1
|
Vela-Corcia D, Hierrezuelo J, Pérez-Lorente AI, Stincone P, Pakkir Shah AK, Grélard A, Zi-Long Y, de Vicente A, Pérez García A, Bai L, Loquet A, Petras D, Romero D. Cyclo(Pro-Tyr) elicits conserved cellular damage in fungi by targeting the [H +]ATPase Pma1 in plasma membrane domains. Commun Biol 2024; 7:1253. [PMID: 39362977 PMCID: PMC11449911 DOI: 10.1038/s42003-024-06947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Bioactive metabolites play a crucial role in shaping interactions among diverse organisms. In this study, we identified cyclo(Pro-Tyr), a metabolite produced by Bacillus velezensis, as a potent inhibitor of Botrytis cinerea and Caenorhabditis elegans, two potential cohabitant eukaryotic organisms. Based on our investigation, cyclo(Pro-Tyr) disrupts plasma membrane polarization, induces oxidative stress and increases membrane fluidity, which compromises fungal membrane integrity. These cytological and physiological changes induced by cyclo(Pro-Tyr) may be triggered by the destabilization of membrane microdomains containing the [H+]ATPase Pma1. In response to cyclo(Pro-Tyr) stress, fungal cells activate a transcriptomic and metabolomic response, which primarily involves lipid metabolism and Reactive Oxygen Species (ROS) detoxification, to mitigate membrane damage. This similar response occurs in the nematode C. elegans, indicating that cyclo(Pro-Tyr) targets eukaryotic cellular membranes.
Collapse
Affiliation(s)
- D Vela-Corcia
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - J Hierrezuelo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A I Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - P Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - A K Pakkir Shah
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
| | - A Grélard
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - Y Zi-Long
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A Pérez García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - L Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A Loquet
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - D Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| | - D Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
2
|
Darwish DA, Masoud HMM, Abdel-Monsef MM, Helmy MS, Zidan HA, Ibrahim MA. Phospholipase A2 enzyme from the venom of Egyptian honey bee Apis mellifera lamarckii with anti-platelet aggregation and anti-coagulation activities. J Genet Eng Biotechnol 2021; 19:10. [PMID: 33443641 PMCID: PMC7809086 DOI: 10.1186/s43141-020-00112-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
Background Honey bee venom contains various enzymes with wide medical and pharmaceutical applications. Results The phospholipase A2 (PLA2) has been apparently purified from the venom of Egyptian honey bee (Apis mellifera lamarckii) 8.9-fold to a very high specific activity of 6033 U/mg protein using DEAE–cellulose and Sephacryl S-300 columns. The purified bee venom PLA2 is monomeric 16 kDa protein and has isoelectric point (pI) of 5.9. The optimal activity of bee venom PLA2 was attained at pH 8 and 45 °C. Cu2+, Ni2+, Fe2+, Ca2+, and Co2+ exhibited a complete activating effect on it, while Zn2+, Mn2+, NaN3, PMSF, N-Methylmaleimide, and EDTA have inhibitory effect. Conclusions The purified bee venom PLA2 exhibited anti-platelet aggregation and anti-coagulation activities which makes it promising agent for developing novel anti-clot formation drugs in future.
Collapse
Affiliation(s)
- Doaa A Darwish
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hassan M M Masoud
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed M Abdel-Monsef
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed S Helmy
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hind A Zidan
- Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mahmoud A Ibrahim
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
3
|
Morales-Martínez A, Zamorano-Carrillo A, Montes S, El-Hafidi M, Sánchez-Mendoza A, Soria-Castro E, Martínez-Lazcano JC, Martínez-Gopar PE, Ríos C, Pérez-Severiano F. Rich fatty acids diet of fish and olive oils modifies membrane properties in striatal rat synaptosomes. Nutr Neurosci 2021; 24:1-12. [PMID: 30822260 DOI: 10.1080/1028415x.2019.1584692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Essential fatty acids (EFAs) and non-essential fatty acids (nEFAs) exert experimental and clinical neuroprotection in neurodegenerative diseases. The main EFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), nEFAs, and oleic acid (OA) contained in olive and fish oils are inserted into the cell membranes, but the exact mechanism through which they exert neuroprotection is still unknown. Objectives and Methods: In this study, we assessed the fatty acids content and membrane fluidity in striatal rat synaptosomes after fatty acid-rich diets (olive- or a fish-oil diet, 15% w/w). Then, we evaluated the effect of enriching striatum synaptosomes with fatty acids on the oxidative damage produced by the prooxidants ferrous sulfate (FeSO4) or quinolinic acid (QUIN). Results and Discussion: Lipid profile analysis in striatal synaptosomes showed that EPA content increased in the fish oil group in comparison with control and olive groups. Furthermore, we found that synaptosomes enriched with fatty acids and incubated with QUIN or FeSO4 showed a significant oxidative damage reduction. Results suggest that EFAs, particularly EPA, improve membrane fluidity and confer antioxidant effect.
