1
|
Baranovskaya I, Volk K, Alexander S, Abais-Battad J, Mamenko M. Lithium-induced apoptotic cell death is not accompanied by a noticeable inflammatory response in the kidney. Front Physiol 2024; 15:1399396. [PMID: 39234304 PMCID: PMC11373137 DOI: 10.3389/fphys.2024.1399396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Lithium (Li+) therapy is a valuable tool in psychiatric practice that remains underutilized due to safety concerns. Excessive plasma Li+ levels are nephrotoxic and can trigger a local immune response. Our understanding of the immunomodulatory effects of Li+ in the kidney is fragmentary. Here, we studied how immune mechanisms contribute to the development of Li+-induced adverse effects in the kidneys of C57BL/6NJ mice placed on a 0.3% lithium carbonate diet for 28 days. We combined histochemical techniques, immunoblotting, flow cytometry, qPCR and proteome profiler arrays to characterize renal tissue damage, infiltrating immune cells and cytokine markers, activation of pyroptotic and apoptotic cascades in the kidneys of mice receiving Li+-containing and regular diets. We found that biomarkers of tubular damage, kidney injury marker, KIM-1, and neutrophil gelatinase-associated lipocalin, NGAL, were elevated in the renal tissue of Li+-treated mice when compared to controls. This correlated with increased interstitial fibrosis in Li+-treated mice. Administration of Li+ did not activate the pro-inflammatory NLRP3 inflammasome cascade but promoted apoptosis in the renal tissue. The TUNEL-positive signal and levels of pro-apoptotic proteins, Bax, cleaved caspase-3, and caspase-8, were elevated in the kidneys of Li+-treated mice. We observed a significantly higher abundance of CD93, CCL21, and fractalkine, accumulation of F4.80+ macrophages with reduced M1/M2 polarization ratio and decreased CD4+ levels in the renal tissue of Li+-treated mice when compared to controls. Therefore, after 28 days of treatment, Li+-induced insult to the kidney manifests in facilitated apoptotic cell death without an evident pro-inflammatory response.
Collapse
Affiliation(s)
- Irina Baranovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kevin Volk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sati Alexander
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Justine Abais-Battad
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Singh Y, Chowdhury A, Dasgupta R, Majumder SK. The effects of lithium on human red blood cells studied using optical spectroscopy and laser trap. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:91-100. [PMID: 36929427 DOI: 10.1007/s00249-023-01643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Lithium has been the treatment of choice for patients with bipolar disorder. However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.
Collapse
Affiliation(s)
- Yashveer Singh
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Aniket Chowdhury
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, 452013, India
| | - Raktim Dasgupta
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, 452013, India.
| | - Shovan Kumar Majumder
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, 452013, India
| |
Collapse
|
3
|
Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L, Coleman-Fuller N, Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2023; 37:4-30. [PMID: 35996185 DOI: 10.1111/fcp.12826] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3β) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Fateme Ghanaatfar
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanaatfar
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Parisa Isapour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Mahshid Javadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ala M, Mohammad Jafari R, Nematian H, Ganjedanesh MR, Naderi A, Akbariani M, Sanatkar M, Satarian L, Aghsaei Fard M, Dehpour AR. Neuroprotective Effect of Intravitreal Single-Dose Lithium Chloride after Optic Nerve Injury in Rats. Curr Eye Res 2020; 46:558-567. [PMID: 32885675 DOI: 10.1080/02713683.2020.1808999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Lithium is an old drug to control bipolar disorder. Moreover, it presents neuroprotective effects and supports neuronal plasticity. The aim of this study was to evaluate neuroprotective effect of intravitreal lithium after optic nerve injury. METHODS Three dosages of lithium chloride, including 2 pmol, 200 pmol, and 2 nmol, were injected intravitreally after rat optic nerve injury. Proteins expression were assessed by western blot. Nitric oxide (NO) metabolites were measured by Griess test. Visual evoked potential (VEP) and optical coherence tomography (OCT) measurement were performed after trauma induction, in addition to H & E and TUJ1 staining of ganglion cells. RESULTS Western blot depicted lithium can significantly increase antiapoptotic Bcl-2 protein level and reduce p-ERK, Toll-like receptor 4 (TLR4) and proapoptotic proteins such as Bax level in retinal tissue and Griess test reflected that NO metabolites level decreased in lithium treated eyes (P < .05). While, OCT showed no significant changes (P = .36 and P = .43 comparing treated group with trauma) in retinal ganglion cell layer thickness after lithium injection, VEP P2 wave amplitude increased significantly (P < .01) in lithium-treated eyes and its latency reduced (P < .05 for N1 wave and P < .01 for P2 wave). Tuj1 antibody-labeled retinal ganglion cells analyzing showed that the number of retinal ganglion cells were significantly higher in lithium treated eyes compared to untreated eyes with optic nerve injury. CONCLUSION It seems intravitreally lithium has optic nerve neuroprotective effects by various mechanisms like overexpression of antiapoptotic proteins, suppressing proinflammatory molecules and proapoptotic factors, and decreasing nitric oxide.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Nematian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ganjedanesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Naderi
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mostafa Akbariani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sanatkar
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Leila Satarian
- Eye Group, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoud Aghsaei Fard
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol 2019; 56:3295-3312. [PMID: 30117106 PMCID: PMC6476855 DOI: 10.1007/s12035-018-1283-6] [Citation(s) in RCA: 491] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment. Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this review will address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
6
|
Sethi R, Gómez-Coronado N, Walker AJ, Robertson OD, Agustini B, Berk M, Dodd S. Neurobiology and Therapeutic Potential of Cyclooxygenase-2 (COX-2) Inhibitors for Inflammation in Neuropsychiatric Disorders. Front Psychiatry 2019; 10:605. [PMID: 31551825 PMCID: PMC6738329 DOI: 10.3389/fpsyt.2019.00605] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Neuropsychiatric disorders, such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder, and neurodevelopmental disorders such as autism spectrum disorder, are associated with significant illness burden. Accumulating evidence supports an association between these disorders and inflammation. Consequently, anti-inflammatory agents, such as the cyclooxygenase-2 inhibitors, represent a novel avenue to prevent and treat neuropsychiatric illness. In this paper, we first review the role of inflammation in psychiatric pathophysiology including inflammatory cytokines' influence on neurotransmitters, the hypothalamic-pituitary-adrenal axis, and microglial mechanisms. We then discuss how cyclooxygenase-2-inhibitors influence these pathways with potential therapeutic benefit, with a focus on celecoxib, due to its superior safety profile. A search was conducted in PubMed, Embase, and PsychINFO databases, in addition to Clinicaltrials.gov and the Stanley Medical Research Institute trial registries. The results were presented as a narrative review. Currently available outcomes for randomized controlled trials up to November 2017 are also discussed. The evidence reviewed here suggests cyclooxygenase-2 inhibitors, and in particular celecoxib, may indeed assist in treating the symptoms of neuropsychiatric disorders; however, further studies are required to assess appropriate illness stage-related indication.
