1
|
Song JZ, Feng YH, Sergevnina V, Zhu J, Li H, Xie Z. Assessing the Presence of Phosphoinositides on Autophagosomal Membrane in Yeast by Live Cell Imaging. Microorganisms 2024; 12:1458. [PMID: 39065227 PMCID: PMC11279164 DOI: 10.3390/microorganisms12071458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The formation of autophagosomes mediating the sequestration of cytoplasmic materials is the central step of autophagy. Several phosphoinositides, which are signaling molecules on the membrane, are involved in autophagy. However, it is not always clear whether these phosphoinositides act directly at the site of autophagosome formation, or indirectly via the regulation of other steps or pathways. To address this question, we used a set of phosphoinositide probes to systematically examine their potential presence on autophagosomal membranes in yeast (Saccharomyces cerevisiae). We verified the specificity of these probes using mutant cells deficient in the production of the corresponding phosphoinositides. We then examined starved yeast cells co-expressing a phosphoinositide probe together with an autophagosomal membrane marker, 2Katushka2S-Atg8. Our data revealed that PtdIns(4,5)P2 and PtdIns(3,5)P2 were mainly present on the plasma membrane and vacuolar membrane, respectively. We observed only occasional co-localization between the PtdIns(4)P probe and Atg8, some of which may represent the transient passage of a PtdIns(4)P-containing structure near the autophagosomal membrane. In contrast, substantial colocalization of the PtdIns(3)P probe with Atg8 was observed. Taken together, our data indicate that only PtdIns(3)P is present in a substantial amount on the autophagosomal membrane. For other phosphoinositides involved in autophagy, either their presence on the autophagosomal membrane is very transient, or they act on other cellular membranes to regulate autophagy.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Fabijanczuk KC, Foreman DJ, McLuckey SA. Charge Inversion of Mono- and Dianions to Cations via Triply Charged Metal Complexes: Application to Lipid Mixtures. Anal Chem 2023; 95:16289-16297. [PMID: 37871251 DOI: 10.1021/acs.analchem.3c03345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Electrospray ionization (ESI) of mixtures can give rise to ions with different masses and charges with overlapping mass-to-charge (m/z) ratios. Such a scenario can be particularly problematic for the detection of low-abundance species in the presence of more highly abundant mixture components. For example, negative mode ESI of polar lipid extracts can result in highly abundant singly charged glyerophospholipids (GPLs), such as phosphatidylethanolamines (PE) and phosphatidylglycerols (PG), that can obscure much less abundant cardiolipins (CLs), which are complex phospholipids with masses roughly double those of GPLs that mostly form doubly charged anions. Despite their low relative abundance, CLs are lipidome components that perform vital biological functions. To facilitate the study of CLs in lipid mixtures without resorting to offline or online separations, we have developed a gas-phase approach employing ion/ion reactions to charge invert anionic lipid species using a trivalent metal-complex. Specifically, ytterbium(III) is shown to readily complex with three neutral ligands, N,N,N',N'-tetra-2-ethylhexyl diglycolamide (TEHDGA), to form [Yb(TEHDGA3)]3+ using ESI. Herein, we describe pilot studies to evaluate [Yb(TEHDGA)3]3+ as an ion/ion reagent to allow for chemical separation of doubly and singly charged anions, using lipid mixtures as examples, without neutralizing ions of either charge state.
Collapse
Affiliation(s)
- Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - David J Foreman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
3
|
Chin ST, Hoerlendsberger G, Wong KW, Li S, Bong SH, Whiley L, Wist J, Masuda R, Greeff J, Holmes E, Nicholson JK, Loo RL. Targeted lipidomics coupled with machine learning for authenticating the provenance of chicken eggs. Food Chem 2023; 410:135366. [PMID: 36641906 DOI: 10.1016/j.foodchem.2022.135366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Free-range eggs are ethically desirable but as with all high-value commercial products, the establishment of provenance can be problematic. Here, we compared a simple one-step isopropanol method to a two-step methyl-tert-butyl ether method for extracting lipid species in chicken egg yolks before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The isopropanol method extracted 937 lipid species from 20 major lipid subclasses with high reproducibility (CV < 30 %). Machine learning techniques could differentiate conventional cage, barn, and free-range eggs using an external test dataset with an accuracy of 0.94, 0.82, and 0.82, respectively. Lipid species that differentiated cage eggs were predominantly phosphocholines and phosphoethanolamines whilst the free-range egg lipidomes were dominated by acylglycerides with up to three fatty acids. The lipid profiles were found to be characteristic of the cage, barns, and free-range eggs. The lipidomic analysis together with the statistical modeling approach thus provides an efficient tool for verifying the provenance of conventional chicken eggs.
Collapse
Affiliation(s)
- Sung-Tong Chin
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Gerhard Hoerlendsberger
- Discipline of Information Technology, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Kok Wai Wong
- Discipline of Information Technology, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Sirui Li
- Discipline of Information Technology, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Sze How Bong
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Reika Masuda
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Johan Greeff
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, U.K
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Ruey Leng Loo
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia.
| |
Collapse
|
4
|
Abomughaid M, Tay ESE, Pickford R, Malladi C, Read SA, Coorssen JR, Gloss BS, George J, Douglas MW. PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication. Int J Mol Sci 2023; 24:ijms24108781. [PMID: 37240132 DOI: 10.3390/ijms24108781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis.
Collapse
Affiliation(s)
- Mosleh Abomughaid
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chandra Malladi
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Blacktown Clinical School, Western Sydney University and Blacktown Hospital, Sydney, NSW 2751, Australia
| | - Jens R Coorssen
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
5
|
Dincel D, Rosales-Solano H, Zeinali S, Pawliszyn J. Standard Water Generating Vials for Lipophilic Compounds. Anal Chem 2023; 95:820-826. [PMID: 36546835 PMCID: PMC10848237 DOI: 10.1021/acs.analchem.2c02993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The study of non-polar compounds in aqueous environments has always been challenging due to their poor solubility in aqueous media. The low affinity of non-polar compounds toward polar solutions facilitates their attachment to glassware, which results in unstable sample concentrations. To address this challenge, and to enable the preparation of a stable mixture of hydrophobic compounds in an aquatic environment, we introduce an in-vial standard water generating system consisting of a vial containing appropriate aqueous solution and a polydimethylsiloxane thin film spiked with target compounds. In this system, a solution with a stable analyte concentration is attained once equilibrium between the thin-film and aqueous solution has been achieved. The developed standard water system was studied using endocannabinoids and phospholipids as model hydrophobic compounds of biological importance, with results indicating that the concentration of hydrophobic compounds in water can remain stable over multiple days. The results also showed that analytes released from the thin film can compensate for analyte loss due to extractions with solid-phase microextraction fibers, thereby re-establishing equilibrium. Thus, the vial is suitable for the repeatable generation of non-polar standards for routine analysis and quality control. The results of this work show that the developed system is stable and reproducible and therefore appropriate for studies requiring the measurement of free concentrations and accurate quantification.
Collapse
Affiliation(s)
- Demet Dincel
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey
| | | | - Shakiba Zeinali
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Development and validation of a simple and rapid HILIC-MS/MS method for the quantification of low-abundant lysoglycerophospholipids in human plasma. Anal Bioanal Chem 2023; 415:411-425. [PMID: 36370204 DOI: 10.1007/s00216-022-04421-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
Abstract
Lysoglycerophospholipids (Lyso-GPLs) are an essential class of signaling lipids with potential roles in human diseases, such as cancer, central nervous system diseases, and atherosclerosis. Current methods for the quantification of Lyso-GPLs involve complex sample pretreatment, long analysis times, and insufficient validation, which hinder the research of Lyso-GPLs in human studies, especially for Lyso-GPLs with low abundance in human plasma such as lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI), lysophosphatidylglycerol (LPG), lysophosphatidylserine (LysoPS), lyso-platelet-activating factor (LysoPAF), and cyclic phosphatidic acid (cPA). Herein, we report the development and validation of a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of Lyso-GPLs with low abundance in plasma. Protein precipitation using MeOH for Lyso-GPL extraction, quick separation (within 18 min) based on hydrophilic interaction liquid chromatography (HILIC), and sensitive MS detection under dynamic multiple reaction monitoring (dMRM) mode enabled efficient quantification of 22 Lyso-GPLs including 2 cPA, 4 LPG, 11 LPA, 2 LysoPS, and 3 LysoPAF in 50 μL of human plasma. The present method showed good linearity (goodness of fit, 0.99823-0.99995), sensitivity (lower limit of quantification, 0.03-14.06 ng/mL), accuracy (73-117%), precision (coefficient of variation ≤ 28%), carryover (≤ 17%), recovery (80-110%), and stability (83-123%). We applied the method in an epidemiological study and report concentrations of 18 Lyso-GPLs in 567 human plasma samples comparable to those of previous studies. Significant negative associations of LysoPAF C18, LysoPAF C18:1, and LysoPAF C16 with homeostatic model assessment for insulin resistance (HOMA-IR) level were observed; this indicates possible roles of LysoPAF in glucose homeostasis. The application of the present method will improve understanding of the roles of circulating low-abundant Lyso-GPLs in health and diseases.