Collapse
Affiliation(s)
- Adriana Morales-Martínez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| |
Collapse
|
4
|
Rcs Phosphorelay Activation in Cardiolipin-Deficient Escherichia coli Reduces Biofilm Formation. J Bacteriol 2019; 201:JB.00804-18. [PMID: 30782633 DOI: 10.1128/jb.00804-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is a complex process that requires a number of transcriptional, proteomic, and physiological changes to enable bacterial survival. The lipid membrane presents a barrier to communication between the machinery within bacteria and the physical and chemical features of their extracellular environment, and yet little is known about how the membrane influences biofilm development. We found that depleting the anionic phospholipid cardiolipin reduces biofilm formation in Escherichia coli cells by as much as 50%. The absence of cardiolipin activates the regulation of colanic acid synthesis (Rcs) envelope stress response, which represses the production of flagella, disrupts initial biofilm attachment, and reduces biofilm growth. We demonstrate that a reduction in the concentration of cardiolipin impairs translocation of proteins across the inner membrane, which we hypothesize activates the Rcs pathway through the outer membrane lipoprotein RcsF. Our study demonstrates a molecular connection between the composition of membrane phospholipids and biofilm formation in E. coli and suggests that altering lipid biosynthesis may be a viable approach for altering biofilm formation and possibly other multicellular phenotypes related to bacterial adaptation and survival.IMPORTANCE There is a growing interest in the role of lipid membrane composition in the physiology and adaptation of bacteria. We demonstrate that a reduction in the anionic phospholipid cardiolipin impairs biofilm formation in Escherichia coli cells. Depleting cardiolipin reduced protein translocation across the inner membrane and activated the Rcs envelope stress response. Consequently, cardiolipin depletion produced cells lacking assembled flagella, which impacted their ability to attach to surfaces and seed the earliest stage in biofilm formation. This study provides empirical evidence for the role of anionic phospholipid homeostasis in protein translocation and its effect on biofilm development and highlights modulation of the membrane composition as a potential method of altering bacterial phenotypes related to adaptation and survival.
Collapse
|
5
|
Kim YJ, Yoo JY, Kim OS, Kim HB, Ryu J, Kim HS, Lee JH, Yoo HI, Song DY, Baik TK, Woo RS. Neuregulin 1 regulates amyloid precursor protein cell surface expression and non-amyloidogenic processing. J Pharmacol Sci 2018; 137:146-153. [DOI: 10.1016/j.jphs.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023] Open
|
6
|
Wang K, Bai ZY, Liang QY, Liu QL, Zhang L, Pan YZ, Liu GL, Jiang BB, Zhang F, Jia Y. Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genomics 2018; 19:319. [PMID: 29720105 PMCID: PMC5930780 DOI: 10.1186/s12864-018-4706-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Chrysanthemum is one kind of ornamental plant well-known and widely used in the world. However, its quality and production were severely affected by low temperature conditions in winter and early spring periods. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze chrysanthemum (Dendranthema grandiflorum) transcription response to low temperature. Results Using Illumina sequencing technology, a total of 86,444,237 high-quality clean reads and 93,837 unigenes were generated from four libraries: T01, controls; T02, 4 °C cold acclimation (CA) for 24 h; T03, − 4 °C freezing treatments for 4 h with prior CA; and T04, − 4 °C freezing treatments for 4 h without prior CA. In total, 7583 differentially expressed genes (DEGs) of 36,462 annotated unigenes were identified. We performed GO and KEGG pathway enrichment analyses, and excavated a group of important cold-responsive genes related to low temperature sensing and signal transduction, membrane lipid stability, reactive oxygen species (ROS) scavenging and osmoregulation. These genes encode many key proteins in plant biological processes, such as protein kinases, transcription factors, fatty acid desaturase, lipid-transfer proteins, antifreeze proteins, antioxidase and soluble sugars synthetases. We also verified expression levels of 10 DEGs using quantitative real-time polymerase chain reaction (qRT-PCR). In addition, we performed the determination of physiological indicators of chrysanthemum treated at low temperature, and the results were basically consistent with molecular sequencing results. Conclusion In summary, our study presents a genome-wide transcript profile of Dendranthema grandiflorum var. jinba and provides insights into the molecular mechanisms of D. grandiflorum in response to low temperature. These data contributes to our deeper relevant researches on cold tolerance and further exploring new candidate genes for chilling-tolerance and freezing-tolerance chrysanthemum molecular breeding. Electronic supplementary material The online version of this article (10.1186/s12864-018-4706-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ke Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhen-Yu Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qian-Yu Liang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qing-Lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuan-Zhi Pan