Collapse
Affiliation(s)
- Rickinder Sethi
- Department of Psychiatry, Western University, London, ON, Canada
| | - Nieves Gómez-Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Adam J Walker
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| | - Oliver D'Arcy Robertson
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.,University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Bruno Agustini
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.,University Hospital Geelong, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.,University Hospital Geelong, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| |
Collapse
|
7
|
Kerr F, Bjedov I, Sofola-Adesakin O. Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models. Front Mol Neurosci 2018; 11:297. [PMID: 30210290 PMCID: PMC6121012 DOI: 10.3389/fnmol.2018.00297] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium’s effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD) diseases. A narrow therapeutic window for these effects, however, has led to concerted efforts to understand the molecular mechanisms of lithium action in the brain, in order to develop more selective treatments that harness its neuroprotective potential whilst limiting contraindications. Animal models have proven pivotal in these studies, with lithium displaying advantageous effects on behavior across species, including worms (C. elegans), zebrafish (Danio rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to genetic manipulation, functional genomic analyses in these model organisms have provided evidence for the main molecular determinants of lithium action, including inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3). Accumulating pre-clinical evidence has indeed provided a basis for research into the therapeutic use of lithium for the treatment of dementia, an area of medical priority due to its increasing global impact and lack of disease-modifying drugs. Although lithium has been extensively described to prevent AD-associated amyloid and tau pathologies, this review article will focus on generic mechanisms by which lithium preserves neuronal function and improves memory in animal models of dementia. Of these, evidence from worms, flies and mice points to GSK-3 as the most robust mediator of lithium’s neuro-protective effect, but it’s interaction with downstream pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear factor-κB (NFκB), have identified multiple targets for development of drugs which harness lithium’s neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-inflammatory and protein homeostasis properties, in addition to more potent and selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional therapy to combat the complex molecular pathology of dementia. Animal studies will be vital, however, for comparative analyses to determine which of these defense mechanisms are most required to slow-down cognitive decline in dementia, and whether combination therapies can synergize systems to exploit lithium’s neuro-protective power while avoiding deleterious toxicity.
Collapse
Affiliation(s)
- Fiona Kerr
- Department of Life Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Oyinkan Sofola-Adesakin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
8
|
Karimi A, Bahrampour K, Momeni Moghaddam MA, Asadikaram G, Ebrahimi G, Torkzadeh-Mahani M, Esmaeili Tarzi M, Nematollahi MH. Evaluation of lithium serum level in multiple sclerosis patients: A neuroprotective element. Mult Scler Relat Disord 2017; 17:244-248. [DOI: 10.1016/j.msard.2017.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
|
9
|
Mousavi SY, Khezri R, Karkhaneh-Yousefi MA, Mohammadinejad P, Gholamian F, Mohammadi MR, Zeinoddini A, Akhondzadeh S. A Randomized, Double-Blind Placebo-Controlled Trial on Effectiveness and Safety of Celecoxib Adjunctive Therapy in Adolescents with Acute Bipolar Mania. J Child Adolesc Psychopharmacol 2017; 27:494-500. [PMID: 28409660 DOI: 10.1089/cap.2016.0207] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Recent studies have focused on the role of inflammatory cascades as one of the possible etiologic factors of bipolar disorder. We hypothesize that celecoxib, through its anti-inflammatory properties, may have a therapeutic role in acute bipolar mania. PATIENTS AND METHODS Forty-two adolescent inpatients with the diagnosis of acute bipolar mania participated in a parallel, randomized, double-blind controlled trial, and 40 patients underwent an 8-week treatment with either celecoxib (100 mg twice daily) or placebo as an adjunctive treatment to lithium and risperidone. Patients were evaluated using Young Mania Rating Scale (YMRS) at baseline and weeks 2, 4, and 8. The primary outcome measure was to assess the efficacy of celecoxib compared with placebo in improving mania symptoms. RESULT General linear model repeated measures showed significant effect for time × treatment interaction on YMRS scores [F (2.54, 96.56) = 3.21, p = 0.03]. Significantly greater improvement was observed in YMRS scores in the celecoxib group compared with the placebo group from baseline YMRS score at week 8 (p = 0.04). Although a 35% greater response to treatment (considering a Clinical Global Impressions-Improvement score of ≤2, very much/much improved) was observed in the celecoxib group compared with the placebo group, the difference did not reach the statistical significance level (p = 0.09). No serious adverse event was reported. CONCLUSIONS Celecoxib may be an effective adjuvant therapy in treatment of manic episodes (without psychotic features) of adolescents with bipolar mood disorder. The mood-stabilizing role of this drug might be mediated through its action on inflammatory cascades.
Collapse
Affiliation(s)
- Seyed Yaser Mousavi
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Rasoul Khezri
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Payam Mohammadinejad
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Faezeh Gholamian
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Reza Mohammadi
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Atefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
10
|
Habib A, Sawmiller D, Li S, Xiang Y, Rongo D, Tian J, Hou H, Zeng J, Smith A, Fan S, Giunta B, Mori T, Currier G, Shytle DR, Tan J. LISPRO mitigates β-amyloid and associated pathologies in Alzheimer's mice. Cell Death Dis 2017; 8:e2880. [PMID: 28617434 PMCID: PMC5520933 DOI: 10.1038/cddis.2017.279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/28/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
Abstract
Lithium has been marketed in the United States of America since the 1970s as a treatment for bipolar disorder. More recently, studies have shown that lithium can improve cognitive decline associated with Alzheimer’s disease (AD). However, the current United States Food and Drug Administration-approved lithium pharmaceutics (carbonate and citrate chemical forms) have a narrow therapeutic window and unstable pharmacokinetics that, without careful monitoring, can cause serious adverse effects. Here, we investigated the safety profile, pharmacokinetics, and therapeutic efficacy of LISPRO (ionic co-crystal of lithium salicylate and l-proline), lithium salicylate, and lithium carbonate (Li2CO3). We found that LISPRO (8-week oral treatment) reduces β-amyloid plaques and phosphorylation of tau by reducing neuroinflammation and inactivating glycogen synthase kinase 3β in transgenic Tg2576 mice. Specifically, cytokine profiles from the brain, plasma, and splenocytes suggested that 8-week oral treatment with LISPRO downregulates pro-inflammatory cytokines, upregulates anti-inflammatory cytokines, and suppresses renal cyclooxygenase 2 expression in transgenic Tg2576 mice. Pharmacokinetic studies indicated that LISPRO provides significantly higher brain lithium levels and more steady plasma lithium levels in both B6129SF2/J (2-week oral treatment) and transgenic Tg2576 (8-week oral treatment) mice compared with Li2CO3. Oral administration of LISPRO for 28 weeks significantly reduced β-amyloid plaques and tau-phosphorylation. In addition, LISPRO significantly elevated pre-synaptic (synaptophysin) and post-synaptic protein (post synaptic density protein 95) expression in brains from transgenic 3XTg-AD mice. Taken together, our data suggest that LISPRO may be a superior form of lithium with improved safety and efficacy as a potential new disease modifying drug for AD.
Collapse
Affiliation(s)
- Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Song Li
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yang Xiang
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David Rongo
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jin Zeng
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Adam Smith
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Shengnuo Fan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brian Giunta
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Takashi Mori
- Departments of Biomedical Sciences and Pathology, Saitama Medical Center and Saitama Medical University, Kawagoe, Saitama, Japan
| | - Glenn Currier
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Douglas Ronald Shytle
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Dietary Linoleic Acid Lowering Reduces Lipopolysaccharide-Induced Increase in Brain Arachidonic Acid Metabolism. Mol Neurobiol 2016; 54:4303-4315. [PMID: 27339880 DOI: 10.1007/s12035-016-9968-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022]
Abstract
Linoleic acid (LA, 18:2n-6) is a precursor to arachidonic acid (AA, 20:4n-6), which can be converted by brain lipoxygenase and cyclooxygenase (COX) enzymes into various lipid mediators involved in the regulation of brain immunity. Brain AA metabolism is activated in rodents by the bacterial endotoxin, lipopolysaccharide (LPS). This study tested the hypothesis that dietary LA lowering, which limits plasma supply of AA to the brain, reduces LPS-induced upregulation in brain AA metabolism. Male Fischer CDF344 rats fed an adequate LA (5.2 % energy (en)) or low LA (0.4 % en) diet for 15 weeks were infused with LPS (250 ng/h) or vehicle into the fourth ventricle for 2 days using a mini-osmotic pump. The incorporation rate of intravenously infused unesterified 14C-AA into brain lipids, eicosanoids, and activities of phospholipase A2 and COX-1 and 2 enzymes were measured. Dietary LA lowering reduced the LPS-induced increase in prostaglandin E2 concentration and COX-2 activity (P < 0.05 by two-way ANOVA) without altering phospholipase activity. The 14C-AA incorporation rate into brain lipids was decreased by dietary LA lowering (P < 0.05 by two-way ANOVA). The present findings suggest that dietary LA lowering reduced LPS-induced increase in brain markers of AA metabolism. The clinical utility of LA lowering in brain disorders should be explored in future studies.
