1
|
Wang C, Zeng W, Wang L, Xiong X, Chen S, Huang Q, Zeng G, Huang Q. Asprosin aggravates nonalcoholic fatty liver disease via inflammation and lipid metabolic disturbance mediated by reactive oxygen species. Drug Dev Res 2024; 85:e22213. [PMID: 38798186 DOI: 10.1002/ddr.22213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Asprosin (ASP) is a newly-identified adipokine and plays important roles in energy metabolism homeostasis. However, there is no report on whether and how ASP is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Therefore, in the study, we investigated the protective effects of ASP-deficiency on the liver in the NAFLD model mice and the detrimental effects of ASP treatment on the human normal hepatocytes (LO2 cell line). More important, we explored the underlying mechanism from the perspective of lipid metabolism and inflammation. In the in vivo experiments, our data showed that the ASP-deficiency significantly alleviated the high-fat diet-induced inflammation and NAFLD, inhibited the hepatic fat deposition and downregulated the expressions of fat acid synthase (FASN), peroxisome proliferator-activated receptor γ (PPARγ) and forkhead box protein O1 (FOXO1); moreover, the ASP-deficiency attenuated the inflammatory state and inhibited the activation of the IKK/NF-κBp65 inflammation pathway. In the in vitro experiments, our results revealed that ASP treatment caused and even exacerbated the injury of LO2 cells induced by FFA; In contrast, the ASP treatment upregulated the expressions of PPARγ, FOXO1, FASN, ACC and acyl-CoA oxidase 1 (ACOX1) and elevated the reactive oxygen species (ROS) levels. Accordingly, these results demonstrate that ASP causes NAFLD through disrupting lipid metabolism and promoting the inflammation mediated by ROS.
Collapse
Affiliation(s)
- Chaowen Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Wenjing Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Li Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Guohua Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Gunn KH, Neher SB. Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site. Nat Commun 2023; 14:2569. [PMID: 37142573 PMCID: PMC10160067 DOI: 10.1038/s41467-023-38243-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Lipoprotein lipase (LPL) hydrolyzes triglycerides from circulating lipoproteins, releasing free fatty acids. Active LPL is needed to prevent hypertriglyceridemia, which is a risk factor for cardiovascular disease (CVD). Using cryogenic electron microscopy (cryoEM), we determined the structure of an active LPL dimer at 3.9 Å resolution. This structure reveals an open hydrophobic pore adjacent to the active site residues. Using modeling, we demonstrate that this pore can accommodate an acyl chain from a triglyceride. Known LPL mutations that lead to hypertriglyceridemia localize to the end of the pore and cause defective substrate hydrolysis. The pore may provide additional substrate specificity and/or allow unidirectional acyl chain release from LPL. This structure also revises previous models on how LPL dimerizes, revealing a C-terminal to C-terminal interface. We hypothesize that this active C-terminal to C-terminal conformation is adopted by LPL when associated with lipoproteins in capillaries.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Gunn KH, Neher SB. Structure of Dimeric Lipoprotein Lipase Reveals a Pore for Hydrolysis of Acyl Chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533650. [PMID: 36993689 PMCID: PMC10055231 DOI: 10.1101/2023.03.21.533650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Lipoprotein lipase (LPL) hydrolyzes triglycerides from circulating lipoproteins, releasing free fatty acids. Active LPL is needed to prevent hypertriglyceridemia, which is a risk factor for cardiovascular disease (CVD). Using cryogenic electron microscopy (cryoEM), we determined the structure of an active LPL dimer at 3.9 Ã… resolution. This is the first structure of a mammalian lipase with an open, hydrophobic pore adjacent to the active site. We demonstrate that the pore can accommodate an acyl chain from a triglyceride. Previously, it was thought that an open lipase conformation was defined by a displaced lid peptide, exposing the hydrophobic pocket surrounding the active site. With these previous models after the lid opened, the substrate would enter the active site, be hydrolyzed and then released in a bidirectional manner. It was assumed that the hydrophobic pocket provided the only ligand selectivity. Based on our structure, we propose a new model for lipid hydrolysis, in which the free fatty acid product travels unidirectionally through the active site pore, entering and exiting opposite sides of the protein. By this new model, the hydrophobic pore provides additional substrate specificity and provides insight into how LPL mutations in the active site pore may negatively impact LPL activity, leading to chylomicronemia. Structural similarity of LPL to other human lipases suggests that this unidirectional mechanism could be conserved but has not been observed due to the difficulty of studying lipase structure in the presence of an activating substrate. We hypothesize that the air/water interface formed during creation of samples for cryoEM triggered interfacial activation, allowing us to capture, for the first time, a fully open state of a mammalian lipase. Our new structure also revises previous models on how LPL dimerizes, revealing an unexpected C-terminal to C-terminal interface. The elucidation of a dimeric LPL structure highlights the oligomeric diversity of LPL, as now LPL homodimer, heterodimer, and helical filament structures have been elucidated. This diversity of oligomerization may provide a form of regulation as LPL travels from secretory vesicles in the cell, to the capillary, and eventually to the liver for lipoprotein remnant uptake. We hypothesize that LPL dimerizes in this active C-terminal to C-terminal conformation when associated with mobile lipoproteins in the capillary.