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Guang-Li Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bei-Bei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yin Jia
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
7
|
Role of the cell membrane interface in modulating production and uptake of Alzheimer's beta amyloid protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1639-1651. [PMID: 29572033 DOI: 10.1016/j.bbamem.2018.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
The beta amyloid protein (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis and its interaction with cell membranes in known to promote mutually disruptive structural perturbations that contribute to amyloid deposition and neurodegeneration in the brain. In addition to protein aggregation at the membrane interface and disruption of membrane integrity, growing reports demonstrate an important role for the membrane in modulating Aβ production and uptake into cells. The aim of this review is to highlight and summarize recent literature that have contributed insight into the implications of altered membrane composition on amyloid precursor protein (APP) proteolysis, production of Aβ, its internalization in to cells via permeabilization and receptor mediated uptake. Here, we also review the various membrane model systems and experimental tools used for probing Aβ-membrane interactions to investigate the key mechanistic aspects underlying the accumulation and toxicity of Aβ in AD.
Collapse
|
8
|
Yu Q, Zhong C. Membrane Aging as the Real Culprit of Alzheimer's Disease: Modification of a Hypothesis. Neurosci Bull 2017; 34:369-381. [PMID: 29177767 DOI: 10.1007/s12264-017-0192-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/05/2017] [Indexed: 01/10/2023] Open
Abstract
Our previous studies proposed that Alzheimer's disease (AD) is a metabolic disorder and hypothesized that abnormal brain glucose metabolism inducing multiple pathophysiological cascades contributes to AD pathogenesis. Aging is one of the great significant risk factors for AD. Membrane aging is first prone to affect the function and structure of the brain by impairing glucose metabolism. We presume that risk factors of AD, including genetic factors (e.g., the apolipoprotein E ε4 allele and genetic mutations) and non-genetic factors (such as fat, diabetes, and cardiac failure) accelerate biomembrane aging and lead to the onset and development of the disease. In this review, we further modify our previous hypothesis to demonstrate "membrane aging" as an initial pathogenic factor that results in functional and structural alterations of membranes and, consequently, glucose hypometabolism and multiple pathophysiological cascades.
Collapse
Affiliation(s)
- Qiujian Yu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Lee G, Bae H. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend. Toxins (Basel) 2016; 8:48. [PMID: 26907347 PMCID: PMC4773801 DOI: 10.3390/toxins8020048] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/26/2016] [Accepted: 02/14/2016] [Indexed: 01/09/2023] Open
Abstract
Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Korea.
| |
Collapse
|
10
|
Monteiro-Cardoso VF, Castro M, Oliveira MM, Moreira PI, Peixoto F, Videira RA. Age-dependent biochemical dysfunction in skeletal muscle of triple-transgenic mouse model of Alzheimer`s disease. Curr Alzheimer Res 2015; 12:100-15. [PMID: 25654504 PMCID: PMC4428479 DOI: 10.2174/1567205012666150204124852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/21/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022]
Abstract
The emergence of Alzheimer`s disease as a systemic pathology shifted the research paradigm toward a better
understanding of the molecular basis of the disease considering the pathophysiological changes in both brain and peripheral
tissues. In the present study, we evaluated the impact of disease progression on physiological relevant features of
skeletal muscle obtained from 3, 6 and 12 month-old 3xTg-AD mice, a model of Alzheimer`s disease, and respective agematched
nonTg mice. Our results showed that skeletal muscle functionality is already affected in 3-month-old 3xTg-AD
mice as evidenced by deficient acetylcholinesterase and catalase activities as well as by alterations in fatty acid composition
of mitochondrial membranes. Additionally, an age-dependent accumulation of amyloid-β1-40 peptide occurred in
skeletal muscle of 3xTg-AD mice, an effect that preceded bioenergetics mitochondrial dysfunction, which was only detected
at 12 months of age, characterized by decreased respiratory control ratio and ADP/O index and by an impairment of
complex I activity. HPLC-MS/MS analyses revealed significant changes in phospholipid composition of skeletal muscle
tissues from 3xTg-AD mice with 12 months of age when compared with age-matched nonTg mice. Increased levels of
lyso-phosphatidylcholine associated with a decrease of phosphatidylcholine molecular species containing arachidonic acid
were detected in 3xTg-AD mice, indicating an enhancement of phospholipase A2 activity and skeletal muscle inflammation.