Collapse
|
12
|
Nassar A, Sharon-Granit Y, Azab AN. Psychotropic drugs attenuate lipopolysaccharide-induced hypothermia by altering hypothalamic levels of inflammatory mediators in rats. Neurosci Lett 2016; 626:59-67. [PMID: 27181513 DOI: 10.1016/j.neulet.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 01/24/2023]
Abstract
Recent evidence suggests that inflammation may contribute to the pathophysiology of mental disorders and that psychotropic drugs exert various effects on brain inflammation. The administration of bacterial endotoxin (lipopolysaccharide, LPS) to mammals is associated with robust production of inflammatory mediators and pathological changes in body temperature. The objective of the present study was to examine the effects of four different psychotropic drugs on LPS-induced hypothermia and production of prostaglandin (PG) E2, tumor necrosis factor (TNF)-α and phosphorylated-p65 (P-p65) levels in hypothalamus of LPS-treated rats. Rats were treated once daily with lithium (100mg/kg), carbamazepine (40mg/kg), haloperidol (2mg/kg), imipramine (20mg/kg) or vehicle (NaCl 0.9%) for 29 days. On day 29, rats were injected with LPS (1mg/kg) or saline. At 1.5h post LPS injection body temperature was measured, rats were sacrificed, blood was collected and their hypothalami were excised, homogenized and centrifuged. PGE2, TNF-α and nuclear P-p65 levels were determined by specific ELISA kits. We found that lithium, carbamazepine, haloperidol and imipramine significantly attenuated LPS-induced hypothermia, resembling the effect of classic anti-inflammatory drugs. Moreover, lithium, carbamazepine, haloperidol and imipramine differently but significantly affected the levels of PGE2, TNF-α and P-p65 in plasma and hypothalamus of LPS-treated rats. The results suggest that psychotropic drugs attenuate LPS-induced hypothermia by reducing hypothalamic production of inflammatory constituents, particularly PGE2. The effects of psychotropic drugs on brain inflammation may contribute to their therapeutic mechanism but also to their toxicological profile.
Collapse
Affiliation(s)
- Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Sharon-Granit
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abed N Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; School for Community Health Professions - Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
13
|
Herteleer L, Zwarts L, Hens K, Forero D, Del-Favero J, Callaerts P. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila. Psychopharmacology (Berl) 2016; 233:1751-62. [PMID: 26852229 DOI: 10.1007/s00213-016-4223-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/28/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. OBJECTIVES We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. METHODS Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p < 0.05. Significantly enriched GO terms were clustered using REVIGO and DAVID functional annotation clustering. Significance of overlap between transcript lists was determined with a Fisher's exact hypergeometric test. RESULTS Treatment of cultured cells and adult flies with lithium and VPA induces transcriptional responses in genes with similar ontology, with as most prominent immune response, neuronal development, neuronal function, and metabolism. CONCLUSIONS (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.
Collapse
Affiliation(s)
- L Herteleer
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - L Zwarts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - K Hens
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Centre for Neural Circuits and Behavior, Oxford University, Oxford, UK
| | - D Forero
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
- Laboratory of Neuropsychiatric Genetics, School of Medicine, Antonio Narino University, Bogota, Colombia
| | - J Del-Favero
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium.
- KULeuven Department of Human Genetics, Leuven, Belgium.
- VIB Center for the Biology of Disease, Leuven, Belgium.
| |
Collapse
|
14
|
Arabzadeh S, Ameli N, Zeinoddini A, Rezaei F, Farokhnia M, Mohammadinejad P, Ghaleiha A, Akhondzadeh S. Celecoxib adjunctive therapy for acute bipolar mania: a randomized, double-blind, placebo-controlled trial. Bipolar Disord 2015; 17:606-614. [PMID: 26291962 DOI: 10.1111/bdi.12324] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Recent research has focused on the inflammatory cascade as a key culprit in the etiology of bipolar disorder. We hypothesized that celecoxib, via its anti-inflammatory properties, may have a therapeutic role in mood disorder. METHODS Forty-six inpatients with the diagnosis of acute bipolar mania without psychotic features participated in a parallel, randomized, double-blind, placebo-controlled trial, and underwent six weeks of treatment with either celecoxib (400 mg daily) or placebo as an adjunctive treatment to sodium valproate. Patients were evaluated using the Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HDRS). The primary outcome measure with respect to efficacy was the mean decrease in YMRS score from baseline to the study endpoint, which was compared between the two groups. RESULTS A significant difference was observed in the change in YMRS scores on Day 42 compared to baseline in the two groups (p < 0.001). The changes at the endpoint compared to baseline were -29.78 ± 21.78 (mean ± standard deviation) and -21.78 ± 7.16 for the celecoxib and placebo groups, respectively. A significantly higher remission rate was observed in the celecoxib group (87.0%) than the placebo group (43.5%) at Week 6 (p = 0.005). General linear model repeated measures demonstrated a significant effect for the time × treatment interaction on the YMRS scores [F(2.27,99.98) = 6.67, p = 0.001]. CONCLUSIONS Celecoxib is an effective adjuvant therapy in the treatment of manic episodes (without psychotic features) of bipolar mood disorder. The mood-stabilizing role of the drug might be mediated via its action on the inflammatory cascade.
Collapse
Affiliation(s)
- Somayeh Arabzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Niusha Ameli
- Qods Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Atefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Rezaei
- Qods Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Farokhnia
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadinejad
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ghaleiha
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder? Neural Plast 2015; 2015:708306. [PMID: 26075104 PMCID: PMC4444594 DOI: 10.1155/2015/708306] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) regulates the transport of micro- and macromolecules between the peripheral blood and the central nervous system (CNS) in order to maintain optimal levels of essential nutrients and neurotransmitters in the brain. In addition, the BBB plays a critical role protecting the CNS against neurotoxins. There has been growing evidence that BBB disruption is associated with brain inflammatory conditions such as Alzheimer's disease and multiple sclerosis. Considering the increasing role of inflammation and oxidative stress in the pathophysiology of bipolar disorder (BD), here we propose a novel model wherein transient or persistent disruption of BBB integrity is associated with decreased CNS protection and increased permeability of proinflammatory (e.g., cytokines, reactive oxygen species) substances from the peripheral blood into the brain. These events would trigger the activation of microglial cells and promote localized damage to oligodendrocytes and the myelin sheath, ultimately compromising myelination and the integrity of neural circuits. The potential implications for research in this area and directions for future studies are discussed.
