1
|
Nuinoon M, Saiphak W, Nawaka N, Rattanawan C, Pussadhamma B, Jeenduang N. Association of CELSR2, APOB100, ABCG5/8, LDLR, and APOE polymorphisms and their genetic risks with lipids among the Thai subjects. Saudi J Biol Sci 2023; 30:103554. [PMID: 36619676 PMCID: PMC9812717 DOI: 10.1016/j.sjbs.2022.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
Background Hypercholesterolemia is a common cardiovascular risk factor. The aim of this study was to investigate the association of CELSR2 (rs629301), APOB100 (rs1367117), ABCG5/8 (rs6544713), LDLR (rs6511720), and APOE (rs429358, rs7412) polymorphisms, and their genetic risk scores with lipids among Thai subjects. Methods A total of 459 study subjects (184 males, and 275 females) were enrolled. Blood pressure, serum lipids, and fasting blood sugar were measured. CELSR2 (rs629301), APOB100 (rs1367117), ABCG5/8 (rs6544713), and LDLR (rs6511720) polymorphisms were analyzed using PCR-HRM. APOE (rs429358, rs7412) polymorphism was analyzed using PCR-RFLP. Results Total cholesterol (TC) levels were significantly higher in APOB100 AA genotype compared with GG, or AA + AG genotypes in total subjects. In addition, significantly higher concentrations of TC and low density lipoprotein cholesterol (LDL-C) were observed in APOE4 carriers compared to APOE2 carriers in total subjects, males, and females. The significantly higher concentrations of TC were observed in APOE4 carriers compared to APOE3 carriers in females. Moreover, the concentrations of TC, and LDL-C were significantly increased with genetic risk scores of APOB100, and APOE polymorphisms in total subjects, and females. There was no association between CELSR2 (rs629301), ABCG5/8 (rs6544713), and LDLR (rs6511720) polymorphisms and serum lipids. Conclusion APOB100 (rs1367117), and APOE (rs429358, rs7412) but not CELSR2 (rs629301), ABCG5/8 (rs6544713), and LDLR (rs6511720) polymorphisms were associated with serum lipids. The cumulative risk alleles of APOB100 (rs1367117), and APOE (rs429358, rs7412) polymorphisms could enhance the elevated concentrations of TC, and LDL-C, and they may be used to predict severity of hypercholesterolemia among Thai subjects.
Collapse
Affiliation(s)
- Manit Nuinoon
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wutthichai Saiphak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nantiya Nawaka
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chutima Rattanawan
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Burabha Pussadhamma
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand
| | - Nutjaree Jeenduang
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Food Technology and Innovation Research Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand,Corresponding author at: School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
2
|
Saki S, Saki N, Poustchi H, Malekzadeh R. Assessment of Genetic Aspects of Non-alcoholic Fatty Liver and Premature Cardiovascular Events. Middle East J Dig Dis 2020; 12:65-88. [PMID: 32626560 PMCID: PMC7320986 DOI: 10.34172/mejdd.2020.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has demonstrated a strong interplay and multifaceted relationship between non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). CVD is the major cause of death in patients with NAFLD. NAFLD also has strong associations with diabetes and metabolic syndrome. In this comprehensive review, we aimed to overview the primary environmental and genetic risk factors of NAFLD, and CVD and also focus on the genetic aspects of these two disorders. NAFLD and CVD are both heterogeneous diseases with common genetic and molecular pathways. We have searched for the latest published articles regarding this matter and tried to provide an overview of recent insights into the genetic aspects of NAFLD and CVD. The common genetic and molecular pathways involved in NAFLD and CVD are insulin resistance (IR), subclinical inflammation, oxidative stress, and atherogenic dyslipidemia. According to an investigation, the exact associations between genomic characteristics of NAFLD and CVD and casual relationships are not fully determined. Different gene polymorphisms have been identified as the genetic components of the NAFLDCVD association. Some of the most documented ones of these gene polymorphisms are patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), adiponectin-encoding gene (ADIPOQ), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), leptin receptor (LEPR), sterol regulatory element-binding proteins (SREBP), tumor necrosis factor-alpha (TNF-α), microsomal triglyceride transfer protein (MTTP), manganese superoxide dismutase (MnSOD), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), and mutation in DYRK1B that substitutes cysteine for arginine at position 102 in kinase-like domain. Further cohort studies with a significant sample size using advanced genomic assessments and next-generation sequencing techniques are needed to shed more light on genetic associations between NAFLD and CVD.
