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
8
|
Gobburi ALP, Kipruto EW, Inman DM, Anderson DJ. A new LC-MS/MS technique for separation of gangliosides using a phenyl-hexyl column: Systematic separation according to sialic acid class and ceramide subclass. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1856136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Denise M. Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Park JY, Shrestha SA, Cha S. Isomer separation and analysis of amphiphilic polysialogangliosides using reversed-phase liquid chromatography-mass spectrometry. J Sep Sci 2021; 44:1824-1832. [PMID: 33586325 DOI: 10.1002/jssc.202001248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/07/2022]
Abstract
Gangliosides are amphiphilic, acidic glycosphingolipids possessing one or more sialic acid residues and several isobaric structural isomers with different abundances and bioactivities. Therefore, the distinction between these isomers is crucial for their proper profiling. Although liquid chromatography-mass spectrometry has been successfully employed for this purpose, the distinction process can still be improved, particularly regarding liquid chromatography. Recently, a reversed-phase liquid chromatography method that could separate disialoganglioside isomers was reported; however, the distinction of trisialoganglioside isomers using reversed-phase liquid chromatography has not been demonstrated. Here, we investigated the practicality of a reversed-phase liquid chromatography with an octadecylsilane column for separating polysialoganglioside isomers and successfully achieved the isomer separation of disialogangliosides and trisialogangliosides for the first time. We also confirmed several crucial factors in the mobile-phase composition, which affect the differential retention and mass spectral response of the isomers. First, an organic modifier, acetonitrile, exhibited superior selectivity against polysialogangliosides over methanol. Second, ammonium bicarbonate was the best ammonium salt additive among those tested, in terms of the separation efficiency and mass spectral response. Third, as the ammonium salt concentration increased, the negative electrospray ionization response was extensively suppressed, and the retention of gangliosides increased.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Chemistry, Dongguk University, Seoul, Republic of Korea
| | | | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal Chim Acta 2020; 1132:134-155. [PMID: 32980104 PMCID: PMC7525043 DOI: 10.1016/j.aca.2020.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
Aberrant expression of glycosphingolipids has been implicated in a myriad of diseases, but our understanding of the strucural diversity, spatial distribution, and biological function of this class of biomolecules remains limited. These challenges partly stem from a lack of sensitive tools that can detect, identify, and quantify glycosphingolipids at the molecular level. Mass spectrometry has emerged as a powerful tool poised to address most of these challenges. Here, we review the recent developments in analytical glycosphingolipidomics with an emphasis on sample preparation, mass spectrometry and tandem mass spectrometry-based structural characterization, label-free and labeling-based quantification. We also discuss the nomenclature of glycosphingolipids, and emerging technologies like ion mobility spectrometry in differentiation of glycosphingolipid isomers. The intrinsic advantages and shortcomings of each method are carefully critiqued in line with an individual's research goals. Finally, future perspectives on analytical sphingolipidomics are stated, including a need for novel and more sensive methods in isomer separation, low abundance species detection, and profiling the spatial distribution of glycosphingolipid molecular species in cells and tissues using imaging mass spectrometry.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States.
| |
Collapse
|
11
|
Khoury S, Masson E, Sibille E, Cabaret S, Berdeaux O. Rapid sample preparation for ganglioside analysis by liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1137:121956. [DOI: 10.1016/j.jchromb.2019.121956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 11/26/2022]
|
12
|
Meng XY, Yau LF, Huang H, Chan WH, Luo P, Chen L, Tong TT, Mi JN, Yang Z, Jiang ZH, Wang JR. Improved approach for comprehensive profiling of gangliosides and sulfatides in rat brain tissues by using UHPLC-Q-TOF-MS. Chem Phys Lipids 2019; 225:104813. [DOI: 10.1016/j.chemphyslip.2019.104813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
|
13
|
Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, Masson E, Acar N, Bretillon L, Grosmaitre X, Berdeaux O. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids 2018; 131:32-43. [PMID: 29628048 DOI: 10.1016/j.plefa.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.