Collapse
|
16
|
Rinaudo L, Hopwood M. A narrative review of the efficacy of DHA for treatment of major depressive disorder and treatment and prevention of postnatal depression. ADVANCES IN INTEGRATIVE MEDICINE 2015. [DOI: 10.1016/j.aimed.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Abstract
One of the remarkable discoveries in the field of psychopharmacology from late 1940s is Lithium (Li) that reminds of old but still gold. It continues to be a distinctive mood stabilizer that matches various standards recommended for mood stabilizers. Apart from this Li is also known to affect immune cell functions. Lithium response and regulations of different immune cells in bipolar patients, related immune disorders are not well defined. Here, we provide an overview of literature with regard to Li's effects on different immune cells. However, the use of Li is currently limited to bipolar disorders and there is no empirical evidence for immune cell disorders. The objective of this article is to provide the evaluations of Li responses towards the different immune cells based on the existing studies. Further, more studies are needed to understand the mechanistic basis and heterogeneous responses of Li's effect in bipolar, also unravel relative immune disorders.
Collapse
Affiliation(s)
- Narendra Maddu
- Department of Biochemistry, Sri Krishnadevaraya University , Anantapur, Andhra Pradesh , India and
| | | |
Collapse
|
18
|
Jung JM, Kim KH, Kwon EE, Kim HW. Analysis of the lipid profiles in a section of bovine brain via non-catalytic rapid methylation. Analyst 2015; 140:6210-6. [DOI: 10.1039/c5an00961h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The main focus of this study is to mechanistically introduce a new qualitative and quantitative technique for mapping the lipid profile of a sectional brainvianon-catalytic transesterification reaction (i.e., pseudo catalytic reaction in the presence of porous materials).
Collapse
Affiliation(s)
- Jong-Min Jung
- Department of Environment & Energy
- Sejong University
- Seoul 143-747
- South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering
- Hanyang University
- Seoul 133-791
- South Korea
| | - Eilhann E. Kwon
- Department of Environment & Energy
- Sejong University
- Seoul 143-747
- South Korea
| | - Hyung-Wook Kim
- Department of Biological Science and Technology at Sejong University
- Seoul 143-747
- South Korea
| |
Collapse
|
19
|
Oruch R, Elderbi MA, Khattab HA, Pryme IF, Lund A. Lithium: A review of pharmacology, clinical uses, and toxicity. Eur J Pharmacol 2014; 740:464-73. [DOI: 10.1016/j.ejphar.2014.06.042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023]
|
20
|
Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:23-34. [PMID: 24468642 DOI: 10.1016/j.pnpbp.2014.01.013] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/22/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
Abstract
Mood disorders have been recognized by the World Health Organization (WHO) as the leading cause of disability worldwide. Notwithstanding the established efficacy of conventional mood agents, many treated individuals continue to remain treatment refractory and/or exhibit clinically significant residual symptoms, cognitive dysfunction, and psychosocial impairment. Therefore, a priority research and clinical agenda is to identify pathophysiological mechanisms subserving mood disorders to improve therapeutic efficacy. During the past decade, inflammation has been revisited as an important etiologic factor of mood disorders. Therefore, the purpose of this synthetic review is threefold: 1) to review the evidence for an association between inflammation and mood disorders, 2) to discuss potential pathophysiologic mechanisms that may explain this association and 3) to present novel therapeutic options currently being investigated that target the inflammatory-mood pathway. Accumulating evidence implicates inflammation as a critical mediator in the pathophysiology of mood disorders. Indeed, elevated levels of pro-inflammatory cytokines have been repeatedly demonstrated in both major depressive disorder (MDD) and bipolar disorder (BD) patients. Further, the induction of a pro-inflammatory state in healthy or medically ill subjects induces 'sickness behavior' resembling depressive symptomatology. Potential mechanisms involved include, but are not limited to, direct effects of pro-inflammatory cytokines on monoamine levels, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, pathologic microglial cell activation, impaired neuroplasticity and structural and functional brain changes. Anti-inflammatory agents, such as acetyl-salicylic acid (ASA), celecoxib, anti-TNF-α agents, minocycline, curcumin and omega-3 fatty acids, are being investigated for use in mood disorders. Current evidence shows improved outcomes in mood disorder patients when anti-inflammatory agents are used as an adjunct to conventional therapy; however, further research is needed to establish the therapeutic benefit and appropriate dosage.
Collapse
Affiliation(s)
- Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Danielle S Cha
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil; Program for Recognition and Intervention in Individuals in At-Risk Mental States (PRISMA), Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Rapoport SI. Lithium and the other mood stabilizers effective in bipolar disorder target the rat brain arachidonic acid cascade. ACS Chem Neurosci 2014; 5:459-67. [PMID: 24786695 DOI: 10.1021/cn500058v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This Review evaluates the arachidonic acid (AA, 20:4n-6) cascade hypothesis for the actions of lithium and other FDA-approved mood stabilizers in bipolar disorder (BD). The hypothesis is based on evidence in unanesthetized rats that chronically administered lithium, carbamazepine, valproate, or lamotrigine each downregulated brain AA metabolism, and it is consistent with reported upregulated AA cascade markers in post-mortem BD brain. In the rats, each mood stabilizer reduced AA turnover in brain phospholipids, cyclooxygenase-2 expression, and prostaglandin E2 concentration. Lithium and carbamazepine also reduced expression of cytosolic phospholipase A2 (cPLA2) IVA, which releases AA from membrane phospholipids, whereas valproate uncompetitively inhibited in vitro acyl-CoA synthetase-4, which recycles AA into phospholipid. Topiramate and gabapentin, proven ineffective in BD, changed rat brain AA metabolism minimally. On the other hand, the atypical antipsychotics olanzapine and clozapine, which show efficacy in BD, decreased rat brain AA metabolism by reducing plasma AA availability. Each of the four approved mood stabilizers also dampened brain AA signaling during glutamatergic NMDA and dopaminergic D2 receptor activation, while lithium enhanced the signal during cholinergic muscarinic receptor activation. In BD patients, such signaling effects might normalize the neurotransmission imbalance proposed to cause disease symptoms. Additionally, the antidepressants fluoxetine and imipramine, which tend to switch BD depression to mania, each increased AA turnover and cPLA2 IVA expression in rat brain, suggesting that brain AA metabolism is higher in BD mania than depression. The AA hypothesis for mood stabilizer action is consistent with reports that low-dose aspirin reduced morbidity in patients taking lithium, and that high n-3 and/or low n-6 polyunsaturated fatty acid diets, which in rats reduce brain AA metabolism, were effective in BD and migraine patients.
Collapse
Affiliation(s)
- Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
22
|
Abstract
Lithium is an effective medication for the treatment of bipolar affective disorder. Accumulating evidence suggests that inflammation plays a role in the pathogenesis of bipolar disorder and that lithium has anti-inflammatory effects that may contribute to its therapeutic efficacy. This article summarizes the studies which examined the effects of lithium on pro- and anti-inflammatory mediators. Some of the summarized data suggest that lithium exerts anti-inflammatory effects (e.g., suppression of cyclooxygenase-2 expression, inhibition of interleukin (IL)-1β and tumor necrosis factor-α production, and enhancement of IL-2 and IL-10 synthesis). Nevertheless, there is a large body of data which indicates that under certain experimental conditions lithium also exhibits pro-inflammatory properties (e.g., induction of IL-4, IL-6 and other pro-inflammatory cytokines synthesis). The reviewed studies utilized various experimental model systems, and it is thus difficult to draw an unequivocal conclusion regarding the effect of lithium on specific inflammatory mediators.