Collapse
|
7
|
Nguyen Trung M, Kieninger S, Fandi Z, Qiu D, Liu G, Mehendale NK, Saiardi A, Jessen H, Keller B, Fiedler D. Stable Isotopomers of myo-Inositol Uncover a Complex MINPP1-Dependent Inositol Phosphate Network. ACS CENTRAL SCIENCE 2022; 8:1683-1694. [PMID: 36589890 PMCID: PMC9801504 DOI: 10.1021/acscentsci.2c01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 05/04/2023]
Abstract
The water-soluble inositol phosphates (InsPs) represent a functionally diverse group of small-molecule messengers involved in a myriad of cellular processes. Despite their centrality, our understanding of human InsP metabolism is incomplete because the available analytical toolset to characterize and quantify InsPs in complex samples is limited. Here, we have synthesized and applied symmetrically and unsymmetrically 13C-labeled myo-inositol and inositol phosphates. These probes were utilized in combination with nuclear magnetic resonance spectroscopy (NMR) and capillary electrophoresis mass spectrometry (CE-MS) to investigate InsP metabolism in human cells. The labeling strategy provided detailed structural information via NMR-down to individual enantiomers-which overcomes a crucial blind spot in the analysis of InsPs. We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| | - Stefanie Kieninger
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Zeinab Fandi
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Danye Qiu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Guizhen Liu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Neelay K. Mehendale
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adolfo Saiardi
- MRC
Laboratory for Molecular Cell Biology, University
College London, WC1E 6BT London, United Kingdom
| | - Henning Jessen
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bettina Keller
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| |
Collapse
|
8
|
Fabijanczuk KC, Chao HC, Fischer JL, McLuckey SA. Structural elucidation and isomeric differentiation/quantitation of monophosphorylated phosphoinositides using gas-phase ion/ion reactions and dissociation kinetics. Analyst 2022; 147:5000-5010. [PMID: 36254743 PMCID: PMC9651020 DOI: 10.1039/d2an00792d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Phosphoinositides, phosphorylated derivatives of phosphatidylinositols, are essential signaling phospholipids in all mammalian cellular membranes. With three known phosphorylated derivatives of phosphatidylinositols at the 3-, 4-, and 5-positions along the myo-inositol ring, various fatty acyl chain lengths, and varying degrees of unsaturation, numerous isomers can be present. It is challenging for shotgun-MS to accurately identify and characterize phosphoinositides and their isomers using the most readily available precursor ion types. To overcome this challenge, novel gas-phase ion/ion chemistry was used to expand the range of precursor ion-types for subsequent structural characterization of phosphoinositides using shot-gun tandem mass spectrometry. The degree of phosphorylation and fatty acyl sum composition are readily obtained by ion-trap CID of deprotonated phosphoinositides. Carbon-carbon double bond position of the fatty acyl chains can be localized via a charge inversion ion/ion reaction. Utilizing sequential ion/ion reactions and subsequent activation yields product ion information that is of limited utility for phosphorylation site localization. However, the kinetics of dissociation allowed for isomeric differentiation of the position of the phosphate group. Furthermore, employing the same kinetics method, relative quantitative information was gained for the isomeric species.
Collapse
Affiliation(s)
| | - Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Joshua L Fischer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
9
|
Barneda D, Janardan V, Niewczas I, Collins DM, Cosulich S, Clark J, Stephens LR, Hawkins PT. Acyl chain selection couples the consumption and synthesis of phosphoinositides. EMBO J 2022; 41:e110038. [PMID: 35771169 PMCID: PMC9475507 DOI: 10.15252/embj.2021110038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PIPn) in mammalian tissues are enriched in the stearoyl/arachidonoyl acyl chain species ("C38:4"), but its functional significance is unclear. We have used metabolic tracers (isotopologues of inositol, glucose and water) to study PIPn synthesis in cell lines in which this enrichment is preserved to differing relative extents. We show that PIs synthesised from glucose are initially enriched in shorter/more saturated acyl chains, but then rapidly remodelled towards the C38:4 species. PIs are also synthesised by a distinct 're-cycling pathway', which utilises existing precursors and exhibits substantial selectivity for the synthesis of C38:4-PA and -PI. This re-cycling pathway is rapidly stimulated during receptor activation of phospholipase-C, both allowing the retention of the C38:4 backbone and the close coupling of PIPn consumption to its resynthesis, thus maintaining pool sizes. These results suggest that one property of the specific acyl chain composition of PIPn is that of a molecular code, to facilitate 'metabolic channelling' from PIP2 to PI via pools of intermediates (DG, PA and CDP-DG) common to other lipid metabolic pathways.
Collapse
Affiliation(s)
- David Barneda
- Signalling Programme, Babraham Institute, Cambridge, UK.,Projects, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Vishnu Janardan
- Cellular Organization and Signalling, National Centre for Biological Sciences, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Li P, Lämmerhofer M. Isomer Selective Comprehensive Lipidomics Analysis of Phosphoinositides in Biological Samples by Liquid Chromatography with Data Independent Acquisition Tandem Mass Spectrometry. Anal Chem 2021; 93:9583-9592. [PMID: 34191474 DOI: 10.1021/acs.analchem.1c01751] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphoinositides (PIPx) play central roles in membrane dynamics and signal transduction of key functions like cellular growth, proliferation, differentiation, migration, and adhesion. They are highly regulated through a network of distinct phosphatidylinositol phosphates consisting of seven groups and three regioisomers in two groups (PIP and PIP2), which arise from phosphorylation at 3', 4', and 5' positions of the inositol ring. Numerous studies have revealed the importance of both fatty acyl chains, degree of phosphorylation, and phosphorylation positions under physiological and pathological states. However, a comprehensive analytical method that allows differentiation of all regioisomeric forms with different acyl side chains and degrees of phosphorylation is still lacking. Here, we present an integrated comprehensive workflow of PIPx analysis utilizing a chiral polysaccharide stationary phase coupled with electrospray ionization high-resolution mass spectrometry with a data independent acquisition technique using the SWATH technology. Correspondingly, a targeted data mining strategy in the untargeted comprehensively acquired MS and MS/MS data was developed. This powerful highly selective method gives a full picture of PIPx profiles in biological samples. Herein, we present for the first time the full PIPx profiles of NIST SRM1950 plasma, Pichia pastoris lipid extract, and HeLa cell extract, including profile changes upon treatment with potential PI3K inhibitor wortmannin. We also illustrate using this inhibitor that measurements of the PIPx profile averaged over the distinct regioisomers by analytical procedures, which cannot differentiate between the individual PIPx isomers, can easily lead to biased conclusions.