Collapse
Affiliation(s)
- Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
| | - Nicolas Deprêtre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
14
|
Santra A, Li Y, Yu H, Slack TJ, Wang PG, Chen X. Highly efficient chemoenzymatic synthesis and facile purification of α-Gal pentasaccharyl ceramide Galα3nLc 4βCer. Chem Commun (Camb) 2018; 53:8280-8283. [PMID: 28695219 DOI: 10.1039/c7cc04090c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A highly efficient chemoenzymatic method for synthesizing glycosphingolipids using α-Gal pentasaccharyl ceramide as an example is reported here. Enzymatic extension of the chemically synthesized lactosyl sphingosine using efficient sequential one-pot multienzyme (OPME) reactions allowed glycosylation to be carried out in aqueous solutions. Facile C18 cartridge-based quick (<30 minutes) purification protocols were established using minimal amounts of green solvents (CH3CN and H2O). Simple acylation in the last step led to the formation of the target glycosyl ceramide in 4 steps with an overall yield of 57%.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, One shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Barrientos RC, Zhang Q. Isobaric Labeling of Intact Gangliosides toward Multiplexed LC-MS/MS-Based Quantitative Analysis. Anal Chem 2018; 90:2578-2586. [PMID: 29384363 DOI: 10.1021/acs.analchem.7b04044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids recognized to play essential role in biological processes. Both the glycan and lipid structures influence their biological function and thus necessitate their determination as intact molecular species. To our knowledge, no multiplexed method for intact gangliosides currently exists. In this paper, we aimed to demonstrate an approach for isobaric labeling of intact gangliosides. Specifically, we carried out the rapid, chemoselective oxidation of sialic acid side chain in common ganglioside core structures using NaIO4 followed by ligation with a carbonyl-reactive isobaric tandem mass tag (TMT) reagent and subsequent RPLC-MS/MS analysis. Attachment of the isobaric label was observed to improve the ionization efficiency of complex gangliosides using electrospray ionization. Fragmentation of the resulting [M + 2H]2+ ions of TMT-labeled gangliosides provided information-rich spectra containing fragments from the glycan, lipid, and TMT reporter ions. This facile approach enabled simultaneous quantification of up to six samples as well as identification of glycan and lipid compositions in a single injection. As a proof-of-concept, using porcine brain total ganglioside extracts pooled at known ratios, we obtained overall sample-to-sample precision of <12% RSD and mean error of <10%. This showcased the great promise and feasibility of this strategy for high-throughput analysis of intact gangliosides in biological extracts.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro , Greensboro, North Carolina 27412, United States.,UNCG Center for Translational Biomedical Research, NC Research Campus , Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro , Greensboro, North Carolina 27412, United States.,UNCG Center for Translational Biomedical Research, NC Research Campus , Kannapolis, North Carolina 28081, United States
| |
Collapse
|
16
|
Rustam YH, Reid GE. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal Chem 2017; 90:374-397. [PMID: 29166560 DOI: 10.1021/acs.analchem.7b04836] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yepy H Rustam
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Victoria 3010, Australia.,School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Groux-Degroote S, Guérardel Y, Delannoy P. Gangliosides: Structures, Biosynthesis, Analysis, and Roles in Cancer. Chembiochem 2017; 18:1146-1154. [PMID: 28295942 DOI: 10.1002/cbic.201600705] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Gangliosides are acidic glycosphingolipids containing one or more sialic acid residues. They are essential compounds at the outer leaflet of the plasma membrane, where they interact with phospholipids, cholesterol, and transmembrane proteins, forming lipid rafts. They are involved in cell adhesion, proliferation, and recognition processes, as well as in the modulation of signal transduction pathways. These functions are mainly governed by the glycan moiety, and changes in the structures of gangliosides occur under pathological conditions, particularly in neuro-ectoderm-derived cancers. With the progress in mass spectrometry analysis of gangliosides, their role in cancer progression can be now investigated in more detail. In this review we summarize the current knowledge on the biosynthesis of gangliosides and their role in cancers, together with the recent development of cancer immunotherapy targeting gangliosides.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