Collapse
Affiliation(s)
- Ahmad Nassar
- Department of Clinical Biochemistry
and Pharmacology, and ‡School for Community
Health Professions − Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abed N. Azab
- Department of Clinical Biochemistry
and Pharmacology, and ‡School for Community
Health Professions − Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
23
|
Keleshian VL, Kellom M, Kim HW, Taha AY, Cheon Y, Igarashi M, Rapoport SI, Rao JS. Neuropathological responses to chronic NMDA in rats are worsened by dietary n-3 PUFA deprivation but are not ameliorated by fish oil supplementation. PLoS One 2014; 9:e95318. [PMID: 24798187 PMCID: PMC4010416 DOI: 10.1371/journal.pone.0095318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/25/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabolism and excitotoxicity, in rats treated chronically with NMDA or saline. METHODS Male rats after weaning were maintained on one of three diets for 15 weeks. After 12 weeks, each diet group was injected i.p. daily with saline (1 ml/kg) or a subconvulsive dose of NMDA (25 mg/kg) for 3 additional weeks. Then, brain fatty acid concentrations and various markers of excitotoxicity and fatty acid metabolism were measured. RESULTS Compared to the diet-adequate group, brain DHA concentration was reduced, while n-6 docosapentaenoic acid (DPA, 22:5n-6) concentration was increased in the n-3 deficient group; arachidonic acid (AA, 20:4n-6) concentration was unchanged. These concentrations were unaffected by fish oil supplementation. Chronic NMDA increased brain cPLA2 activity in each of the three groups, but n-3 PUFA deprivation or fish oil did not change cPLA2 activity or protein compared with the adequate group. sPLA2 expression was unchanged in the three conditions, whereas iPLA2 expression was reduced by deprivation but not changed by supplementation. BDNF protein was reduced by NMDA in N-3 PUFA deficient rats, but protein levels of IL-1β, NGF, and GFAP did not differ between groups. CONCLUSIONS N-3 PUFA deprivation significantly worsened several pathological NMDA-induced changes produced in diet adequate rats, whereas n-3 PUFA supplementation did not affect NMDA induced changes. Supplementation may not be critical for this measured neuropathology once the diet has an adequate n-3 PUFA content.
Collapse
Affiliation(s)
- Vasken L. Keleshian
- Virginia Commonwealth University, School of Medicine, Richmond, Virginia, United States of America
| | - Matthew Kellom
- School of Earth and Space Exploration, Arizona State University, Phoenix, Arizona, United States of America
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-Gu, Seoul, Korea
| | - Ameer Y. Taha
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Yewon Cheon
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Miki Igarashi
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Jagadeesh S. Rao
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Smith AJ, Kim SH, Duggirala NK, Jin J, Wojtas L, Ehrhart J, Giunta B, Tan J, Zaworotko MJ, Shytle RD. Improving lithium therapeutics by crystal engineering of novel ionic cocrystals. Mol Pharm 2013; 10:4728-38. [PMID: 24191685 PMCID: PMC3850245 DOI: 10.1021/mp400571a] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current United States Food and Drug Administration (FDA)-approved lithium salts are plagued with a narrow therapeutic window. Recent attempts to find alternative drugs have identified new chemical entities, but lithium's polypharmacological mechanisms for treating neuropsychiatric disorders are highly debated and are not yet matched. Thus, re-engineering current lithium solid forms in order to optimize performance represents a low cost and low risk approach to the desired therapeutic outcome. In this contribution, we employed a crystal engineering strategy to synthesize the first ionic cocrystals (ICCs) of lithium salts with organic anions. We are unaware of any previous studies that have assessed the biological efficacy of any ICCs, and encouragingly we found that the new speciation did not negatively affect established bioactivities of lithium. We also observed that lithium ICCs exhibit modulated pharmacokinetics compared to lithium carbonate. Indeed, the studies detailed herein represent an important advancement in a crystal engineering approach to a new generation of lithium therapeutics.
Collapse
Affiliation(s)
- Adam J Smith
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida , Tampa, Florida 33612, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Keleshian VL, Modi HR, Rapoport SI, Rao JS. Aging is associated with altered inflammatory, arachidonic acid cascade, and synaptic markers, influenced by epigenetic modifications, in the human frontal cortex. J Neurochem 2013; 125:63-73. [PMID: 23336521 PMCID: PMC3606672 DOI: 10.1111/jnc.12153] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/12/2023]
Abstract
Aging is a risk factor for Alzheimer's disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, as DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro- and anti-apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle-aged [41 ± 1 (SEM) years] and 10 aged subjects (70 ± 3 years). The aged compared with middle-aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti-apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of brain derived neurotrophic factor (BDNF), cyclic AMP responsive element binding protein (CREB), and synaptophysin and hypomethylation of BCL-2 associated X protein (BAX). These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated.
Collapse
Affiliation(s)
- Vasken L. Keleshian
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Hiren R. Modi
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jagadeesh S. Rao
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Modi HR, Basselin M, Taha AY, Li LO, Coleman RA, Bialer M, Rapoport SI. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: a potential drug for bipolar disorder. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:880-6. [PMID: 23354024 PMCID: PMC3593989 DOI: 10.1016/j.bbalip.2013.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/21/2012] [Accepted: 01/13/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation-reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain long-chain acyl-CoA synthetase (Acsl)4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl4 catalyzed acylation, and thus have a potential anti-BD action. METHODS Rat Acsl4-flag protein was expressed in Escherichia coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis-Menten kinetics. RESULTS Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4mM compared to a published Ki of 25mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect. CONCLUSIONS PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients.
Collapse
Affiliation(s)
- Hiren R Modi
- Brain Physiology and Metabolism Section, National Institute on Aging, Laboratory of Neurosciences, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
McNamara RK, Lotrich FE. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target? Expert Rev Neurother 2013; 12:1143-61. [PMID: 23039393 DOI: 10.1586/ern.12.98] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Converging translational evidence has implicated elevated immune-inflammatory signaling activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar disorder. This is supported in part by cross-sectional evidence for increased levels of proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and prospective longitudinal evidence for the emergence of mood symptoms in response to chronic immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic medications downregulate initial components of the immune-inflammatory signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic mechanisms linked with elevated immune-inflammatory signaling include perturbations in central serotonin neurotransmission and progressive white matter pathology. Both heritable genetic factors and environmental factors including dietary fatty-acid composition may act in concert to sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood disorders, and may therefore represent a new therapeutic target for the development of more effective treatments.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|
28
|
Modi HR, Taha AY, Kim HW, Chang L, Rapoport SI, Cheon Y. Chronic clozapine reduces rat brain arachidonic acid metabolism by reducing plasma arachidonic acid availability. J Neurochem 2013; 124:376-87. [PMID: 23121637 PMCID: PMC3540173 DOI: 10.1111/jnc.12078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 12/23/2022]
Abstract
Chronic administration of mood stabilizers to rats down-regulates the brain arachidonic acid (AA) cascade. This down-regulation may explain their efficacy against bipolar disorder (BD), in which brain AA cascade markers are elevated. The atypical antipsychotics, olanzapine (OLZ) and clozapine (CLZ), also act against BD. When given to rats, both reduce brain cyclooxygenase activity and prostaglandin E(2) concentration; OLZ also reduces rat plasma unesterified and esterified AA concentrations, and AA incorporation and turnover in brain phospholipid. To test whether CLZ produces similar changes, we used our in vivo fatty acid method in rats given 10 mg/kg/day i.p. CLZ, or vehicle, for 30 days; or 1 day after CLZ washout. [1-(14) C]AA was infused intravenously for 5 min, arterial plasma was collected and high-energy microwaved brain was analyzed. CLZ increased incorporation coefficients ki * and decreased [corrected] rates J(in,i) of plasma unesterified AA into brain phospholipids. [corrected]. These effects disappeared after washout. Thus, CLZ and OLZ similarly down-regulated kinetics and cyclooxygenase expression of the brain AA cascade, likely by reducing plasma unesterified AA availability. Atypical antipsychotics and mood stabilizers may be therapeutic in BD by down-regulating, indirectly or directly respectively, the elevated brain AA cascade of that disease.