Collapse
|
4
|
Zhang R, Zhang K. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res 2022; 85:101140. [PMID: 34793860 PMCID: PMC8760165 DOI: 10.1016/j.plipres.2021.101140] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
In mammals, triglyceride (TG), the main form of lipids for storing and providing energy, is stored in white adipose tissue (WAT) after food intake, while during fasting it is routed to oxidative tissues (heart and skeletal muscle) for energy production, a process referred to as TG partitioning. Lipoprotein lipase (LPL), a rate-limiting enzyme in this fundamental physiological process, hydrolyzes circulating TG to generate free fatty acids that are taken up by peripheral tissues. The postprandial activity of LPL declines in oxidative tissues but rises in WAT, directing TG to WAT; the reverse is true during fasting. However, the molecular mechanism in regulating tissue-specific LPL activity during the fed-fast cycle has not been completely understood. Research on angiopoietin-like (ANGPTL) proteins (A3, A4, and A8) has resulted in an ANGPTL3-4-8 model to explain the TG partitioning between WAT and oxidative tissues. Food intake induces A8 expression in the liver and WAT. Liver A8 activates A3 by forming the A3-8 complex, which is then secreted into the circulation. The A3-8 complex acts in an endocrine manner to inhibit LPL in oxidative tissues. WAT A8 forms the A4-8 complex, which acts locally to block A4's LPL-inhibiting activity. Therefore, the postprandial activity of LPL is low in oxidative tissues but high in WAT, directing circulating TG to WAT. Conversely, during fasting, reduced A8 expression in the liver and WAT disables A3 from inhibiting oxidative-tissue LPL and restores WAT A4's LPL-inhibiting activity, respectively. Thus, the fasting LPL activity is high in oxidative tissues but low in WAT, directing TG to the former. According to the model, we hypothesize that A8 antagonism has the potential to simultaneously reduce TG and increase HDL-cholesterol plasma levels. Future research on A3, A4, and A8 can hopefully provide more insights into human health, disease, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Lund Winther AM, Kristensen KK, Kumari A, Ploug M. Expression and one-step purification of active lipoprotein lipase contemplated by biophysical considerations. J Lipid Res 2021; 62:100149. [PMID: 34780727 DOI: 10.1016/j.jlr.2021.100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoprotein lipase (LPL) is essential for intravascular lipid metabolism and is of high medical relevance. Since LPL is notoriously unstable, there is an unmet need for a robust expression system producing high quantities of active and pure recombinant human LPL. We showed previously that bovine LPL purified from milk is unstable at body temperature (Tm is 34.8 °C), but in the presence of the endothelial transporter glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) LPL is stabile (Tm increases to 57.6 °C). Building on this information, we now designed an expression system for human LPL using Drosophila S2 cells grown in suspension at high cell density and at an advantageous temperature of 25 °C. We co-transfected S2 cells with human LPL, LMF1 and soluble GPIHBP1 to provide an efficient chaperoning and stabilization of LPL in all compartments during synthesis and after secretion into the conditioned medium. For LPL purification, we used heparin-Sepharose affinity chromatography, which disrupted LPL-GPIHBP1 complexes causing GPIHBP1 to elute with the flow-through of the conditioned media. This one-step purification procedure yielded high quantities of pure and active LPL (4‒28 mg/L). Purification of several human LPL variants (furin-cleavage resistant mutant R297A, active-site mutant S132A, and lipid-binding-deficient mutant W390A-W393A-W394A) as well as murine LPL underscores the versatility and robustness of this protocol. Notably, we were able to produce and purify LPL containing the cognate furin-cleavage site. This method provides an efficient and cost-effective approach to produce large quantities of LPL for biophysical and large-scale drug discovery studies.