Collapse
Affiliation(s)
- Peng Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| |
Collapse
|
11
|
Huang Y, Mu R, Wen D, Grimsby JS, Liang M, Rosenbaum AI. Differences in levels of phosphatidylinositols in healthy and stable Coronary Artery Disease subjects revealed by HILIC-MRM method with SERRF normalization. PLoS One 2021; 16:e0252426. [PMID: 34086718 PMCID: PMC8177664 DOI: 10.1371/journal.pone.0252426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/14/2021] [Indexed: 11/30/2022] Open
Abstract
Quantification of endogenous biomarkers in clinical studies requires careful evaluation of a number of assay performance parameters. Comparisons of absolute values from several clinical studies can enable retrospective analyses further elucidating the biology of a given biomarker across various study populations. We characterized the performance of a highly multiplex bioanalytical method for quantification of phosphatidylinositols (PI). Hydrophilic interaction chromatography (HILIC) and multiple reaction monitoring (MRM) were employed for targeted multiplex quantification. Odd-chain PI species that are not normally present in human plasma were utilized as surrogate analytes (SA) to assess various assay performance parameters and establish a definitive dynamic linear range for PI lipids. To correct for batch effects, Systematic Error Removal using Random Forest (SERRF) normalization algorithm was employed and used to bridge raw values between two clinical studies, enabling quantitative comparison of their absolute values. A high throughput method was developed, qualified, transferred to an automation platform and applied to sample testing in two clinical trials in healthy volunteers (NCT03001297) and stable Coronary Artery Disease (CAD, NCT03351738) subjects. The method demonstrated acceptable precision and accuracy (±30%) over linear range of 1-1000 nM for SA and 8-fold dilutional linearity for endogenous PI. We determined that mean-adjusted average QC performed best for normalization using SERRF. The comparison of two studies revealed that healthy subject levels of PI are consistently higher across PI species compared to CAD subjects identifying a potential lipid biomarker to be explored in future studies.
Collapse
Affiliation(s)
- Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, United States of America
| | - Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, United States of America
| | - David Wen
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, United States of America
| | - Joseph S. Grimsby
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, United States of America
| | - Anton I. Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, United States of America
| |
Collapse
|
12
|
Kundu R, Chandra A, Datta A. Fluorescent Chemical Tools for Tracking Anionic Phospholipids. Isr J Chem 2021. [DOI: 10.1002/ijch.202100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rajasree Kundu
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Amitava Chandra
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Ankona Datta
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
13
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
14
|
Abstract
STING is essential for control of infections and for tumor immunosurveillance, but can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER), and traffics following stimulation to ERGIC/Golgi where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PI3P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP leading to increased ER PI3P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.
Collapse
|
15
|
Type I Phosphatidylinositol-4-Phosphate 5-Kinases α and γ Play a Key Role in Targeting HIV-1 Pr55 Gag to the Plasma Membrane. J Virol 2020; 94:JVI.00189-20. [PMID: 32376619 DOI: 10.1128/jvi.00189-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 assembly occurs principally at the plasma membrane (PM) of infected cells. Gag polyprotein precursors (Pr55Gag) are targeted to the PM, and their binding is mediated by the interaction of myristoylated matrix domain and a PM-specific phosphoinositide, the phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The major synthesis pathway of PI(4,5)P2 involves the activity of phosphatidylinositol-4-phosphate 5-kinase family type 1 composed of three isoforms (PIP5K1α, PIP5K1β, and PIP5K1γ). To examine whether the activity of a specific PIP5K1 isoform determines proper Pr55Gag localization at the PM, we compared the cellular behavior of Pr55Gag in the context of PIP5K1 inhibition using siRNAs that individually targeted each of the three isoforms in TZM-bl HeLa cells. We found that downregulation of PIP5K1α and PIP5K1γ strongly impaired the targeting of Pr55Gag to the PM with a rerouting of the polyprotein within intracellular compartments. The efficiency of Pr55Gag release was thus impaired through the silencing of these two isoforms, while PIP5K1β is dispensable for Pr55Gag targeting to the PM. The PM mistargeting due to the silencing of PIP5K1α leads to Pr55Gag hydrolysis through lysosome and proteasome pathways, while the silencing of PIP5K1γ leads to Pr55Gag accumulation in late endosomes. Our findings demonstrated that, within the PIP5K1 family, only the PI(4,5)P2 pools produced by PIP5K1α and PIP5K1γ are involved in the Pr55Gag PM targeting process.IMPORTANCE PM specificity of Pr55Gag membrane binding is mediated through the interaction of PI(4,5)P2 with the matrix (MA) basic residues. It was shown that overexpression of a PI(4,5)P2-depleting enzyme strongly impaired PM localization of Pr55Gag However, cellular factors that control PI(4,5)P2 production required for Pr55Gag-PM targeting have not yet been characterized. In this study, by individually inhibiting PIP5K1 isoforms, we elucidated a correlation between PI(4,5)P2 metabolism pathways mediated by PIP5K1 isoforms and the targeting of Pr55Gag to the PM of TZM-bl HeLa cells. Confocal microscopy analyses of cells depleted from PIP5K1α and PIP5K1γ show a rerouting of Pr55Gag to various intracellular compartments. Notably, Pr55Gag is degraded by the proteasome and/or by the lysosomes in PIP5K1α-depleted cells, while Pr55Gag is targeted to endosomal vesicles in PIP5K1γ-depleted cells. Thus, our results highlight, for the first time, the roles of PIP5K1α and PIP5K1γ as determinants of Pr55Gag targeting to the PM.
Collapse
|
16
|
Dennis EA, O'Donnell VB. Phosphatidylinositol metabolism, phospholipases, lipidomics, and cancer: In Memoriam: Michael J. O. Wakelam (1955–2020). J Lipid Res 2020; 61:809-814. [DOI: 10.1194/jlr.t120000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Morales JA, Gonzalez-Kantun WA, Rodriguez-Zapata LC, Ramón-Ugalde J, Castano E. The effect of plant stress on phosphoinositides. Cell Biochem Funct 2019; 37:553-559. [PMID: 31478243 DOI: 10.1002/cbf.3432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are very versatile molecules with a plethora of functions such as cytokinesis, chemotaxis, cell survival, and cell death. Their functions depend on the proteins with which they interact. Thus, when interacting with phospholipases, phosphatases, or kinases, they can be precursors of second messengers in different signalling pathways. They could be second messengers themselves and interact directly with other proteins to modulate their functions trough changing its localization and activity or enhancing its synthesis rate. Because they are more abundant in animal cells and their importance in diseases such as cancer has taken priority, the study of the phosphoinositides in plants has not evolved to the same extent. Nevertheless, several studies have shown the significance of these lipids in plant cells viability and environmental response. This review focuses on phosphoinositides response to abiotic and biotic stress, showing their implication in plant survival during different stages of development. SIGNIFICANCE OF THE STUDY: This review is focused on plant PIPs functions in stress, highlighting in the main differences between plant and mammal PIPs and the novel interactions that could be extrapolated to animal models to contribute in a better understanding of these pivotal molecules.
Collapse
Affiliation(s)
- Javier Adrian Morales
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Wilma A Gonzalez-Kantun
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | | | - Julio Ramón-Ugalde
- Centro de Selección y Reproducción Ovina (CeSyRO), Instituto Tecnológico de Conkal (ITC), Mérida, Mexico
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
18
|
|
19
|
Barkla BJ, Garibay-Hernández A, Melzer M, Rupasinghe TWT, Roessner U. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum. PLANT, CELL & ENVIRONMENT 2018; 41:2390-2403. [PMID: 29813189 DOI: 10.1111/pce.13352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 05/26/2023]
Abstract
Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study, alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and phospholipase D delta suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates that the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Adriana Garibay-Hernández
- Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
- Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Thusitha W T Rupasinghe
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Bui HH, Sanders PE, Bodenmiller D, Kuo MS, Donoho GP, Fischl AS. Direct analysis of PI(3,4,5)P 3 using liquid chromatography electrospray ionization tandem mass spectrometry. Anal Biochem 2018; 547:66-76. [PMID: 29470948 DOI: 10.1016/j.ab.2018.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
Phosphatidylinositol (3,4,5) trisphosphate (PIP3) is a biologically active membrane phospholipid that is essential for the growth and survival of all eukaryotic cells. We describe a new method that directly measures PIP3 and describe the HPLC separation and measurement of the positional isomers of phosphatidylinositol bisphosphate, PI(3,5)P2, PI(3,4)P2 and PI(4,5)P2. Mass spectrometric analyses were performed online using ultra-high performance liquid chromatography (UHPLC)-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the negative multiple-reaction monitoring (MRM) modes. Rapid separation of PIP3 from PI, phosphatidylinositol phosphate (PIP) and PIP2 was accomplished by C18 reverse phase chromatography with the addition of the ion pairing reagents diisopropylethanolamine (DiiPEA) and ethylenediamine tetraacetic acid tetrasodium salt dihydrate (EDTA) to the samples and mobile phase with a total run time, including equilibration, of 12 min. Importantly, these chromatography conditions result in no carryover of PIP, PIP2, and PIP3 between samples. To validate the new method, U87MG cancer cells were serum starved and treated with PDGF to stimulate PIP3 biosynthesis in the presence or absence of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Results generated with the LC/MS method were in excellent agreement with results generated using [33P] phosphate radiolabeled U87MG cells and anion exchange chromatography analysis, a well validated method for measuring PIP3. To demonstrate the usefulness of the new method, we generated reproducible IC50 data for several well-characterized PI3K small molecule inhibitors using a U87MG cell-based assay as well as showing PIP3 can be measured from additional cancer cell lines. Together, our results demonstrate this novel method is sensitive, reproducible and can be used to directly measure PIP3 without radiolabeling or complex lipid derivatization.