Collapse
Affiliation(s)
- Hiren R Modi
- Brain Physiology and Metabolism Section, National Institute on Aging, Laboratory of Neurosciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Chou VP, Holman TR, Manning-Bog AB. Differential contribution of lipoxygenase isozymes to nigrostriatal vulnerability. Neuroscience 2012; 228:73-82. [PMID: 23079635 DOI: 10.1016/j.neuroscience.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 02/05/2023]
Abstract
The 5- and 12/15-lipoxygenase (LOX) isozymes have been implicated to contribute to disease development in CNS disorders such as Alzheimer's disease. These LOX isozymes are distinct in function, with differential effects on neuroinflammation, and the impact of the distinct isozymes in the pathogenesis of Parkinson's disease has not as yet been evaluated. To determine whether the isozymes contribute differently to nigrostriatal vulnerability, the effects of 5- and 12/15-LOX deficiency on dopaminergic tone under naïve and toxicant-challenged conditions were tested. In naïve mice deficient in 5-LOX expression, a modest but significant reduction (18.0% reduction vs. wildtype (WT)) in striatal dopamine (DA) was detected (n=6-8 per genotype). A concomitant decline in striatal tyrosine hydroxylase (TH) enzyme was also revealed in null 5-LOX vs. WT mice (26.2%); however, no changes in levels of DA or TH immunoreactivity were observed in null 12/15-LOX vs. WT mice. When challenged with the selective dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), WT mice showed a marked reduction in DA (31.9%) and robust astrocytic and microglial activation as compared to saline-treated animals. In contrast, null 5-LOX littermates demonstrated no significant striatal DA depletion or astrogliosis (as noted by Western blot analyses for glial acidic fibrillary protein (GFAP) immunoreactivity). In naïve null 12/15-LOX mice, no significant change in striatal DA values was observed compared to WT, and following MPTP treatment, the transgenics revealed striatal DA reduction similar to the challenged WT mice. Taken together, these data provide the first evidence that: (i) LOX isozymes are involved in the maintenance of normal dopaminergic function in the striatum and (ii) the 5- and 12/15-LOX isozymes contribute differentially to striatal vulnerability in response to neurotoxicant challenge.
Collapse
Affiliation(s)
- V P Chou
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | | | | |
Collapse
|
30
|
Ramadan E, Basselin M, Chang L, Chen M, Ma K, Rapoport SI. Chronic lithium feeding reduces upregulated brain arachidonic acid metabolism in HIV-1 transgenic rat. J Neuroimmune Pharmacol 2012; 7:701-13. [PMID: 22760927 PMCID: PMC3478068 DOI: 10.1007/s11481-012-9381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023]
Abstract
HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14) C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks. k* and J ( in ) for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J ( in ) in wildtype rats, and blocked increments in k* (19 of 54 regions) and J ( in ) (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaizong Ma
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Reese EA, Cheon Y, Ramadan E, Kim HW, Chang L, Rao JS, Rapoport SI, Taha AY. Gabapentin's minimal action on markers of rat brain arachidonic acid metabolism agrees with its inefficacy against bipolar disorder. Prostaglandins Leukot Essent Fatty Acids 2012; 87:71-7. [PMID: 22841517 PMCID: PMC3431015 DOI: 10.1016/j.plefa.2012.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
In rats, FDA-approved mood stabilizers used for treating bipolar disorder (BD) selectively downregulate brain markers of the arachidonic acid (AA) cascade, which are upregulated in postmortem BD brain. Phase III clinical trials show that the anticonvulsant gabapentin (GBP) is ineffective in treating BD. We hypothesized that GBP would not alter the rat brain AA cascade. Chronic GBP (10 mg/kg body weight, injected i.p. for 30 days) compared to saline vehicle did not significantly alter brain expression or activity of AA-selective cytosolic phospholipase A(2) (cPLA(2)) IVA or secretory (s)PLA(2) IIA, activity of cyclooxygenase-2, or prostaglandin E(2) or thromboxane B(2) concentrations. Plasma esterified and unesterified AA concentration was unaffected. These results, taken with evidence of an upregulated AA cascade in the BD brain and that approved mood stabilizers downregulate the rat brain AA cascade, support the hypothesis that effective anti-BD drugs act by targeting the brain AA cascade whereas ineffective drugs (such as GBP) do not target this pathway, and suggest that the rat model might be used for screening new anti-BD drugs.
Collapse
Affiliation(s)
- Edmund A. Reese
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Yewon Cheon
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Jagadeesh S. Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Ameer Y. Taha
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Ramadan E, Chang L, Chen M, Ma K, Hall FS, Uhl GR, Rapoport SI, Basselin M. Knocking out the dopamine reuptake transporter (DAT) does not change the baseline brain arachidonic acid signal in the mouse. Int J Neurosci 2012; 122:373-80. [PMID: 22376027 PMCID: PMC3464054 DOI: 10.3109/00207454.2012.665972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Dopamine transporter (DAT) homozygous knockout (DAT(-/-)) mice have a 10-fold higher extracellular (DA) concentration in the caudate-putamen and nucleus accumbens than do wildtype (DAT(+/+)) mice, but show reduced presynaptic DA synthesis and fewer postsynaptic D(2) receptors. One aspect of neurotransmission involves DA binding to postsynaptic D(2)-like receptors coupled to cytosolic phospholipase A(2) (cPLA(2)), which releases the second messenger, arachidonic acid (AA), from synaptic membrane phospholipid. We hypothesized that tonic overactivation of D(2)-like receptors in DAT(-/-) mice due to the excess DA would not increase brain AA signaling, because of compensatory downregulation of postsynaptic DA signaling mechanisms. METHODS [1-(14)C]AA was infused intravenously for 3 min in unanesthetized DAT(+/+), heterozygous (DAT(+/-)), and DAT(-/-) mice. AA incorporation coefficients k* and rates J(in), markers of AA metabolism and signaling, were imaged in 83 brain regions using quantitative autoradiography; brain cPLA(2)-IV activity also was measured. RESULTS Neither k* nor J(in) for AA in any brain region, or brain cPLA(2)-IV activity, differed significantly among DAT(-/-), DAT(+/-), and DAT(+/+) mice. CONCLUSIONS These results differ from reported increases in k* and J(in) for AA, and in brain cPLA(2) expression, in serotonin reuptake transporter (5-HTT) knockout mice, and suggest that postsynaptic dopaminergic neurotransmission mechanisms involving AA are downregulated despite elevated DA in DAT(-/-) mice.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kellom M, Basselin M, Keleshian VL, Chen M, Rapoport SI, Rao JS. Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation. BMC Neurosci 2012; 13:50. [PMID: 22621398 PMCID: PMC3464147 DOI: 10.1186/1471-2202-13-50] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/08/2012] [Indexed: 11/16/2022] Open
Abstract
Background Neuroinflammation, caused by six days of intracerebroventricular infusion of bacterial lipopolysaccharide (LPS), stimulates rat brain arachidonic acid (AA) metabolism. The molecular changes associated with increased AA metabolism are not clear. We examined effects of a six-day infusion of a low-dose (0.5 ng/h) and a high-dose (250 ng/h) of LPS on neuroinflammatory, AA cascade, and pre- and post-synaptic markers in rat brain. We used artificial cerebrospinal fluid-infused brains as controls. Results Infusion of low- or high-dose LPS increased brain protein levels of TNFα, and iNOS, without significantly changing GFAP. High-dose LPS infusion upregulated brain protein and mRNA levels of AA cascade markers (cytosolic cPLA2-IVA, secretory sPLA2-V, cyclooxygenase-2 and 5-lipoxygenase), and of transcription factor NF-κB p50 DNA binding activity. Both LPS doses increased cPLA2 and p38 mitogen-activated protein kinase levels, while reducing protein levels of the pre-synaptic marker, synaptophysin. Post-synaptic markers drebrin and PSD95 protein levels were decreased with high- but not low-dose LPS. Conclusions Chronic LPS infusion has differential effects, depending on dose, on inflammatory, AA and synaptic markers in rat brain. Neuroinflammation associated with upregulated brain AA metabolism can lead to synaptic dysfunction.