Collapse
Affiliation(s)
- Anne-Marie Lund Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Sylvers-Davie KL, Davies BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab 2021; 321:E493-E508. [PMID: 34338039 PMCID: PMC8560382 DOI: 10.1152/ajpendo.00195.2021] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/28/2023]
Abstract
Triglyceride-rich lipoproteins deliver fatty acids to tissues for oxidation and for storage. Release of fatty acids from circulating lipoprotein triglycerides is carried out by lipoprotein lipase (LPL), thus LPL serves as a critical gatekeeper of fatty acid uptake into tissues. LPL activity is regulated by a number of extracellular proteins including three members of the angiopoietin-like family of proteins. In this review, we discuss our current understanding of how, where, and when ANGPTL3, ANGPTL4, and ANGPTL8 regulate lipoprotein lipase activity, with a particular emphasis on how these proteins interact with each other to coordinate triglyceride metabolism and fat partitioning.
Collapse
Affiliation(s)
- Kelli L Sylvers-Davie
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Jin N, Matter WF, Michael LF, Qian Y, Gheyi T, Cano L, Perez C, Lafuente C, Broughton HB, Espada A. The Angiopoietin-Like Protein 3 and 8 Complex Interacts with Lipoprotein Lipase and Induces LPL Cleavage. ACS Chem Biol 2021; 16:457-462. [PMID: 33656326 DOI: 10.1021/acschembio.0c00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoprotein lipase (LPL) is the key enzyme that hydrolyzes triglycerides from triglyceride-rich lipoproteins. Angiopoietin-like proteins (ANGPTL) 3, 4, and 8 are well-characterized protein inhibitors of LPL. ANGPTL8 forms a complex with ANGPTL3, and the complex is a potent endogenous inhibitor of LPL. However, the nature of the structural interaction between ANGPTL3/8 and LPL is unknown. To probe the conformational changes in LPL induced by ANGPTL3/8, we found that HDX-MS detected significantly altered deuteration in the lid region, ApoC2 binding site, and furin cleavage region of LPL in the presence of ANGPTL3/8. Supporting this HDX structural evidence, we found that ANGPTL3/8 inhibits LPL enzymatic activities and increases LPL cleavage. ANGPTL3/8-induced effects on LPL activity and LPL cleavage are much stronger than those of ANGPTL3 or ANGPTL8 alone. ANGPTL3/8-mediated LPL cleavage is blocked by both an ANGPTL3 antibody and a furin inhibitor. Knock-down of furin expression by siRNA significantly reduced ANGPT3/8-induced cleavage of LPL. Our data suggest ANGPTL3/8 promotes furin-mediated LPL cleavage.