Collapse
Affiliation(s)
- Hai H Bui
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Phillip E Sanders
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Diane Bodenmiller
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ming Shang Kuo
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Gregory P Donoho
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Anthony S Fischl
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
21
|
Le HT, Lee JW, Park SC, Jeong JW, Jung W, Lim CW, Kim KP, Kim TW. Triazolium cyclodextrin click cluster-resin conjugate: an enrichment material for phosphatidylinositol (3,4,5)-triphosphate. Chem Commun (Camb) 2017; 53:10459-10462. [PMID: 28890969 DOI: 10.1039/c7cc06151j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UltraLink was functionalized with a triazolium cyclodextrin click cluster (CCC) which provides a well-oriented, multivalent, positively charged binding site for PtdIns(3,4,5)P3. MALDI TOF MS and LC ESI MS/MS MRM analysis of spiked PtdIns(3,4,5)P3 in lipid extract suggest that triazolium CCC-UltraLink conjugate can be used as an enrichment material for PtdIns(3,4,5)P3.
Collapse
Affiliation(s)
- H T Le
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - J W Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - S C Park
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - J W Jeong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - W Jung
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - C W Lim
- Department of Chemistry, College of Life Science and Nano-technology, Hannam University, Daejeon, 34430, Republic of Korea
| | - K P Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - T W Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
22
|
Waybright J, Huang W, Proctor A, Wang X, Allbritton NL, Zhang Q. Required hydrophobicity of fluorescent reporters for phosphatidylinositol family of lipid enzymes. Anal Bioanal Chem 2017; 409:6781-6789. [PMID: 28932942 DOI: 10.1007/s00216-017-0633-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
Abstract
The phosphatidylinositol (PtdIns) family of lipids plays important roles in cell differentiation, proliferation, and migration. Abnormal expression, mutation, or regulation of their metabolic enzymes has been associated with various human diseases such as cancer, diabetes, and bipolar disorder. Recently, fluorescent derivatives have increasingly been used as chemical probes to monitor either lipid localization or enzymatic activity. However, the requirements of a good probe have not been well defined, particularly modifications on the diacylglycerol side chain partly due to challenges in generating PtdIns lipids. We have synthesized a series of fluorescent PtdIns(4,5)P2 (PIP2) and PtdIns (PI) derivatives with various lengths of side chains and tested their capacity as substrates for PI3KIα and PI4KIIα, respectively. Both capillary electrophoresis and thin-layer chromatography were used to analyze enzymatic reactions. For both enzymes, the fluorescent probe with a longer side chain functions as a better substrate than that with a shorter chain and works well in the presence of the endogenous lipid, highlighting the importance of hydrophobicity of side chains in fluorescent phosphoinositide reporters. This comparison is consistent with their interactions with lipid vesicles, suggesting that the binding of a fluorescent lipid with liposome serves as a standard for assessing its utility as a chemical probe for the corresponding endogenous lipid. These findings are likely applicable to other lipid enzymes where the catalysis takes place at the lipid-water interface.
Collapse
Affiliation(s)
- Jarod Waybright
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA
| | - Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA
| | - Angela Proctor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaoyang Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Campus Box 3290, Chapel Hill, NC, 27599, USA.,North Carolina State University, Raleigh, NC, 27695, USA
| | - Qisheng Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Wewer V, Makepeace BL, Tanya VN, Peisker H, Pfarr K, Hoerauf A, Dörmann P. Lipid profiling of the filarial nematodes Onchocerca volvulus, Onchocerca ochengi and Litomosoides sigmodontis reveals the accumulation of nematode-specific ether phospholipids in the host. Int J Parasitol 2017; 47:903-912. [PMID: 28743489 PMCID: PMC5716430 DOI: 10.1016/j.ijpara.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023]
Abstract
Onchocerciasis is an infectious disease caused by filarial nematodes. Three different filarial nematodes infecting cattle, humans and jirds were studied. Phospholipids in nematodes and hosts were determined by mass spectrometry. Filaria-specific ether phosphatidylethanolamine (PE) lipids accumulate in the host. These ether PE lipids could serve as potential biomarkers for onchocerciasis.
Onchocerciasis, a neglected tropical disease prevalent in western and central Africa, is a major health problem and has been targeted for elimination. The causative agent for this disease is the human parasite Onchocerca volvulus. Onchocerca ochengi and Litomosoides sigmodontis, infectious agents of cattle and rodents, respectively, serve as model organisms to study filarial nematode infections. Biomarkers to determine infection without the use of painful skin biopsies and microscopic identification of larval worms are needed and their discovery is facilitated by an improved knowledge of parasite-specific metabolites. In addition to proteins and nucleic acids, lipids may be suitable candidates for filarial biomarkers that are currently underexplored. To fill this gap, we present the phospholipid profile of the filarial nematodes O. ochengi, O. volvulus and L. sigmodontis. Direct infusion quadrupole time-of-flight (Q-TOF) mass spectrometry was employed to analyze the composition of phospholipids and their molecular species in the three nematode species. Analysis of the phospholipid profiles of plasma or serum of uninfected and infected hosts showed that nematode-specific phospholipids were below detection limits. However, several phospholipids, in particular ether lipids of phosphatidylethanolamine (PE), were abundant in O. ochengi worms and in bovine nodule fluid, suggesting that these phospholipids might be released from O. ochengi into the host, and could serve as potential biomarkers.
Collapse
Affiliation(s)
- Vera Wewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Benjamin L Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany..
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany..
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany.
| |
Collapse
|
24
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
25
|
Kim SH, Song HE, Kim SJ, Woo DC, Chang S, Choi WG, Kim MJ, Back SH, Yoo HJ. Quantitative structural characterization of phosphatidylinositol phosphates from biological samples. J Lipid Res 2016; 58:469-478. [PMID: 27940482 DOI: 10.1194/jlr.d069989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
The aspects of cellular metabolism controlled by phosphatidylinositol phosphates (PtdInsPs) have been broadly expanded, and these phospholipids have drawn tremendous attention as pleiotropic signaling molecules. PtdInsPs analysis using LC/MS/MS has remained challenging due to the strong hydrophilicity of these lipids. Multiple reaction monitoring (MRM) or a neutral loss scan has been performed to quantitatively measure PtdInsPs after chemical derivatization on the phosphate groups of inositol moieties. Only predefined PtdInsPs can be measured in MRM mode, and fatty acyl compositions of sn-1 and sn-2 positions of PtdInsPs cannot be obtained from a neutral loss scan. In our present study, we developed a simple LC/MS/MS method for structural identification of sn-1 and sn-2 fatty acids of PtdInsPs and their relative quantitation. Precursor ion scans of sn-1 monoacylglycerols (MAGs) of PtdInsPs provided structural information about the lipids, and ammonium adduction enhanced signal intensities of PtdInsPs. The relative amount of observed PtdInsPs in biological samples could be compared using chromatographic peak areas from the neutral loss scans. Using precursor ion scans of sn-1 MAG and neutral loss scans of headgroups, major PtdInsPs in cells and tissues were successfully identified with structural information of sn-1 and sn-2 fatty acids, and their relative amounts in different samples were compared.