Collapse
Affiliation(s)
- Matthew Kellom
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bldg. 9, 1S-126, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
34
|
Torrey EF, Davis JM. Adjunct treatments for schizophrenia and bipolar disorder: what to try when you are out of ideas. ACTA ACUST UNITED AC 2012; 5:208-216. [PMID: 22182458 DOI: 10.3371/csrp.5.4.5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pharmacologic treatment of schizophrenia and bipolar disorder leaves much to be desired. Repurposed drugs, which are approved for other medical conditions, represent an underutilized therapeutic resource for patients who have not responded to other drugs. Using experience gained from a decade of repurposed drug studies by the Stanley Medical Research Institute and search of the literature, we have identified nine such drugs for which there is some evidence of efficacy for schizophrenia and/or bipolar disorder. These include: aspirin; celecoxib; estrogen/raloxifene; folate; minocycline; mirtazapine; omega-3 fatty acids; pramipexole; and, pregnenolone. The evidence of efficacy is reviewed for each drug. Because there is little or no financial incentive for pharmaceutical companies to promote such drugs, there is a paucity of definitive trials, and these drugs are less widely known than they deserve to be. Biomarker studies should also be carried out to identify subgroups of patients who do respond to these drugs.
Collapse
Affiliation(s)
- E Fuller Torrey
- The Stanley Medical Research Institute, Chevy Chase, MD 20815, USA.
| | | |
Collapse
|
35
|
Basselin M, Ramadan E, Rapoport SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull 2012; 87:154-71. [PMID: 22178644 PMCID: PMC3274571 DOI: 10.1016/j.brainresbull.2011.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 02/05/2023]
Abstract
The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M(1,3,5), serotonergic 5-HT(2A/2C), dopaminergic D(2)-like (D(2), D(3), D(4)) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Balanzá-Martínez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabarés-Seisdedos R, Kapczinski F. Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother 2011; 11:1029-47. [PMID: 21721919 DOI: 10.1586/ern.11.42] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bipolar disorder (BD) is a severe, chronic affective disorder, associated with significant disability, morbidity and premature mortality. Omega-3 polyunsaturated fatty acids (PUFAs) play several important roles in brain development and functioning. Evidence from animal models of dietary omega-3 (n-3) PUFA deficiency suggest that these fatty acids are relevant to promote brain development and to regulate behavioral and neurochemical aspects related to mood disorders, such as stress responses, depression and aggression, as well as dopaminergic content and function. Preclinical and clinical evidence suggests roles for PUFAs in BD. n-3 PUFAs seem to be an effective adjunctive treatment for unipolar and bipolar depression, but further large-scale, well-controlled trials are needed to examine its clinical utility in BD. The use of n-3 as a mood stabilizer among BD patients is discussed here. This article summarizes the molecular pathways related to the role of n-3 as a neuroprotective and neurogenic agent, with a specific focus on BDNF. It is proposed that the n-3-BDNF association is involved in the pathophysiology of BD and represents a promising target for developing a novel class of rationally devised therapies.
Collapse
Affiliation(s)
- Vicent Balanzá-Martínez
- Section of Psychiatry, Department of Medicine, CIBERSAM University of Valencia Medical School, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tian H, Lu Y, Shah SP, Hong S. Autacoid 14S,21R-dihydroxy-docosahexaenoic acid counteracts diabetic impairment of macrophage prohealing functions. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1780-91. [PMID: 21839062 DOI: 10.1016/j.ajpath.2011.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/04/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Impaired macrophage functions imposed by diabetic complications and the suppressed formation of 14S,21R-dihydroxydocosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA) in wounds contribute significantly to deficient wound healing in diabetics, but how are macrophage functions and 14S,21R-diHDHA formation associated? We studied 14S,21R-diHDHA generation from macrophages using liquid chromatography/mass spectrometry. The role in macrophage-mediated wound healing functions was determined using a murine splinted excisional wound healing model and in vitro assays. 14S,21R-diHDHA acts as a macrophage-generated autacoid, and its attenuated formation in macrophages of diabetic db/db mice was accompanied by impairment of macrophage prohealing functions. 14S,21R-diHDHA restored db/db macrophage-impaired prohealing functions by promoting wound re-epithelialization, formulation of granulation tissue, and vascularization. Additionally, 12/15-lipoxygenase-deficient macrophages, which are unable to produce 14S,21R-diHDHA, exhibited impaired prohealing functions, which also were restored by 14S,21R-diHDHA treatment. The molecular mechanism for 14S,21R-diHDHA-induced recovery of impaired prohealing functions of db/db macrophages involves enhancing their secretion of vascular endothelial growth factor and platelet-derived growth factor BB, decreasing hyperglycemia-induced generation of reactive oxygen species, and increasing IL-10 expression under inflammatory stimulation. Taken together, these results indicate that deficiency of 14S,21R-diHDHA formation by diabetic macrophages contributes to their impaired prohealing functions. Our findings provide mechanistic insights into wound healing in diabetics and suggest the possibility of using autologous macrophages/monocytes, treated with 14S,21R-diHDHA, or related compounds, to promote diabetes-impaired wound healing.