Collapse
Affiliation(s)
- Najia Jin
- Diabetes and Complications Therapeutic Area, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - William F. Matter
- Diabetes and Complications Therapeutic Area, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Laura F. Michael
- Diabetes and Complications Therapeutic Area, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Yuewei Qian
- Laboratory for Experimental Medicine, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Tarun Gheyi
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Leticia Cano
- Centro de Investigación Lilly S.A., 28108 Alcobendas, Spain
| | - Carlos Perez
- Centro de Investigación Lilly S.A., 28108 Alcobendas, Spain
| | - Celia Lafuente
- Centro de Investigación Lilly S.A., 28108 Alcobendas, Spain
| | | | - Alfonso Espada
- Centro de Investigación Lilly S.A., 28108 Alcobendas, Spain
| |
Collapse
|
8
|
Gunn KH, Gutgsell AR, Xu Y, Johnson CV, Liu J, Neher SB. Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities. J Biol Chem 2021; 296:100312. [PMID: 33482195 PMCID: PMC7949051 DOI: 10.1016/j.jbc.2021.100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Elevated plasma triglycerides are a risk factor for coronary artery disease, which is the leading cause of death worldwide. Lipoprotein lipase (LPL) reduces triglycerides in the blood by hydrolyzing them from triglyceride-rich lipoproteins to release free fatty acids. LPL activity is regulated in a nutritionally responsive manner by macromolecular inhibitors including angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4). However, the mechanism by which ANGPTL3 inhibits LPL is unclear, in part due to challenges in obtaining pure protein for study. We used a new purification protocol for the N-terminal domain of ANGPTL3, removing a DNA contaminant, and found DNA-free ANGPTL3 showed enhanced inhibition of LPL. Structural analysis showed that ANGPTL3 formed elongated, flexible trimers and hexamers that did not interconvert. ANGPTL4 formed only elongated flexible trimers. We compared the inhibition of ANGPTL3 and ANGPTL4 using human very-low-density lipoproteins as a substrate and found both were noncompetitive inhibitors. The inhibition constants for the trimeric ANGPTL3 (7.5 ± 0.7 nM) and ANGPTL4 (3.6 ± 1.0 nM) were only 2-fold different. Heparin has previously been reported to interfere with ANGPTL3 binding to LPL, so we questioned if the negatively charged heparin was acting in a similar fashion to the DNA contaminant. We found that ANGPTL3 inhibition is abolished by binding to low-molecular-weight heparin, whereas ANGPTL4 inhibition is not. Our data show new similarities and differences in how ANGPTL3 and ANGPTL4 regulate LPL and opens new avenues of investigating the effect of heparin on LPL inhibition by ANGPTL3.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aspen R Gutgsell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caitlin V Johnson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
9
|
The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage. Proc Natl Acad Sci U S A 2020; 117:10254-10264. [PMID: 32332168 DOI: 10.1073/pnas.1916555117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipases are enzymes necessary for the proper distribution and utilization of lipids in the human body. Lipoprotein lipase (LPL) is active in capillaries, where it plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides from packaged lipoproteins. Thirty years ago, the existence of a condensed and inactive LPL oligomer was proposed. Although recent work has shed light on the structure of the LPL monomer, the inactive oligomer remained opaque. Here we present a cryo-EM reconstruction of a helical LPL oligomer at 3.8-Å resolution. Helix formation is concentration-dependent, and helices are composed of inactive dihedral LPL dimers. Heparin binding stabilizes LPL helices, and the presence of substrate triggers helix disassembly. Superresolution fluorescent microscopy of endogenous LPL revealed that LPL adopts a filament-like distribution in vesicles. Mutation of one of the helical LPL interaction interfaces causes loss of the filament-like distribution. Taken together, this suggests that LPL is condensed into its inactive helical form for storage in intracellular vesicles.
Collapse
|
10
|
Koerner CM, Roberts BS, Neher SB. Endoplasmic reticulum quality control in lipoprotein metabolism. Mol Cell Endocrinol 2019; 498:110547. [PMID: 31442546 PMCID: PMC6814580 DOI: 10.1016/j.mce.2019.110547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/26/2022]
Abstract
Lipids play a critical role in energy metabolism, and a suite of proteins is required to deliver lipids to tissues. Several of these proteins require an intricate endoplasmic reticulum (ER) quality control (QC) system and unique secondary chaperones for folding. Key examples include apolipoprotein B (apoB), which is the primary scaffold for many lipoproteins, dimeric lipases, which hydrolyze triglycerides from circulating lipoproteins, and the low-density lipoprotein receptor (LDLR), which clears cholesterol-rich lipoproteins from the circulation. ApoB requires specialized proteins for lipidation, dimeric lipases lipoprotein lipase (LPL) and hepatic lipase (HL) require a transmembrane maturation factor for secretion, and the LDLR requires several specialized, domain-specific chaperones. Deleterious mutations in these proteins or their chaperones may result in dyslipidemias, which are detrimental to human health. Here, we review the ER quality control systems that ensure secretion of apoB, LPL, HL, and LDLR with a focus on the specialized chaperones required by each protein.