Collapse
Affiliation(s)
- Su Hee Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ha Eun Song
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong Cheol Woo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Suhwan Chang
- Division of Biomedical Sciences, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Woo Gyun Choi
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mi Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea .,Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
26
|
Bizzarri M, Fuso A, Dinicola S, Cucina A, Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol 2016; 12:1181-96. [PMID: 27351907 DOI: 10.1080/17425255.2016.1206887] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inositol and its derivatives comprise a huge field of biology. Myo-inositol is not only a prominent component of membrane-incorporated phosphatidylinositol, but participates in its free form, with its isomers or its phosphate derivatives, to a multitude of cellular processes, including ion channel permeability, metabolic homeostasis, mRNA export and translation, cytoskeleton remodeling, stress response. AREAS COVERED Bioavailability, safety, uptake and metabolism of inositol is discussed emphasizing the complexity of interconnected pathways leading to phosphoinositides, inositol phosphates and more complex molecules, like glycosyl-phosphatidylinositols. EXPERT OPINION Besides being a structural element, myo-inositol exerts unexpected functions, mostly unknown. However, several reports indicate that inositol plays a key role during phenotypic transitions and developmental phases. Furthermore, dysfunctions in the regulation of inositol metabolism have been implicated in several chronic diseases. Clinical trials using inositol in pharmacological doses provide amazing results in the management of gynecological diseases, respiratory stress syndrome, Alzheimer's disease, metabolic syndrome, and cancer, for which conventional treatments are disappointing. However, despite the widespread studies carried out to identify inositol-based effects, no comprehensive understanding of inositol-based mechanisms has been achieved. An integrated metabolomics-genomic study to identify the cellular fate of therapeutically administered myo-inositol and its genomic/enzymatic targets is urgently warranted.
Collapse
Affiliation(s)
- Mariano Bizzarri
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy.,b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy
| | - Andrea Fuso
- b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy.,c European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation , Rome , Italy
| | - Simona Dinicola
- d Department of Clinical and Molecular Medicine , Sapienza Universityof Rome , Rome , Italy.,e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy
| | - Alessandra Cucina
- e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy.,f Azienda Policlinico Umberto I , Rome , Italy
| | - Arturo Bevilacqua
- g Department of Psychology, Section of Neuroscience , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
27
|
Development and validation of a specific and sensitive HPLC-ESI-MS method for quantification of lysophosphatidylinositols and evaluation of their levels in mice tissues. J Pharm Biomed Anal 2016; 126:132-40. [PMID: 27208623 DOI: 10.1016/j.jpba.2016.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/19/2016] [Accepted: 04/10/2016] [Indexed: 11/20/2022]
Abstract
Increasing evidence suggests that lysophosphatidylinositols (LPIs), a subspecies of lysophospholipids, are important endogenous mediators. Although LPIs long remained among the less studied lysophospholipids, the identification of GPR55 as their molecular target sparked a renewed interest in the study of these bioactive lipids. Furthermore, increasing evidence points towards a role for LPIs in cancer development. However, a better understanding of the role and functions of LPIs in physiology and disease requires methods that allow for the quantification of LPI levels in cells and tissues. Because dedicated efficient methods for quantifying LPIs were missing, we decided to develop and validate an HPLC-ESI-MS method for the quantification of LPI species from tissues. LPIs are extracted from tissues by liquid/liquid extraction, pre-purified by solid-phase extraction, and finally analyzed by HPLC-ESI-MS. We determined the method's specificity and selectivity, we established calibration curves, determined the carry over (< 2%), LOD and LLOQ (between 0.116-7.82 and 4.62-92.5pmol on column, respectively), linearity (0.988<R(2)<0.997), repeatability (CV<20%), accuracy (> 80%), intermediate precision (CV<20%) as well as the recovery from tissues. We then applied the method to determine the relative abundance of the LPI species in 15 different mouse tissues. Finally, we quantified the absolute LPI levels in six different mouse tissues. We found that while 18:0 LPI represents more than 60% of all the LPI species in the periphery (e.g. liver, gastrointestinal tract, lungs, spleen) it is much less abundant in the central nervous system where the levels of 20:4 LPI are significantly higher. Thus this validated HPLC-ESI-MS method for quantifying LPIs represents a powerful tool that will facilitate the comprehension of the pathophysiological roles of LPIs.
Collapse
|
28
|
Dickson EJ, Jensen JB, Vivas O, Kruse M, Traynor-Kaplan AE, Hille B. Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides. J Cell Biol 2016; 213:33-48. [PMID: 27044890 PMCID: PMC4828688 DOI: 10.1083/jcb.201508106] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/01/2016] [Indexed: 11/22/2022] Open
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) contact sites play an integral role in cellular processes such as excitation-contraction coupling and store-operated calcium entry (SOCE). Another ER-PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER-PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2 Activation of G protein-coupled receptors that deplete PM PI(4,5)P2disrupts E-Syt2-mediated ER-PM junctions, reducing Sac1's access to the PM and permitting PM PI(4)P and PI(4,5)P2to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER-PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Jill B Jensen
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Alexis E Traynor-Kaplan
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
29
|
Buré C, Solgadi A, Yen-Nicolaÿ S, Bardeau T, Libong D, Abreu S, Chaminade P, Subra-Paternault P, Cansell M. Electrospray mass spectrometry as a tool to characterize phospholipid composition of plant cakes. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Corinne Buré
- Centre de Génomique Fonctionnelle; CBMN, UMR 5248 CNRS, INP; University of Bordeaux; Bordeaux France
| | - Audrey Solgadi
- Université Paris Sud, SAMM, UMS IPSIT; Chatenay-Malabry France
| | | | - Tiphaine Bardeau
- University of Bordeaux, CBMN, UMR 5248; Pessac France
- CNRS, CBMN, UMR 5248; Pessac France
- Bordeaux INP, CBMN, UMR 5248; Pessac France
| | - Danielle Libong
- Université Paris Sud, SAMM, UMS IPSIT; Chatenay-Malabry France
- Université Paris Sud, LipSys; Chatenay-Malabry France
| | - Sonia Abreu
- Université Paris Sud, LipSys; Chatenay-Malabry France
| | - Pierre Chaminade
- Université Paris Sud, SAMM, UMS IPSIT; Chatenay-Malabry France
- Université Paris Sud, LipSys; Chatenay-Malabry France
| | | | - Maud Cansell
- University of Bordeaux, CBMN, UMR 5248; Pessac France
- CNRS, CBMN, UMR 5248; Pessac France
- Bordeaux INP, CBMN, UMR 5248; Pessac France
| |
Collapse
|
30
|
Ho CY, Choy CH, Botelho RJ. Radiolabeling and Quantification of Cellular Levels of Phosphoinositides by High Performance Liquid Chromatography-coupled Flow Scintillation. J Vis Exp 2016. [PMID: 26780479 DOI: 10.3791/53529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phosphoinositides (PtdInsPs) are essential signaling lipids responsible for recruiting specific effectors and conferring organelles with molecular identity and function. Each of the seven PtdInsPs varies in their distribution and abundance, which are tightly regulated by specific kinases and phosphatases. The abundance of PtdInsPs can change abruptly in response to various signaling events or disturbance of the regulatory machinery. To understand how these events lead to changes in the amount of PtdInsPs and their resulting impact, it is important to quantify PtdInsP levels before and after a signaling event or between control and abnormal conditions. However, due to their low abundance and similarity, quantifying the relative amounts of each PtdInsP can be challenging. This article describes a method for quantifying PtdInsP levels by metabolically labeling cells with (3)H-myo-inositol, which is incorporated into PtdInsPs. Phospholipids are then precipitated and deacylated. The resulting soluble (3)H-glycero-inositides are further extracted, separated by high-performance liquid chromatography (HPLC), and detected by flow scintillation. The labeling and processing of yeast samples is described in detail, as well as the instrumental setup for the HPLC and flow scintillator. Despite losing structural information regarding acyl chain content, this method is sensitive and can be optimized to concurrently quantify all seven PtdInsPs in cells.