Collapse
Affiliation(s)
- Sara Saki
- Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Saki
- Hoveizeh Cohort Study, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang GM, Wang MY, Liu YN, Zhu Y, Wan FN, Wei QY, Ye DW. Functional variants in the low-density lipoprotein receptor gene are associated with clear cell renal cell carcinoma susceptibility. Carcinogenesis 2017; 38:1241-1248. [PMID: 29029037 DOI: 10.1093/carcin/bgx098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies indicate that abnormal levels of low-density lipoprotein (LDL), which is an important component of dyslipidaemia, are associated with alterations to cancer risk, including that of renal cell carcinoma (RCC). Single nucleotide polymorphisms at microRNA-binding sites contribute to cancer susceptibility and progression by affecting the messenger RNA (mRNA) function of target genes. In this case-control study, we examined the frequency of six potentially functional single nucleotide polymorphisms in the LDL receptor gene (LDLR) in 1004 clear cell RCC (ccRCC) patients and 1065 cancer-free subjects. Logistic regression analyses estimated odds ratios (ORs) and 95% confidence intervals (CIs). The association between genetic variants and levels of LDLR mRNA and protein was also evaluated. Compared with the CC genotype, multivariate logistic regression analysis showed that the LDLR rs2738464 variant GG genotype was associated with a significantly decreased ccRCC risk (P = 0.002, OR: 0.605, 95% CI: 0.439-0.833). Further functional experiments showed that the rs2738464 variant G allele affected miR-330 regulation of the LDLR 3'-untranslated region (UTR), increasing LDLR mRNA levels in patient kidney tissues. These findings suggest that LDLR rs2738464 may affect the affinity of miR-330 binding to the LDLR 3'-UTR, thus regulating LDLR expression and contributing to ccRCC risk.
Collapse
Affiliation(s)
- Gui-Ming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, China.,Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| | - Meng-Yun Wang
- Department of Oncology, Shanghai Medical College, Fudan University, China.,Cancer Institute, Fudan University Shanghai Cancer Center, China
| | - Ya-Nan Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| | - Fang-Ning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| | - Qing-Yi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, China.,Duke Cancer Institute, Duke University Medical Center, USA
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, China.,Department of Oncology, Shanghai Medical College, Fudan University, China
| |
Collapse
|
4
|
ArulJothi KN, Suruthi Abirami B, Devi A. Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population. Clin Chim Acta 2017; 478:28-36. [PMID: 29269200 DOI: 10.1016/j.cca.2017.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. OBJECTIVE This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. METHODS Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. RESULTS This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. CONCLUSION This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports.
Collapse
Affiliation(s)
- K N ArulJothi
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India
| | - B Suruthi Abirami
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India
| | - Arikketh Devi
- Cardiovascular Genetics Group, Department of Genetic Genetic Engineering, SRM University, India.