Additionally, a decrease of phosphatidylethanolamine plasmalogens content and an increase in phosphatidylinositol
levels was observed in 3xTg-AD mice when compared with age-matched nonTg mice. Altogether, these observations
suggest that the skeletal muscle of 3xTg-AD mice are more prone to oxidative and inflammatory events.
Collapse
Affiliation(s)
| | | | | | | | | | - Romeu A Videira
- Chemistry Center - Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Tras-os-Montes e Alto Douro, UTAD, P.O. Box 1013; 5001-801 Vila Real, Portugal.
| |
Collapse
|
11
|
Roberti G, Tanga L, Michelessi M, Quaranta L, Parisi V, Manni G, Oddone F. Cytidine 5'-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives. Int J Mol Sci 2015; 16:28401-17. [PMID: 26633368 PMCID: PMC4691046 DOI: 10.3390/ijms161226099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022] Open
Abstract
Cytidine 5'-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson's disease and Alzheimer's disease, as well as in amblyopia. Glaucoma is a neurodegenerative disease currently considered a disease involving ocular and visual brain structures. Neuroprotection has been proposed as a valid therapeutic option for those patients progressing despite a well-controlled intraocular pressure, the main risk factor for the progression of the disease. The aim of this review is to critically summarize the current evidence about the effect of citicoline in glaucoma.
Collapse
Affiliation(s)
- Gloria Roberti
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.
| | - Lucia Tanga
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.
| | | | - Luciano Quaranta
- DSMC, Università degli studi di Brescia, USVD "Centro per lo studio del Glaucoma" P.le Spedali Civili, 1, 25123 Brescia, Italy.
| | - Vincenzo Parisi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.
| | - Gianluca Manni
- DSCMT, Università di Roma Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| | | |
Collapse
|
12
|
Hong JH, Kang JW, Kim DK, Baik SH, Kim KH, Shanta SR, Jung JH, Mook-Jung I, Kim KP. Global changes of phospholipids identified by MALDI imaging mass spectrometry in a mouse model of Alzheimer's disease. J Lipid Res 2015; 57:36-45. [PMID: 26538545 DOI: 10.1194/jlr.m057869] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia; however, at the present time there is no disease-modifying drug for AD. There is increasing evidence supporting the role of lipid changes in the process of normal cognitive aging and in the etiology of age-related neurodegenerative diseases. AD is characterized by the presence of intraneuronal protein clusters and extracellular aggregates of β-amyloid (Aβ). Disrupted Aβ kinetics may activate intracellular signaling pathways, including tau hyperphosphorylation and proinflammatory pathways. We analyzed and visualized the lipid profiles of mouse brains using MALDI-TOF MS. Direct tissue analysis by MALDI-TOF imaging MS (IMS) can determine the relative abundance and spatial distribution of specific lipids in different tissues. We used 5XFAD mice that almost exclusively generate and rapidly accumulate massive cerebral levels of Aβ-42 (1). Our data showed changes in lipid distribution in the mouse frontal cortex, hippocampus, and subiculum, where Aβ plaques are first generated in AD. Our results suggest that MALDI-IMS is a powerful tool for analyzing the distribution of various phospholipids and that this application might provide novel insight into the prediction of disease.
Collapse
Affiliation(s)
- Ji Hye Hong
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Jeong Won Kang
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Dong Kyu Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hoon Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Ho Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Selina Rahman Shanta
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Hun Jung
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
13
|
Yang X, Sheng W, Ridgley DM, Haidekker MA, Sun GY, Lee JC. Astrocytes regulate α-secretase-cleaved soluble amyloid precursor protein secretion in neuronal cells: Involvement of group IIA secretory phospholipase A2. Neuroscience 2015; 300:508-17. [PMID: 26037803 DOI: 10.1016/j.neuroscience.2015.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Astrocytes are major supportive cells in brains with important functions including providing nutrients and regulating neuronal activities. In this study, we demonstrated that astrocytes regulate amyloid precursor protein (APP) processing in neuronal cells through secretion of group IIA secretory phospholipase A2 (sPLA2-IIA). When astrocytic cells (DITNC) were mildly stimulated with the pro-inflammatory cytokines, such as TNF α and IL-1β, sPLA2-IIA was secreted into the medium. When conditioned medium containing sPLA2-IIA was applied to human neuroblastoma (SH-SY5Y) cells, there was an increase in both cell membrane fluidity and secretion of α-secretase-cleaved soluble amyloid precursor protein (sAPPα). These changes were abrogated by KH064, a selective inhibitor of sPLA2-IIA. In addition, exposing SH-SY5Y cells to recombinant human sPLA2-IIA also increased membrane fluidity, accumulation of APP at the cell surface, and secretion of sAPPα, but without altering total expressions of APP, α-secretases and β-site APP cleaving enzyme (BACE1). Taken together, our results provide novel information regarding a functional role of sPLA2-IIA in astrocytes for regulating APP processing in neuronal cells.