Collapse
Affiliation(s)
- Cheuk Y Ho
- Department of Chemistry and Biology, Program in Molecular Science, Ryerson University
| | - Christopher H Choy
- Department of Chemistry and Biology, Program in Molecular Science, Ryerson University
| | - Roberto J Botelho
- Department of Chemistry and Biology, Program in Molecular Science, Ryerson University;
| |
Collapse
|
31
|
Takatori S, Tatematsu T, Cheng J, Matsumoto J, Akano T, Fujimoto T. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes. Traffic 2015; 17:154-67. [PMID: 26563567 DOI: 10.1111/tra.12346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 02/02/2023]
Abstract
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality.
Collapse
Affiliation(s)
- Sho Takatori
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jun Matsumoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuya Akano
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
32
|
Svane S, Gorshkov V, Kjeldsen F. Charge inversion of phospholipids by dimetal complexes for positive ion-mode electrospray ionization mass spectrometry analysis. Anal Chem 2015; 87:8732-9. [PMID: 26189465 DOI: 10.1021/acs.analchem.5b01536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID spectra of {LGa2}(5+)-bound phosphoinositides generally resulted in fragment ions corresponding to loss of the full diglyceride chain as well as the remaining headgroup bound to {LGa2}(5+) as the most abundant peaks. A number of signature fragment ions of moderate abundance were observed that allowed for distinction between the three regioisomers of 1,2-di(9Z-octadecenoyl)-sn-glycero-3-[phosphoinositol-x,y-bisphosphate] (PI(3,4)P2, PI(3,5)P2, PI(4,5)P2).
Collapse
Affiliation(s)
- Simon Svane
- Department of Biochemistry and Molecular Biology, ‡Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, ‡Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, ‡Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| |
Collapse
|
33
|
Affiliation(s)
- Samuel Furse
- Membrane Biochemistry & Biophysics, Universiteit Utrecht, Padualaan 8, Utrecht, The Netherlands
| | - Maarten R. Egmond
- Membrane Biochemistry & Biophysics, Universiteit Utrecht, Padualaan 8, Utrecht, The Netherlands
| | - J. Antoinette Killian
- Membrane Biochemistry & Biophysics, Universiteit Utrecht, Padualaan 8, Utrecht, The Netherlands
| |
Collapse
|
34
|
Clark J, Kay RR, Kielkowska A, Niewczas I, Fets L, Oxley D, Stephens LR, Hawkins PT. Dictyostelium uses ether-linked inositol phospholipids for intracellular signalling. EMBO J 2014; 33:2188-200. [PMID: 25180230 DOI: 10.15252/embj.201488677] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inositol phospholipids are critical regulators of membrane biology throughout eukaryotes. The general principle by which they perform these roles is conserved across species and involves binding of differentially phosphorylated inositol head groups to specific protein domains. This interaction serves to both recruit and regulate the activity of several different classes of protein which act on membrane surfaces. In mammalian cells, these phosphorylated inositol head groups are predominantly borne by a C38:4 diacylglycerol backbone. We show here that the inositol phospholipids of Dictyostelium are different, being highly enriched in an unusual C34:1e lipid backbone, 1-hexadecyl-2-(11Z-octadecenoyl)-sn-glycero-3-phospho-(1'-myo-inositol), in which the sn-1 position contains an ether-linked C16:0 chain; they are thus plasmanylinositols. These plasmanylinositols respond acutely to stimulation of cells with chemoattractants, and their levels are regulated by PIPKs, PI3Ks and PTEN. In mammals and now in Dictyostelium, the hydrocarbon chains of inositol phospholipids are a highly selected subset of those available to other phospholipids, suggesting that different molecular selectors are at play in these organisms but serve a common, evolutionarily conserved purpose.
Collapse
Affiliation(s)
- Jonathan Clark
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Anna Kielkowska
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Izabella Niewczas
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Louise Fets
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - David Oxley
- Signalling Programme Babraham Research Campus, Cambridge, UK
| | - Len R Stephens
- Signalling Programme Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
35
|
Wakelam MJO. The uses and limitations of the analysis of cellular phosphoinositides by lipidomic and imaging methodologies. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1102-7. [PMID: 24769341 DOI: 10.1016/j.bbalip.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
The advent of mass spectrometric methods has facilitated the determination of multiple molecular species of cellular lipid classes including the polyphosphoinositides, though to date methods to analyse and quantify each of the individual three PtdInsP and three PtdInsP2 species are lacking. The use of imaging methods has allowed intracellular localization of the phosphoinositide classes but this methodology does not determine the acyl structures. The range of molecular species suggests a greater complexity in polyphosphoinositide signaling than yet defined but elucidating this will require further method development to be achieved. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
|
36
|
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 2014; 83:79-98. [PMID: 24606142 DOI: 10.1146/annurev-biochem-060713-035324] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany;
| |
Collapse
|
37
|
Kielkowska A, Niewczas I, Anderson KE, Durrant TN, Clark J, Stephens LR, Hawkins PT. A new approach to measuring phosphoinositides in cells by mass spectrometry. Adv Biol Regul 2014; 54:131-141. [PMID: 24120934 DOI: 10.1016/j.jbior.2013.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
The phosphoinositide family of phospholipids, defined here as PtdIns, PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2 and PtdIns(3,4,5)P3, play pivotal roles in organising the location and activity of many different proteins acting on biological membranes, including those involved in vesicle and protein trafficking through the endolysosomal system and receptor signal transduction at the plasma membrane. Accurate measurement of the cellular levels of these lipids, particularly the more highly phosphorylated species, is hampered by their high polarity and low cellular concentrations. Recently, much progress has been made in using mass spectrometry to measure many different lipid classes in parallel, an approach generally referred to as 'lipidomics'. Unfortunately, the acidic nature of highly phosphorylated phosphoinositides makes them difficult to measure using these methods, because they yield low levels of useful ions; this is particularly the case with PtdIns(3,4,5)P3. We have solved some of these problems by methylating the phosphate groups of these lipids with TMS-diazomethane and describe a simple, integrated approach to measuring PtdIns, PtdInsP, PtdInsP2 and PtdInsP3 classes of lipids, in parallel with other phospholipid species, in cell and tissue extracts. This methodology is sensitive, accurate and robust, and also yields fatty-acyl compositions, suggesting it can be used to further our understanding of both the normal and pathophysiological roles of these important lipids.
Collapse
Affiliation(s)
- Anna Kielkowska
- Babraham Bioscience Technologies Ltd, Babraham Research Campus, Cambridge, UK
| | - Izabella Niewczas
- Babraham Bioscience Technologies Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Tom N Durrant
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Jonathan Clark
- Babraham Bioscience Technologies Ltd, Babraham Research Campus, Cambridge, UK
| | - Len R Stephens
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
38
|
Abstract
Phosphoinositides (PIs) are minor lipid components of cellular membranes that play critical roles in membrane dynamics, trafficking, and cellular signaling. Among the seven naturally occurring PIs, the monophosphate phosphatidylinositol 3-phosphate (PtdIns3P) and the bisphosphate phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] have been mainly associated with endosomes and endosomal functions. Metabolic labeling and HPLC analysis revealed that a bulk of PtdIns3P is constitutively present in cells, making it the only detectable product of the enzymes phosphoinositide 3-kinases in unstimulated, normal cells. The use of specific tagged-PtdIns3P-binding domains later demonstrated that this constitutive PtdIns3P accumulates in endosomes where it critically regulates trafficking and membrane dynamics.