18
|
Sarbu M, Dehelean L, Munteanu CV, Vukelić Ž, Zamfir AD. Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry. Anal Biochem 2017; 521:40-54. [DOI: 10.1016/j.ab.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
|
19
|
Sibille E, Berdeaux O, Martine L, Bron AM, Creuzot-Garcher CP, He Z, Thuret G, Bretillon L, Masson EAY. Ganglioside Profiling of the Human Retina: Comparison with Other Ocular Structures, Brain and Plasma Reveals Tissue Specificities. PLoS One 2016; 11:e0168794. [PMID: 27997589 PMCID: PMC5173345 DOI: 10.1371/journal.pone.0168794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Gangliosides make a wide family of glycosphingolipids, highly heterogeneous in both the ceramide moiety and the oligosaccharide chain. While ubiquitously expressed in mammalian tissues, they are particularly abundant in the brain and the peripheral nervous system. Gangliosides are known to play a crucial role in the development, maintenance and functional integrity of the nervous system. However, the expression and roles of gangliosides in the retina, although often considered as a window on the brain, has been far less studied. We performed an in-depth analysis of gangliosides of the human retina, especially using powerful LC/MS methods. We compared the pattern of ganglioside classes and ceramide molecular species of this tissue with other ocular structures and with brain and plasma in elderly human individuals. About a hundred of ganglioside molecular species among 15 distinct classes were detected illustrating the huge structural diversity of these compounds. The retina exhibited a very diverse ganglioside profile and shared several common features with the brain (prominence of tetraosylgangliosides, abundance of d20:1 long chain base and 18:0 fatty acid…). However, the retina stood out with the specific expression of GD3, GT3 and AcGT3, which further presented a peculiar molecular species distribution. The unique ganglioside pattern we observed in the human retina suggests that these ganglioside species play a specific role in the structure and function of this tissue. This lipidomic study, by highlighting retina specific ganglioside species, opens up novel research directions for a better understanding of the biological role of gangliosides in the retina.
Collapse
Affiliation(s)
- Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Alain M. Bron
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Catherine P. Creuzot-Garcher
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Zhiguo He
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
| | - Gilles Thuret
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
- Institut Universitaire de France, Paris, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Elodie A. Y. Masson
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| |
Collapse
|
20
|
Dossarps D, Martine L, Berdeaux O, Sibille E, Bron AM, Creuzot-Garcher CP, Bretillon L, Masson EAY. Plasmatic Ganglioside Profile and Age-Related Macular Degeneration: A Case-Control Study. Ophthalmic Res 2016; 56:41-8. [PMID: 27035458 DOI: 10.1159/000444059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/16/2016] [Indexed: 11/19/2022]
Abstract
PURPOSE Gangliosides are glycosphingolipids that are particularly abundant in the nervous system, including the retina. However, their precise role in this tissue and its pathologies remain poorly understood. The objective of the present study was to characterize the ganglioside profile of human plasma and to determine whether it is affected in age-related macular degeneration (AMD). METHODS Eighty-three subjects were included: control subjects (n = 25), atrophic AMD patients (n = 27) and exudative AMD patients (n = 31). For each subject, gangliosides were extracted from plasma and analyzed by liquid chromatography coupled to mass spectrometry. RESULTS GM3 appeared to be by far the major ganglioside of human plasma, associated with GD3. No specific ganglioside class was detected in the plasma of AMD patients. Fourteen molecular species of GM3 and 9 species of GD3, accounting for the variability of the ceramide moiety of the ganglioside molecule, were identified and characterized. Analyses revealed no significant differences in the proportion of these species between control, atrophic and exudative AMD patient groups. Total GM3 levels did not differ either. CONCLUSION Although gangliosides are considered important for the retina's structure and function, it seems that circulating gangliosides are not associated with the retinal damage occurring during the course of AMD.
Collapse
Affiliation(s)
- Denis Dossarps
- Dx00E9;partement d'Ophtalmologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|