Collapse
Affiliation(s)
- X Yang
- Hope Center for Neurological Disorders and Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - W Sheng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - D M Ridgley
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States
| | - M A Haidekker
- College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, United States
| | - G Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - J C Lee
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
14
|
Zhu D, Bungart BL, Yang X, Zhumadilov Z, Lee JCM, Askarova S. Role of membrane biophysics in Alzheimer's-related cell pathways. Front Neurosci 2015; 9:186. [PMID: 26074758 PMCID: PMC4444756 DOI: 10.3389/fnins.2015.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/11/2015] [Indexed: 01/04/2023] Open
Abstract
Cellular membrane alterations are commonly observed in many diseases, including Alzheimer's disease (AD). Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s) underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State UniversityGreensboro, NC, USA
| | - Brittani L. Bungart
- Indiana University School of Medicine Medical Scientist Training Program, Indiana University School of MedicineIndianapolis, IN, USA
| | - Xiaoguang Yang
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
- The Hope Center for Neurological Disorders and Department of Neurology, Washington University School of MedicineSt. Louis, MO, USA
| | - Zhaxybay Zhumadilov
- Department of Bioengineering and Regenerative Medicine, Center for Life Sciences, Nazarbayev UniversityAstana, Kazakhstan
| | - James C-M. Lee
- Department of Bioengineering, University of Illinois at ChicagoChicago, IL, USA
| | - Sholpan Askarova
- Department of Bioengineering and Regenerative Medicine, Center for Life Sciences, Nazarbayev UniversityAstana, Kazakhstan
| |
Collapse
|
15
|
Veitinger M, Varga B, Guterres SB, Zellner M. Platelets, a reliable source for peripheral Alzheimer's disease biomarkers? Acta Neuropathol Commun 2014; 2:65. [PMID: 24934666 PMCID: PMC4229876 DOI: 10.1186/2051-5960-2-65] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022] Open
Abstract
Peripheral biomarkers play an indispensable role in quick and reliable diagnoses of any kind of disease. With the population ageing, the number of people suffering from age-related diseases is expected to rise dramatically over the coming decades. In particular, all types of cognitive deficits, such as Alzheimer's disease, will increase. Alzheimer's disease is characterised mainly by coexistence of amyloid plaques and neurofibrillary tangles in brain. Reliable identification of such molecular characteristics antemortem, however, is problematic due to restricted availability of appropriate sample material and definitive diagnosis is only possible postmortem. Currently, the best molecular biomarkers available for antemortem diagnosis originate from cerebrospinal fluid. Though, this is not convenient for routine diagnosis because of the required invasive lumbar puncture. As a consequence, there is a growing demand for additional peripheral biomarkers in a more readily accessible sample material. Blood platelets, due to shared biochemical properties with neurons, can constitute an attractive alternative as discussed here. This review summarises potential platelet Alzheimer's disease biomarkers, their role, implication, and alteration in the disease. For easy comparison of their performance, the Hedge effect size was calculated whenever data were available.
Collapse
Affiliation(s)
- Michael Veitinger
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Balazs Varga
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Sheila B Guterres
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
- />Institute of Chemistry at São Carlos, University of São Paulo, São Paulo, Brazil
| | - Maria Zellner
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| |
Collapse
|
16
|
Cellular membrane fluidity in amyloid precursor protein processing. Mol Neurobiol 2014; 50:119-29. [PMID: 24553856 DOI: 10.1007/s12035-014-8652-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
Abstract
The senile plaque is a pathologic hallmark of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), the main constituent of senile plaques, is neurotoxic especially in its oligomeric form. Aβ is derived from the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases in the amyloidogenic pathway. Alternatively, APP can be cleaved by α-secretases within the Aβ domain to produce neurotrophic and neuroprotective α-secretase-cleaved soluble APP (sAPPα) in the nonamyloidogenic pathway. Since APP and α-, β-, and γ-secretases are membrane proteins, APP processing should be highly dependent on the membrane composition and the biophysical properties of cellular membrane. In this review, we discuss the role of the biophysical properties of cellular membrane in APP processing, especially the effects of phospholipases A(2) (PLA(2)s), fatty acids, cholesterol, and Aβ on membrane fluidity in relation to their effects on APP processing.