Collapse
Affiliation(s)
- Tania Maffucci
- Inositide Signalling Group, Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Marco Falasca
- Inositide Signalling Group, Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
39
|
PIP₃ regulates spinule formation in dendritic spines during structural long-term potentiation. J Neurosci 2013; 33:11040-7. [PMID: 23825409 DOI: 10.1523/jneurosci.3122-12.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dendritic spines are small, highly motile structures on dendritic shafts that provide flexibility to neuronal networks. Spinules are small protrusions that project from spines. The number and the length of spinules increase in response to activity including theta burst stimulation and glutamate application. However, what function spinules exert and how their formation is regulated still remains unclear. Phosphatidylinositol-3,4,5-trisphosphate (PIP₃) plays important roles in cell motility such as filopodia and lamellipodia by recruiting downstream proteins such as Akt and WAVE to the membrane, respectively. Here we reveal that PIP₃ regulates spinule formation during structural long-term potentiation (sLTP) of single spines in CA1 pyramidal neurons of hippocampal slices from rats. Since the local distribution of PIP₃ is important to exert its functions, the subcellular distribution of PIP₃ was investigated using a fluorescence lifetime-based PIP₃ probe. PIP₃ accumulates to a greater extent in spines than in dendritic shafts, which is regulated by the subcellular activity pattern of proteins that produce and degrade PIP₃. Subspine imaging revealed that when sLTP was induced in a single spine, PIP₃ accumulates in the spinule whereas PIP₃ concentration in the spine decreased.
Collapse
|
40
|
Gu Z, Wu J, Wang S, Suburu J, Chen H, Thomas MJ, Shi L, Edwards IJ, Berquin IM, Chen YQ. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells. Carcinogenesis 2013; 34:1968-75. [PMID: 23633519 DOI: 10.1093/carcin/bgt147] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway.
Collapse
Affiliation(s)
- Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bharill P, Ayyadevara S, Alla R, Shmookler Reis RJ. Extreme Depletion of PIP3 Accompanies the Increased Life Span and Stress Tolerance of PI3K-null C. elegans Mutants. Front Genet 2013; 4:34. [PMID: 23543623 PMCID: PMC3610087 DOI: 10.3389/fgene.2013.00034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/01/2013] [Indexed: 12/16/2022] Open
Abstract
The regulation of animal longevity shows remarkable plasticity, in that a variety of genetic lesions are able to extend lifespan by as much as 10-fold. Such studies have implicated several key signaling pathways that must normally limit longevity, since their disruption prolongs life. Little is known, however, about the proximal effectors of aging on which these pathways are presumed to converge, and to date, no pharmacologic agents even approach the life-extending effects of genetic mutation. In the present study, we have sought to define the downstream consequences of age-1 nonsense mutations, which confer 10-fold life extension to the nematode Caenorhabditis elegans – the largest effect documented for any single mutation. Such mutations insert a premature stop codon upstream of the catalytic domain of the AGE-1/p110α subunit of class-I PI3K. As expected, we do not detect class-I PI3K (and based on our sensitivity, it constitutes <14% of wild-type levels), nor do we find any PI3K activity as judged by immunodetection of phosphorylated AKT, which strongly requires PIP3 for activation by upstream kinases, or immunodetection of its product, PIP3. In the latter case, the upper 95%-confidence limit for PIP3 is 1.4% of the wild-type level. We tested a variety of commercially available PI3K inhibitors, as well as three phosphatidylinositol analogs (PIAs) that are most active in inhibiting AKT activation, for effects on longevity and survival of oxidative stress. Of these, GDC-0941, PIA6, and PIA24 (each at 1 or 10 μM) extended lifespan by 7–14%, while PIAs 6, 12, and 24 (at 1 or 10 μM) increased survival time in 5 mM peroxide by 12–52%. These effects may have been conferred by insulinlike signaling, since a reporter regulated by the DAF-16/FOXO transcription factor, SOD-3::GFP, was stimulated by these PIAs in the same rank order (PIA24 > PIA6 > PIA12) as lifespan. A second reporter, PEPCK::GFP, was equally activated (∼40%) by all three.
Collapse
Affiliation(s)
- Puneet Bharill
- McClellan VA Medical Center, Central Arkansas Veterans Healthcare System Little Rock, AR, USA ; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | | | | | |
Collapse
|
42
|
Anderson KE, Kielkowska A, Durrant TN, Juvin V, Clark J, Stephens LR, Hawkins PT. Lysophosphatidylinositol-acyltransferase-1 (LPIAT1) is required to maintain physiological levels of PtdIns and PtdInsP(2) in the mouse. PLoS One 2013; 8:e58425. [PMID: 23472195 PMCID: PMC3589398 DOI: 10.1371/journal.pone.0058425] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
We disrupted the gene encoding lysophosphatidylinositol-acyltransferase-1 (LPIAT1) in the mouse with the aim of understanding its role in determining cellular phosphoinositide content. LPIAT1(-/-) mice were born at lower than Mendelian ratios and exhibited a severe developmental brain defect. We compared the phospholipid content of livers and brains from LPIAT1(-/-) and LPIAT1(+/+) littermates by LC-ESI/MS. In accord with previous studies, the most abundant molecular species of each phosphoinositide class (PtdIns, PtdInsP, PtdInsP2 and PtdInsP3) possessed a C38∶4 complement of fatty-acyl esters (C18∶0 and C20∶4 are usually assigned to the sn-1 and sn-2 positions, respectively). LPIAT1(-/-) liver and brain contained relatively less of the C38∶4 species of PtdIns, PtdInsP and PtdInsP2 (dropping from 95-97% to 75-85% of the total species measured for each lipid class) and relatively more of the less abundant species (PtdInsP3 less abundant species were below our quantification levels). The increases in the less abundant PtdIns and PtdInsP2 species did not compensate for the loss in C38∶4 species, resulting in a 26-44% reduction in total PtdIns and PtdInsP2 levels in both brain and liver. LPIAT1(-/-) brain and liver also contained increased levels of C18∶0 lyso-PtdIns (300% and 525% respectively) indicating a defect in the reacylation of this molecule. LPIAT1(-/-) brain additionally contained significantly reduced C38∶4 PC and PE levels (by 47% and 55% respectively), possibly contributing to the phenotype in this organ. The levels of all other molecular species of PC, PE, PS and PA measured in the brain and liver were very similar between LPIAT1(-/-) and LPIAT1(+/+) samples. These results suggest LPIAT1 activity plays a non-redundant role in maintaining physiological levels of PtdIns within an active deacylation/reacylation cycle in mouse tissues. They also suggest that this pathway must act in concert with other, as yet unidentified, mechanisms to achieve the enrichment observed in C38∶4 molecular species of phosphoinositides.