Collapse
Affiliation(s)
- Cari M Koerner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
11
|
Nimonkar AV, Weldon S, Godbout K, Panza D, Hanrahan S, Cubbon R, Xu F, Trauger JW, Gao J, Voznesensky A. A lipoprotein lipase-GPI-anchored high-density lipoprotein-binding protein 1 fusion lowers triglycerides in mice: Implications for managing familial chylomicronemia syndrome. J Biol Chem 2019; 295:2900-2912. [PMID: 31645434 PMCID: PMC7062184 DOI: 10.1074/jbc.ra119.011079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Indexed: 02/04/2023] Open
Abstract
Lipoprotein lipase (LPL) is central to triglyceride metabolism. Severely compromised LPL activity causes familial chylomicronemia syndrome (FCS), which is associated with very high plasma triglyceride levels and increased risk of life-threatening pancreatitis. Currently, no approved pharmacological intervention can acutely lower plasma triglycerides in FCS. Low yield, high aggregation, and poor stability of recombinant LPL have thus far prevented development of enzyme replacement therapy. Recently, we showed that LPL monomers form 1:1 complexes with the LPL transporter glycosylphosphatidylinositol-anchored high-density lipoprotein–binding protein 1 (GPIHBP1) and solved the structure of the complex. In the present work, we further characterized the monomeric LPL/GPIHBP1 complex and its derivative, the LPL–GPIHBP1 fusion protein, with the goal of contributing to the development of an LPL enzyme replacement therapy. Fusion of LPL to GPIHBP1 increased yields of recombinant LPL, prevented LPL aggregation, stabilized LPL against spontaneous inactivation, and made it resistant to inactivation by the LPL antagonists angiopoietin-like protein 3 (ANGPTL3) or ANGPTL4. The high stability of the fusion protein enabled us to identify LPL amino acids that interact with ANGPTL4. Additionally, the LPL–GPIHBP1 fusion protein exhibited high enzyme activity in in vitro assays. Importantly, both intravenous and subcutaneous administrations of the fusion protein lowered triglycerides in several mouse strains without causing adverse effects. These results indicate that the LPL–GPIHBP1 fusion protein has potential for use as a therapeutic for managing FCS.
Collapse
Affiliation(s)
- Amitabh V Nimonkar
- Cardiovascular and Metabolic Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Stephen Weldon
- Novartis Biologics Center, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Kevin Godbout
- Novartis Biologics Center, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Darrell Panza
- Cardiovascular and Metabolic Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Susan Hanrahan
- Cardiovascular and Metabolic Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Rose Cubbon
- Cardiovascular and Metabolic Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Fangmin Xu
- Protein Analytics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - John W Trauger
- Cardiovascular and Metabolic Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Jiaping Gao
- Cardiovascular and Metabolic Disease Area, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Andrei Voznesensky
- Novartis Biologics Center, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139.
| |
Collapse
|
12
|
Gutgsell AR, Ghodge SV, Bowers AA, Neher SB. Mapping the sites of the lipoprotein lipase (LPL)-angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition. J Biol Chem 2018; 294:2678-2689. [PMID: 30591589 DOI: 10.1074/jbc.ra118.005932] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease has been the leading cause of death throughout the world for nearly 2 decades. Hypertriglyceridemia affects more than one-third of the population in the United States and is an independent risk factor for cardiovascular disease. Despite the frequency of hypertriglyceridemia, treatment options are primarily limited to diet and exercise. Lipoprotein lipase (LPL) is an enzyme responsible for clearing triglycerides from circulation, and its activity alone can directly control plasma triglyceride concentrations. Therefore, LPL is a good target for triglyceride-lowering therapeutics. One approach for treating hypertriglyceridemia may be to increase the amount of enzymatically active LPL by preventing its inhibition by angiopoietin-like protein 4 (ANGPTL4). However, little is known about how these two proteins interact. Therefore, we used hydrogen-deuterium exchange MS to identify potential binding sites between LPL and ANGPTL4. We validated sites predicted to be located at the protein-protein interface by using chimeric variants of LPL and an LPL peptide mimetic. We found that ANGPTL4 binds LPL near the active site at the lid domain and a nearby α-helix. Lipase lid domains cover the active site to control both enzyme activation and substrate specificity. Our findings suggest that ANGPTL4 specifically inhibits LPL by binding the lid domain, which could prevent substrate catalysis at the active site. The structural details of the LPL-ANGPTL4 interaction uncovered here may inform the development of therapeutics targeted to disrupt this interaction for the management of hypertriglyceridemia.
Collapse
Affiliation(s)
- Aspen R Gutgsell
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Swapnil V Ghodge
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Albert A Bowers
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Saskia B Neher
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|