Collapse
|
17
|
Tayebati SK, Amenta F. Choline-containing phospholipids: relevance to brain functional pathways. Clin Chem Lab Med 2013; 51:513-21. [PMID: 23314552 DOI: 10.1515/cclm-2012-0559] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/10/2012] [Indexed: 11/15/2022]
Abstract
Choline participates in several relevant neurochemical processes. It is the precursor and metabolite of acetylcholine (ACh), plays a role in single-carbon metabolism and is an essential component of different membrane phospholipids (PLs). PLs are structural components of cell membranes involved in intraneuronal signal transduction. This paper reviews the roles of choline and of choline-containing phospholipids (CCPLs) on brain metabolism in health and disease followed by an analysis of the effects of exogenously administered CCPLs on the brain, a topic extensively investigated by literature. Based on the observation of decreased cholinergic neurotransmission in brain disorders characterized by cognitive impairment, cholinergic precursor loading therapy with CCPLs was the first approach used to attempt for relieving the cognitive symptoms of Alzheimer's disease. This therapeutic strategy was discontinued due to the negative clinical results obtained with choline or lecithin. Negative results obtained with some compounds cannot be generalized for all CCPLs, as CDP-choline (citicoline) and to a greater extent choline alphoscerate (GPC) displayed interesting effects documented in preclinical studies and limited clinical trials. We provide evidence in favor of CDP-choline and GPC activity in cerebrovascular or neurodegenerative disorders characterized by cholinergic neurotransmission impairment. Based on the results of the controlled clinical trials available, we suggest that due to the lack of novel therapeutic strategies, safe compounds developed a long time ago such as effective CCPLs could have still a place in pharmacotherapy. Therefore selected compounds of this class should be further investigated by new appropriate clinical studies.
Collapse
|
18
|
Fonteh AN, Chiang J, Cipolla M, Hale J, Diallo F, Chirino A, Arakaki X, Harrington MG. Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer's disease. J Lipid Res 2013; 54:2884-97. [PMID: 23868911 DOI: 10.1194/jlr.m037622] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer's disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA 91101-1830
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Expression and localization of sPLA2-III in the rat CNS. Neurochem Res 2013; 38:753-60. [PMID: 23371482 DOI: 10.1007/s11064-013-0974-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/19/2012] [Accepted: 01/17/2013] [Indexed: 01/02/2023]
Abstract
Phospholipases A(2) (PLA(2)) are enzymes that cleave the sn-2 bond of membrane phospholipids to yield free fatty acids and lysophospholipids. Secretory PLA2-III (sPLA(2)-III) has been suggested to be important for neuronal differentiation, growth and survival, and is highly expressed in the spinal cord. The aim of this study is to elucidate its expression and distribution in different regions of the adult rat CNS. Quantitative RT-PCR analyses showed high levels of sPLA(2)-III mRNA expression in the brainstem and spinal cord and low expression in the olfactory bulb. Western blot analyses showed high level of expression in the brainstem, spinal cord and cerebral neocortex. A dense band corresponding to the catalytically active, mature/cleaved form, and a faint band corresponding to the full length sPLA(2)-III were detected in post-mitochondrial supernatants, from different parts of the CNS. Subcellular fractionation of spinal cord homogenates showed that sPLA(2)-III protein is present in the 'light membrane/cytosol' fraction, but not the nucleus, synaptosomal membrane or synaptic vesicle-enriched fractions. sPLA(2)-III was immunolocalized to neurons in the cerebral neocortex, Purkinje neurons in the cerebellar cortex, periaqueductal gray, red nucleus, spinal trigeminal nucleus and dorsal horn of the spinal cord. Electron microscopy of the spinal cord and cerebral neocortex showed that sPLA(2)-III was localized in dendrites or dendritic spines, that formed asymmetrical synapses with unlabeled, putatively glutamatergic, axon terminals. The localization of mature/cleaved form of sPLA(2)-III in postsynaptic structures suggest a physiological role of the enzyme in neurotransmission or synaptic plasticity.