| |
Collapse
|
5
|
Abudesimu A, Adi D, Siti D, Xie X, Yang YN, Li XM, Wang YH, Wang YT, Meng YJ, Liu F, Chen BD, Ma X, Fu ZY, Ma YT. Association of genetic variations in the lipid regulatory pathway genes FBXW7 and SREBPs with coronary artery disease among Han Chinese and Uygur Chinese populations in Xinjiang, China. Oncotarget 2017; 8:88199-88210. [PMID: 29152152 PMCID: PMC5675704 DOI: 10.18632/oncotarget.21082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Background Hyperlipidemia is a major risk factor for coronary artery disease (CAD). The current study was designed to explore the possible correlation between single nucleotide polymorphisms (SNPs) in the lipid homeostasis regulatory genes F-box and WD repeat domain-containing 7 (FBXW7) and sterol regulatory element-binding proteins (SREBPs) with CAD among Han Chinese and Uygur Chinese populations in Xinjiang, China. Results In the Uygur Chinese population, rs9902941 in SREBP-1 and rs10033601 in FBXW7 were found to be associated with CAD in a recessive model (TT vs. CT + CC, P = 0.032; GG vs. AG + AA, P = 0.010, respectively), and rs7288536 in SREBP-2 was found to be associated with CAD in an additive model (CT vs. CC + TT, P = 0.045). The difference was statistically significant in the Uygur Chinese population after multivariate adjustments [Odds ratio (OR) = 1.803, 95% confidence interval (CI): 1.036~3.137, P = 0.037; OR = 1.628, 95% CI: 1.080~2.454, P = 0.020; OR = 1.368; and 95% CI: 1.018~1.837, P = 0.037, respectively]. There were also significant interactions between the above-mentioned models in the Uygur Chinese population. However, these relationships were not observed before or after multivariate adjustment in the Han Chinese population. Materials and Methods A total of 1,312 Han Chinese (650 CAD patients and 662 controls) and 834 Uygur Chinese (414 CAD patients and 420 controls) were enrolled in this case-control study. Three SNPs (rs9902941 in SREBP-1, rs7288536 in SREBP-2 and rs10033601 in FBXW7) were selected and genotyped using the improved multiplex ligase detection reaction (iMLDR) method. Conclusions The results of this study indicate that variations in the lipid regulatory pathway genes FBXW7 and SREBPs (rs9902941 in SREBP-1, rs7288536 in SREBP-2 and rs10033601 in FBXW7) are associated with CAD in the Uygur Chinese population in Xinjiang, China.
Collapse
Affiliation(s)
- Asiya Abudesimu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Dilixiati Siti
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Ying-Hong Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Ya-Jie Meng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| |
Collapse
|
6
|
Li XL, Sui JQ, Lu LL, Zhang NN, Xu X, Dong QY, Xin YN, Xuan SY. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids Health Dis 2016; 15:53. [PMID: 26965314 PMCID: PMC4785616 DOI: 10.1186/s12944-016-0221-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease which represents a wide spectrum of hepatic damage. Several studies have reported that NAFLD is a strong independent risk factor for coronary artery disease (CAD). And patients with NAFLD are at higher risk and suggested undergoperiodic cardiovascular risk assessment. Cardiovascular disease (CVD) is responsible for the main cause of death in patients with NAFLD, and is mostly influenced by genetic factors. Both NAFLD and CAD are heterogeneous disease. Common pathways involved in the pathogenesis of NAFLD and CAD includes insulin resistance (IR), atherogenic dyslipidemia, subclinical inflammation, oxidative stress, etc. Genomic characteristics of these two diseases have been widely studied, further research about the association of these two diseases draws attention. The gene polymorphisms of adiponectin-encoding gene (ADIPOQ), leptin receptor (LEPR), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), sterol regulatory elementbinding proteins (SREBP), transmembrane 6 superfamily member 2 (TM6SF2), microsomal triglyceride transfer protein (MTTP), tumor necrosis factors-alpha (TNF-α) and manganese superoxide dismutase (MnSOD) have been reported to be related to NAFLD and CAD. In this review, we aimed to provide an overview of recent insights into the genetic basis of NAFLD and CAD.