Collapse
Affiliation(s)
- Haibin Tian
- Center of Neuroscience Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
38
|
Le-Niculescu H, Case NJ, Hulvershorn L, Patel SD, Bowker D, Gupta J, Bell R, Edenberg HJ, Tsuang MT, Kuczenski R, Geyer MA, Rodd ZA, Niculescu AB. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism. Transl Psychiatry 2011; 1:e4. [PMID: 22832392 PMCID: PMC3309466 DOI: 10.1038/tp.2011.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/24/2011] [Indexed: 12/28/2022] Open
Abstract
Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N J Case
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - D Bowker
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Gupta
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M T Tsuang
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - R Kuczenski
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - M A Geyer
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
39
|
Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci 2011; 32:420-34. [PMID: 21492946 DOI: 10.1016/j.tips.2011.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Although lithium has largely met its initial promise as the first drug discovered in the modern era of psychopharmacology, to date no definitive mechanism for its effects has been established. It has been proposed that lithium exerts its therapeutic effects by interfering with signal transduction through G-protein-coupled receptor (GPCR) pathways or direct inhibition of specific targets in signaling systems, including inositol monophosphatase and glycogen synthase kinase-3 (GSK-3). Recently, increasing evidence has suggested that N-methyl-D-aspartate receptor (NMDAR)/nitric oxide (NO) signaling could mediate some lithium-induced responses in the brain and peripheral tissues. However, the probable role of the NMDAR/NO system in the action of lithium has not been fully elucidated. In this review, we discuss biochemical, preclinical/behavioral and physiological evidence that implicates NMDAR/NO signaling in the therapeutic effect of lithium. NMDAR/NO signaling could also explain some of side effects of lithium.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
40
|
Basselin M, Ramadan E, Chen M, Rapoport SI. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites. Neurochem Res 2011; 36:139-45. [PMID: 20981485 PMCID: PMC3011042 DOI: 10.1007/s11064-010-0282-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2010] [Indexed: 12/22/2022]
Abstract
Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
41
|
Shimshoni JA, Basselin M, Li LO, Coleman RA, Rapoport SI, Modi HR. Valproate uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: relevance to valproate's efficacy against bipolar disorder. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:163-9. [PMID: 21184843 DOI: 10.1016/j.bbalip.2010.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/10/2010] [Accepted: 12/15/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND The ability of chronic valproate (VPA) to reduce arachidonic acid (AA) turnover in brain phospholipids of unanesthetized rats has been ascribed to its inhibition of acyl-CoA synthetase (Acsl)-mediated activation of AA to AA-CoA. Our aim was to identify a rat Acsl isoenzyme that could be inhibited by VPA in vitro. METHODS Rat Acsl3-, Acsl6v1- and Acsl6v2-, and Acsl4-flag proteins were expressed in E. coli, and the ability of VPA to inhibit their activation of long-chain fatty acids to acyl-CoA was estimated using Michaelis-Menten kinetics. RESULTS VPA uncompetitively inhibited Acsl4-mediated conversion of AA and of docosahexaenoic (DHA) but not of palmitic acid to acyl-CoA, but did not affect AA conversion by Acsl3, Acsl6v1 or Acsl6v2. Acsl4-mediated conversion of AA to AA-CoA showed substrate inhibition and had a 10-times higher catalytic efficiency than did conversion of DHA to DHA-CoA. Butyrate, octanoate, or lithium did not inhibit AA activation by Acsl4. CONCLUSIONS VPA's ability to inhibit Acsl4 activation of AA and of DHA to their respective acyl-CoAs, when related to the higher catalytic efficiency of AA than DHA conversion, may account for VPA's selective reduction of AA turnover in rat brain phospholipids, and contribute to VPA's efficacy against bipolar disorder.
Collapse
Affiliation(s)
- Jakob A Shimshoni
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
42
|
Tian H, Lu Y, Shah SP, Hong S. 14S,21R-dihydroxydocosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds. J Biol Chem 2010; 286:4443-53. [PMID: 21112969 DOI: 10.1074/jbc.m110.100388] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of diabetes-impaired wound healing remains a major unresolved medical challenge. Here, we identified suppressed formation of a novel reparative lipid mediator 14S,21R-dihydroxydocosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA) in cutaneous wounds of diabetic db/db mice. These results indicate that diabetes impedes the biosynthetic pathways of 14S,21R-diHDHA in skin wounds. Administration of exogenous 14S,21R-diHDHA to wounds in diabetic animals rescued healing and angiogenesis. When db/db mesenchymal stem cells (MSCs) were administered together with 14S,21R-diHDHA to wounds in diabetic animals, they coacted to accelerate wound re-epithelialization, granulation tissue formation, and synergistically improved vascularization. In the pivotal cellular processes of angiogenesis, 14S,21R-diHDHA enhanced VEGF release, vasculature formation, and migration of db/db dermal microvascular endothelial cells (DMVECs), as well as remedied paracrine angiogenic functions of db/db MSCs, including VEGF secretion and the promotion of DMVEC migration and vasculature formation. Our results show that 14S,21R-diHDHA activates the p38 MAPK pathway in wounds, db/db MSCs, and DMVECs. Overall, the impeded formation of 14S,21R-diHDHA described in this study suggests that diabetes could affect the generation of pro-healing lipid mediators in wound healing. By restoring wound healing and MSC functions, 14S,21R-diHDHA is a new lead for the development of better therapeutics used in treating wounds of diabetics.
Collapse
Affiliation(s)
- Haibin Tian
- Center of Neuroscience Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
43
|
Kim HW, Rao JS, Rapoport SI, Igarashi M. Dietary n-6 PUFA deprivation downregulates arachidonate but upregulates docosahexaenoate metabolizing enzymes in rat brain. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:111-7. [PMID: 21070866 DOI: 10.1016/j.bbalip.2010.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dietary n-3 polyunsaturated fatty acid (PUFA) deprivation increases expression of arachidonic acid (AA 20:4n-6)-selective cytosolic phospholipase A(2) (cPLA(2)) IVA and cyclooxygenase (COX)-2 in rat brain, while decreasing expression of docosahexaenoic acid (DHA 22:6n-3)-selective calcium-independent iPLA(2) VIA. Assuming that these enzyme changes represent brain homeostatic responses to deprivation, we hypothesized that dietary n-6 PUFA deprivation would produce changes in the opposite directions. METHODS Brain expression of PUFA-metabolizing enzymes and their transcription factors was quantified in male rats fed an n-6 PUFA adequate or deficient diet for 15weeks post-weaning. RESULTS The deficient compared with adequate diet increased brain mRNA, protein and activity of iPLA(2) VIA and 15-lipoxygenase (LOX), but decreased cPLA(2) IVA and COX-2 expression. The brain protein level of the iPLA(2) transcription factor SREBP-1 was elevated, while protein levels were decreased for AP-2α and NF-κB p65, cPLA(2) and COX-2 transcription factors, respectively. CONCLUSIONS With dietary n-6 PUFA deprivation, rat brain PUFA metabolizing enzymes and some of their transcription factors change in a way that would homeostatically dampen reductions in brain n-6 PUFA concentrations and metabolism, while n-3 PUFA metabolizing enzyme expression is increased. The changes correspond to reported in vitro enzyme selectivities for AA compared with DHA.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
44
|
Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. ACTA ACUST UNITED AC 2009; 61:185-209. [PMID: 19555719 DOI: 10.1016/j.brainresrev.2009.06.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Bipolar disorder (BD) is a major medical and social burden, whose cause, pathophysiology and treatment are not agreed on. It is characterized by recurrent periods of mania and depression (Bipolar I) or of hypomania and depression (Bipolar II). Its inheritance is polygenic, with evidence of a neurotransmission imbalance and disease progression. Patients often take multiple agents concurrently, with incomplete therapeutic success, particularly with regard to depression. Suicide is common. Of the hypotheses regarding the action of mood stabilizers in BD, the "arachidonic acid (AA) cascade" hypothesis is presented in detail in this review. It is based on evidence that chronic administration of lithium, carbamazepine, sodium valproate, or lamotrigine to rats downregulated AA turnover in brain phospholipids, formation of prostaglandin E(2), and/or expression of AA cascade enzymes, including cytosolic phospholipase A(2), cyclooxygenase-2 and/or acyl-CoA synthetase. The changes were selective for AA, since brain docosahexaenoic or palmitic acid metabolism, when measured, was unaffected, and topiramate, ineffective in BD, did not modify the rat brain AA cascade. Downregulation of the cascade by the mood stabilizers corresponded to inhibition of AA neurotransmission via dopaminergic D(2)-like and glutamatergic NMDA receptors. Unlike the mood stabilizers, antidepressants that increase switching of bipolar depression to mania upregulated the rat brain AA cascade. These observations suggest that the brain AA cascade is a common target of mood stabilizers, and that bipolar symptoms, particularly mania, are associated with an upregulated cascade and excess AA signaling via D(2)-like and NMDA receptors. This review presents ways to test these suggestions.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|