Collapse
|
20
|
Schaeffer EL, Skaf HD, Novaes BDA, da Silva ER, Martins BA, Joaquim HDG, Gattaz WF. Inhibition of phospholipase A₂ in rat brain modifies different membrane fluidity parameters in opposite ways. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1612-7. [PMID: 21601609 DOI: 10.1016/j.pnpbp.2011.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/29/2022]
Abstract
Fluidity is an important neuronal membrane property and it is influenced by the concentration of polyunsaturated fatty acids (PUFAs) in membrane phospholipids. Phospholipase A(2) (PLA(2)) is a key enzyme in membrane phospholipid metabolism, generating free PUFAs. In Alzheimer disease (AD), reduced PLA(2) activity, specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), and phospholipid metabolism was reported in the frontal cortex and hippocampus. This study investigated the effects of in vivo infusion of the dual cPLA(2) and iPLA(2) inhibitor MAFP into rat brain on PLA(2) activity and membrane fluidity parameters in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and membrane fluidity was determined by fluorescence anisotropy technique using three different probes: DPH, TMA-DPH, and pyrene. MAFP significantly inhibited PLA(2) activity, reduced the flexibility of fatty acyl chains (indicated by increased DPH anisotropy), increased the fluidity in the lipid-water interface (indicated by decreased TMA-DPH anisotropy), and increased the lipid lateral diffusion in the hydrocarbon core (represented by pyrene excimer formation) of membranes in both brain areas. The findings suggest that reduced cPLA(2) and iPLA(2) activities in AD brain might contribute to the cognitive impairment, in part, through alterations in membrane fluidity parameters.
Collapse
Affiliation(s)
- Evelin L Schaeffer
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Doutor Ovídio Pires de Campos 785, 05403-010, São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
21
|
Reiss K, Cornelsen I, Husmann M, Gimpl G, Bhakdi S. Unsaturated fatty acids drive disintegrin and metalloproteinase (ADAM)-dependent cell adhesion, proliferation, and migration by modulating membrane fluidity. J Biol Chem 2011; 286:26931-42. [PMID: 21642425 DOI: 10.1074/jbc.m111.243485] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers.
Collapse
Affiliation(s)
- Karina Reiss
- Department of Dermatology, Christian-Albrecht University Kiel, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
22
|
Askarova S, Yang X, Lee JCM. Impacts of membrane biophysics in Alzheimer's disease: from amyloid precursor protein processing to aβ Peptide-induced membrane changes. Int J Alzheimers Dis 2011; 2011:134971. [PMID: 21547213 PMCID: PMC3087431 DOI: 10.4061/2011/134971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/30/2010] [Accepted: 01/21/2011] [Indexed: 12/11/2022] Open
Abstract
An increasing amount of evidence supports the notion that cytotoxic effects of amyloid-β peptide (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD), are strongly associated with its ability to interact with membranes of neurons and other cerebral cells. Aβ is derived from amyloidogenic cleavage of amyloid precursor protein (AβPP) by β- and γ-secretase. In the nonamyloidogenic pathway, AβPP is cleaved by α-secretases. These two pathways compete with each other, and enhancing the non-amyloidogenic pathway has been suggested as a potential pharmacological approach for the treatment of AD. Since AβPP, α-, β-, and γ-secretases are membrane-associated proteins, AβPP processing and Aβ production can be affected by the membrane composition and properties. There is evidence that membrane composition and properties, in turn, play a critical role in Aβ cytotoxicity associated with its conformational changes and aggregation into oligomers and fibrils. Understanding the mechanisms leading to changes in a membrane's biophysical properties and how they affect AβPP processing and Aβ toxicity should prove to provide new therapeutic strategies for prevention and treatment of AD.
Collapse
Affiliation(s)
- Sholpan Askarova
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
23
|
Abstract
Phospholipases A(2) (PLA(2)s) are essential enzymes in cells. They are not only responsible for maintaining the structural organization of cell membranes, but also play a pivotal role in the regulation of cell functions. Activation of PLA(2) s results in the release of fatty acids and lysophospholipids, products that are lipid mediators and compounds capable of altering membrane microdomains and physical properties. Although not fully understood, recent studies have linked aberrant PLA(2) activity to oxidative signaling pathways involving NADPH oxidase that underlie the pathophysiology of a number of neurodegenerative diseases. In this paper, we review studies describing the involvement of cytosolic PLA(2) in oxidative signaling pathways leading to neuronal impairment and activation of glial cell inflammatory responses. In addition, this review also includes information on the role of cytosolic PLA(2) and exogenous secretory PLA(2) on membrane physical properties, dynamics, and membrane proteins. Unraveling the mechanisms that regulate specific types of PLA(2)s and their effects on membrane dynamics are important prerequisites towards understanding their roles in the pathophysiology of Alzheimer's disease, and in the development of novel therapeutics to retard progression of the disease.