Collapse
Affiliation(s)
- Xiao-Lin Li
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Jian-Qing Sui
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Lin-Lin Lu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.,Central Laboratories, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Nan-Nan Zhang
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Xin Xu
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Quan-Yong Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Yong-Ning Xin
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| | - Shi-Ying Xuan
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
7
|
Kim JH, Cheong HS, Kim LH, Shin HJ, Na HS, Chung MW, Shin HD. Direct sequencing for comprehensive screening of LDLR genetic polymorphisms among five ethnic populations. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0244-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet 2014; 30:453-63. [DOI: 10.1016/j.tig.2014.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
9
|
Cymbron T, Mendes P, Ramos A, Raposo M, Kazachkova N, Medeiros AM, Bruges-Armas J, Bourbon M, Lima M. Familial hypercholesterolemia: Molecular characterization of possible cases from the Azores Islands (Portugal). Meta Gene 2014; 2:638-45. [PMID: 25606447 PMCID: PMC4287853 DOI: 10.1016/j.mgene.2014.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/30/2014] [Accepted: 08/15/2014] [Indexed: 01/17/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disorder of the cholesterol metabolism, which constitutes a risk factor for coronary arterial disease (CAD). In the Azores Islands (Portugal), where mortality from CAD doubles its rate comparatively to the rest of the country and where a high frequency of dyslipidemia has been reported, the prevalence and distribution of FH remain unknown. The molecular characterization of a group of 33 possible cases of FH of Azorean background was undertaken in this study. A DNA array was initially used to search mutations in the LDLR, APOB and PCSK9 loci in 10 unrelated possible cases of FH. No mutations were detected in the array; after sequencing the full LDLR gene, 18 variants were identified, corresponding to two missense (c.806G > A; c.1171G > A) and sixteen synonymous alterations. Six of the synonymous variants which are consistently described in the literature as associated with altered cholesterol levels were used to build haplotypes. The most frequent haplotype corresponded to TTCGCC (45%), a “risk” haplotype, formed exclusively by alleles that were reported to increase cholesterol levels. Some of the variants detected in the full sequencing of the LDLR gene fell within the ligand-binding domain of this gene, defined by exons 2 to 6. To add information as to the role of such variants, these exons were sequenced in the remaining 23 possible FH cases. Two missense alterations (c.185C > T; c.806G > A) were found in this subset of possible FH cases. The missense alteration c.185C > T, identified in one individual, is novel for the Portuguese population. In silico analysis was not conclusive for this alteration, whose role will have to be further investigated. This study represents the first approach to the establishment of the mutational profile of FH in the Azores Islands.
Collapse
Affiliation(s)
- Teresa Cymbron
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal ; Institute for Molecular and Cell Biology (IBMC), University of Porto, 4150-180 Porto, Portugal
| | - Patrícia Mendes
- The Azores School of New Technologies (ENTA), 9504-540 Ponta Delgada, Azores, Portugal
| | - Amanda Ramos
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal ; Institute for Molecular and Cell Biology (IBMC), University of Porto, 4150-180 Porto, Portugal
| | - Mafalda Raposo
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal ; Institute for Molecular and Cell Biology (IBMC), University of Porto, 4150-180 Porto, Portugal
| | - Nadiya Kazachkova
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal ; Institute for Molecular and Cell Biology (IBMC), University of Porto, 4150-180 Porto, Portugal
| | - Ana Margarida Medeiros
- Grupo de Investigação Cardiovascular, Unidade I&D, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-040 Lisboa, Portugal ; Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Jácome Bruges-Armas
- Institute for Molecular and Cell Biology (IBMC), University of Porto, 4150-180 Porto, Portugal ; Specialized Service of Epidemiology and Molecular Biology (SEEBMO), Hospital of Santo Espírito, 9700-049 Angra do Heroísmo, Azores, Portugal
| | - Mafalda Bourbon
- Grupo de Investigação Cardiovascular, Unidade I&D, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-040 Lisboa, Portugal ; Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Manuela Lima
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal ; Institute for Molecular and Cell Biology (IBMC), University of Porto, 4150-180 Porto, Portugal
| |
Collapse
|
10
|
Woo JG, Morrison JA, Stroop DM, Aronson Friedman L, Martin LJ. Genetic architecture of lipid traits changes over time and differs by race: Princeton Lipid Follow-up Study. J Lipid Res 2014; 55:1515-24. [PMID: 24859784 DOI: 10.1194/jlr.m049932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia is a major risk factor for CVD. Previous studies on lipid heritability have largely focused on white populations assessed after the obesity epidemic. Given secular trends and racial differences in lipid levels, this study explored whether lipid heritability is consistent across time and between races. African American and white nuclear families had fasting lipids measured in the 1970s and 22-30 years later. Heritability was estimated, and bivariate analyses between visits were conducted by race using variance components analysis. A total of 1,454 individuals (age 14.1/40.6 for offspring/parents at baseline; 39.6/66.5 at follow-up) in 373 families (286 white, 87 African American) were included. Lipid trait heritabilities were typically stronger during the 1970s than the 2000s. At baseline, additive genetic variation for LDL was significantly lower in African Americans than whites (P = 0.015). Shared genetic contribution to lipid variability over time was significant in both whites (all P < 0.0001) and African Americans (P ≤ 0.05 for total, LDL, and HDL cholesterol). African American families demonstrated shared environmental contributions to lipid variation over time (all P ≤ 0.05). Lower heritability, lower LDL genetic variance, and durable environmental effects across the obesity epidemic in African American families suggest race-specific approaches are needed to clarify the genetic etiology of lipids.