Collapse
Affiliation(s)
- Karen E. Anderson
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Anna Kielkowska
- Babraham Bioscience Technologies Ltd., Babraham Research Campus, Babraham, Cambridge, United Kingdom
| | - Tom N. Durrant
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Veronique Juvin
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Jonathan Clark
- Babraham Bioscience Technologies Ltd., Babraham Research Campus, Babraham, Cambridge, United Kingdom
| | - Len R. Stephens
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- * E-mail: (PTH); (LRS)
| | - Phillip T. Hawkins
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- * E-mail: (PTH); (LRS)
| |
Collapse
|
43
|
Zhu T, Chappel JC, Hsu FF, Turk J, Aurora R, Hyrc K, De Camilli P, Broekelmann TJ, Mecham RP, Teitelbaum SL, Zou W. Type I phosphotidylinosotol 4-phosphate 5-kinase γ regulates osteoclasts in a bifunctional manner. J Biol Chem 2013; 288:5268-77. [PMID: 23300084 PMCID: PMC3581369 DOI: 10.1074/jbc.m112.446054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Indexed: 12/22/2022] Open
Abstract
Type 1 phosphotidylinosotol-4 phosphate 5 kinase γ (PIP5KIγ) is central to generation of phosphotidylinosotol (4,5)P(2) (PI(4,5)P(2)). PIP5KIγ also participates in cytoskeletal organization by delivering talin to integrins, thereby enhancing their ligand binding capacity. As the cytoskeleton is pivotal to osteoclast function, we hypothesized that absence of PIP5KIγ would compromise their resorptive capacity. Absence of the kinase diminishes PI(4,5) abundance and desensitizes precursors to RANK ligand-stimulated differentiation. Thus, PIP5KIγ(-/-) osteoclasts are reduced in number in vitro and confirm physiological relevance in vivo. Despite reduced numbers, PIP5KIγ(-/-) osteoclasts surprisingly have normal cytoskeletons and effectively resorb bone. PIP5KIγ overexpression, which increases PI(4,5)P(2), also delays osteoclast differentiation and reduces cell number but in contrast to cells lacking the kinase, its excess disrupts the cytoskeleton. The cytoskeleton-disruptive effects of excess PIP5KIγ reflect its kinase activity and are independent of talin recognition. The combined arrested differentiation and disorganized cytoskeleton of PIP5KIγ-transduced osteoclasts compromises bone resorption. Thus, optimal PIP5KIγ and PI(4,5)P(2) expression, by osteoclasts, are essential for skeletal homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Rajeev Aurora
- the Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri 63104, and
| | - Krzysztof Hyrc
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Pietro De Camilli
- the Department of Cell Biology and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520
| | | | | | | | - Wei Zou
- From the Department of Pathology and Immunology
| |
Collapse
|
44
|
Accumulated bending energy elicits neutral sphingomyelinase activity in human red blood cells. Biophys J 2012; 102:2077-85. [PMID: 22824271 DOI: 10.1016/j.bpj.2012.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/01/2012] [Accepted: 03/12/2012] [Indexed: 02/02/2023] Open
Abstract
We propose that accumulated membrane bending energy elicits a neutral sphingomyelinase (SMase) activity in human erythrocytes. Membrane bending was achieved by osmotic or chemical processes, and SMase activity was assessed by quantitative thin-layer chromatography, high-performance liquid chromatography, and electrospray ionization-mass spectrometry. The activity induced by hypotonic stress in erythrocyte membranes had the pH dependence, ion dependence, and inhibitor sensitivity of mammalian neutral SMases. The activity caused a decrease in SM contents, with a minimum at 6 min after onset of the hypotonic conditions, and then the SM contents were recovered. We also elicited SMase activity by adding lysophosphatidylcholine externally or by generating it with phospholipase A(2). The same effect was observed upon addition of chlorpromazine or sodium deoxycholate at concentrations below the critical micellar concentration, and even under hypertonic conditions. A unifying factor of the various agents that elicit this SMase activity is the accumulated membrane bending energy. Both hypo-and hypertonic conditions impose an increased curvature, whereas the addition of surfactants or phospholipase A(2) activation increases the outer monolayer area, thus leading to an increased bending energy. The fact that this latent SMase activity is tightly coupled to the membrane bending properties suggests that it may be related to the general phenomenon of stress-induced ceramide synthesis and apoptosis.
Collapse
|
45
|
Abstract
PtdIns3P is recognized as an important player in the control of the endocytotic pathway and in autophagy. Recent data also suggest that PtdIns3P contributes to molecular mechanisms taking place at the plasma membrane and at the midbody during cytokinesis. This lipid is present in low amounts in mammalian cells and remains difficult to quantify either by traditional techniques based on radiolabelling followed by HPLC to separate the different phosphatidylinositol monophosphates, or by high-sensitive liquid chromatography coupled to MS, which is still under development. In the present study, we describe a mass assay to quantify this lipid from various biological samples using the recombinant PtdIns3P 5-kinase, PIKfyve. Using this assay, we show an increase in the mass level of PtdIns3P in mouse and human platelets following stimulation, loss of this lipid in Vps34-deficient yeasts and its relative enrichment in early endosomes isolated from BHK cells.
Collapse
|
46
|
Buré C, Ayciriex S, Testet E, Schmitter JM. A single run LC-MS/MS method for phospholipidomics. Anal Bioanal Chem 2012; 405:203-13. [PMID: 23064709 DOI: 10.1007/s00216-012-6466-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry has been compared to shotgun analysis with the objective of finding the best compromise for a single run analysis of whole cell phospholipids. Hydrophilic interaction liquid chromatography (HILIC), normal phase (NP), and reversed phase (RP) liquid chromatography were evaluated with reference phospholipids belonging to phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) classes. NP-HPLC- and RP-HPLC-ESI-MS/MS were applied to yeast phospholipidome analysis, using a wild-type strain and two strains defective for acyltransferases that are known to be involved in de novo phospholipid synthesis or phospholipid remodeling. The MRM mode was used for relative quantitation of individual compounds based on reference phospholipids bearing fatty acid chains with an odd number of carbon atoms. Combined LC-MS/MS was found superior to shotgun analysis, leading to a larger number of quantified species than shotgun analysis. Finally, RP-HPLC-MS/MS was the preferred method for its higher selectivity, robustness, and better repeatability.
Collapse
Affiliation(s)
- Corinne Buré
- Chimie Biologie des Membranes et Nanoobjets CBMN-UMR 5248 Centre de Génomique Fonctionnelle Université Bordeaux 2, Université de Bordeaux, 146, rue Léo Saignat, 33076 Bordeaux cedex, France.
| | | | | | | |
Collapse
|
47
|
Chitraju C, Trötzmüller M, Hartler J, Wolinski H, Thallinger GG, Lass A, Zechner R, Zimmermann R, Köfeler HC, Spener F. Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J Lipid Res 2012; 53:2141-2152. [PMID: 22872753 DOI: 10.1194/jlr.m028902] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver steatosis can be induced by fasting or high-fat diet. We investigated by lipidomic analysis whether such metabolic states are reflected in the lipidome of hepatocyte lipid droplets (LDs) from mice fed normal chow diet (FED), fasted (FAS), or fed a high-fat diet (HFD). LC-MS/MS at levels of lipid species profiles and of lipid molecular species uncovered a FAS phenotype of LD enriched in triacylglycerol (TG) molecular species with very long-chain (VLC)-PUFA residues and an HFD phenotype with less unsaturated TG species in addition to characteristic lipid marker species. Nutritional stress did not result in dramatic structural alterations in diacylglycerol (DG) and phospholipid (PL) classes. Moreover, molecular species of bulk TG and of DG indicated concomitant de novo TG synthesis and lipase-catalyzed degradation to be active in LDs. DG species with VLC-PUFA residues would be preferred precursors for phosphatidylcholine (PC) species, the others for TG molecular species. In addition, molecular species of PL classes fitted the hepatocyte Kennedy and phosphatidylethanolamine methyltransferase pathways. We demonstrate that lipidomic analysis of LDs enables phenotyping of nutritional stress. TG species are best suited for such phenotyping, whereas structural analysis of TG, DG, and PL molecular species provides metabolic insights.
Collapse
Affiliation(s)
- Chandramohan Chitraju
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Martin Trötzmüller
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Jürgen Hartler
- Institute for Genomics and Bioinformatics, Graz University of Technology, and Core Facility Bioinformatics, Austrian Centre for Industrial Biotechnology, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, and Core Facility Bioinformatics, Austrian Centre for Industrial Biotechnology, 8010 Graz, Austria
| | - Achim Lass
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Rudolf Zechner
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Robert Zimmermann
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Harald C Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria.
| |
Collapse
|
48
|
Viiri K, Maki M, Lohi O. Phosphoinositides as Regulators of Protein-Chromatin Interactions. Sci Signal 2012; 5:pe19. [DOI: 10.1126/scisignal.2002917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res 2012; 51:272-99. [PMID: 22554527 DOI: 10.1016/j.plipres.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Quantification of Signaling Lipids by Nano-Electrospray Ionization Tandem Mass Spectrometry (Nano-ESI MS/MS). Metabolites 2012; 2:57-76. [PMID: 24957368 PMCID: PMC3901191 DOI: 10.3390/metabo2010057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 01/10/2023] Open
Abstract
Lipids, such as phosphoinositides (PIPs) and diacylglycerol (DAG), are important signaling intermediates involved in cellular processes such as T cell receptor (TCR)-mediated signal transduction. Here we report identification and quantification of PIP, PIP2 and DAG from crude lipid extracts. Capitalizing on the different extraction properties of PIPs and DAGs allowed us to efficiently recover both lipid classes from one sample. Rapid analysis of endogenous signaling molecules was performed by nano-electrospray ionization tandem mass spectrometry (nano-ESI MS/MS), employing lipid class-specific neutral loss and multiple precursor ion scanning for their identification and quantification. Profiling of DAG, PIP and PIP2 molecular species in primary human T cells before and after TCR stimulation resulted in a two-fold increase in DAG levels with a shift towards 1-stearoyl-2-arachidonoyl-DAG in stimulated cells. PIP2 levels were slightly reduced, while PIP levels remained unchanged.
Collapse
|