Collapse
Affiliation(s)
- James C-M. Lee
- Biological Engineering Department, University of Missouri, Columbia, MO, USA
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Albert Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y. Sun
- Biochemistry Department, University of Missouri, Columbia, MO, USA
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Yang X, Sheng W, Sun GY, Lee JCM. Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochem Int 2011; 58:321-9. [PMID: 21184792 PMCID: PMC3040984 DOI: 10.1016/j.neuint.2010.12.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 10/17/2010] [Accepted: 12/07/2010] [Indexed: 12/19/2022]
Abstract
Fatty acids may integrate into cell membranes to change physical properties of cell membranes, and subsequently alter cell functions in an unsaturation number-dependent manner. To address the roles of fatty acid unsaturation numbers in cellular pathways of Alzheimer's disease (AD), we systematically investigated the effects of fatty acids on cell membrane fluidity and α-secretase-cleaved soluble amyloid precursor protein (sAPP(α)) secretion in relation to unsaturation numbers using stearic acid (SA, 18:0), oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), arachidonic acid (AA, 20:4), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6). Treatments of differentiated human neuroblastoma (SH-SY5Y cells) with AA, EPA and DHA for 24h increased sAPP(α) secretion and membrane fluidity, whereas those treatments with SA, OA, LA and ALA did not. Treatments with AA and DHA did not alter the total expressions of amyloid precursor protein (APP) and α-secretases in SH-SY5Y cells. These results suggested that not all unsaturated fatty acids but only those with 4 or more double bonds, such as AA, EPA and DHA, are able to increase membrane fluidity and lead to increase in sAPP(α) secretion. This study provides insights into dietary strategies for the prevention of AD.
Collapse
Affiliation(s)
- Xiaoguang Yang
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| | - Wenwen Sheng
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - James C-M. Lee
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| |
Collapse
|
25
|
Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:236-43. [PMID: 21036142 DOI: 10.1016/j.bbamem.2010.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/01/2010] [Accepted: 10/25/2010] [Indexed: 12/26/2022]
Abstract
The fluidity of neuronal membranes plays a pivotal role in brain aging and neurodegeneration. In this study, we investigated the role of the omega-3 fatty acid docosahexaenoic acid (DHA) in modulation of membrane fluidity, APP processing, and protection from cytotoxic stress. To this end, we applied unilamellar transfer liposomes, which provided protection from oxidation and effective incorporation of DHA into cell membranes. Liposomes transferring docosanoic acid (DA), the completely saturated form of DHA, to the cell cultures served as controls. In HEK-APP cells, DHA significantly increased membrane fluidity and non-amyloidogenic processing of APP, leading to enhanced secretion of sAPPα. This enhanced secretion of sAPPα was associated with substantial protection against apoptosis induced by ER Ca(2+) store depletion. sAPPα-containing supernatants obtained from HEK-APP cells exerted similar protective effects as DHA in neuronal PC12 cells and HEK293 control cells. Correlating to further increased sAPPα levels, supernatants obtained from DHA-treated HEK-APP cells enhanced protection, whereas supernatants obtained from DHA-treated HEK293 control cells did not inhibit apoptosis, likely due to the low expression of endogenous APP and negligible sAPPα secretion in these cells. Further experiments with the small molecule inhibitors LY294002 and SP600125 indicated that sAPPα-induced cytoprotection relied on activation of the anti-apoptotic PI3K/Akt pathway and inhibition of the stress-triggered JNK signaling pathway in PC12 cells. Our data suggest that liposomal DHA is able to restore or maintain physiological membrane properties, which are required for neuroprotective sAPPα secretion and autocrine modulation of neuronal survival.
Collapse
|
26
|
Membrane biophysics and mechanics in Alzheimer's disease. Mol Neurobiol 2010; 41:138-48. [PMID: 20437210 DOI: 10.1007/s12035-010-8121-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/17/2010] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a chronic neurodegenerative disorder characterized by neuronal loss, cerebrovascular inflammation, and accumulation of senile plaques in the brain parenchyma and cerebral blood vessels. Amyloid-beta peptide (Abeta), a major component of senile plaques, has been shown to exert multiple toxic effects to neurons, astrocytes, glial cells, and brain endothelium. Oligomeric Abeta can disturb the structure and function of cell membranes and alter membrane mechanical properties, such as membrane fluidity and molecular order. Much of these effects are attributed to their capability to trigger oxidative stress and inflammation. In this review, we discuss the effects of Abeta on neuronal cells, astrocytes, and cerebral endothelial cells with special emphasis on cell membrane properties and cell functions.
Collapse
|