Collapse
Affiliation(s)
- Jessica G Woo
- Divisions of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - John A Morrison
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Davis M Stroop
- Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Lisa J Martin
- Divisions of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
11
|
Gene-based sequencing identifies lipid-influencing variants with ethnicity-specific effects in African Americans. PLoS Genet 2014; 10:e1004190. [PMID: 24603370 PMCID: PMC3945436 DOI: 10.1371/journal.pgen.1004190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/07/2014] [Indexed: 01/11/2023] Open
Abstract
Although a considerable proportion of serum lipids loci identified in European ancestry individuals (EA) replicate in African Americans (AA), interethnic differences in the distribution of serum lipids suggest that some genetic determinants differ by ethnicity. We conducted a comprehensive evaluation of five lipid candidate genes to identify variants with ethnicity-specific effects. We sequenced ABCA1, LCAT, LPL, PON1, and SERPINE1 in 48 AA individuals with extreme serum lipid concentrations (high HDLC/low TG or low HDLC/high TG). Identified variants were genotyped in the full population-based sample of AA (n = 1694) and tested for an association with serum lipids. rs328 (LPL) and correlated variants were associated with higher HDLC and lower TG. Interestingly, a stronger effect was observed on a "European" vs. "African" genetic background at this locus. To investigate this effect, we evaluated the region among West Africans (WA). For TG, the effect size among WA was the same in AA with only African local ancestry (2-3% lower TG), while the larger association among AA with local European ancestry matched previous reports in EA (10%). For HDLC, there was no association with rs328 in AA with only African local ancestry or in WA, while the association among AA with European local ancestry was much greater than what has been observed for EA (15 vs. ∼ 5 mg/dl), suggesting an interaction with an environmental or genetic factor that differs by ethnicity. Beyond this ancestry effect, the importance of African ancestry-focused, sequence-based work was also highlighted by serum lipid associations of variants that were in higher frequency (or present only) among those of African ancestry. By beginning our study with the sequence variation present in AA individuals, investigating local ancestry effects, and seeking replication in WA, we were able to comprehensively evaluate the role of a set of candidate genes in serum lipids in AA.
Collapse
|
12
|
Bradley DT, Hughes AE, Badger SA, Jones GT, Harrison SC, Wright BJ, Bumpstead S, Baas AF, Grétarsdóttir S, Burnand K, Child AH, Clough RE, Cockerill G, Hafez H, Scott DJA, Ariëns RA, Johnson A, Sohrabi S, Smith A, Thompson MM, van Bockxmeer FM, Waltham M, Matthíasson SE, Thorleifsson G, Thorsteinsdottir U, Blankensteijn JD, Teijink JA, Wijmenga C, de Graaf J, Kiemeney LA, Wild JB, Edkins S, Gwilliam R, Hunt SE, Potter S, Lindholt JS, Golledge J, Norman PE, van Rij A, Powell JT, Eriksson P, Stefánsson K, Thompson JR, Humphries SE, Sayers RD, Deloukas P, Samani NJ, Bown MJ. A Variant in
LDLR
Is Associated With Abdominal Aortic Aneurysm. ACTA ACUST UNITED AC 2013; 6:498-504. [DOI: 10.1161/circgenetics.113.000165] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Abdominal aortic aneurysm (AAA) is a common cardiovascular disease among older people and demonstrates significant heritability. In contrast to similar complex diseases, relatively few genetic associations with AAA have been confirmed. We reanalyzed our genome-wide study and carried through to replication suggestive discovery associations at a lower level of significance.
Methods and Results—
A genome-wide association study was conducted using 1830 cases from the United Kingdom, New Zealand, and Australia with infrarenal aorta diameter ≥30 mm or ruptured AAA and 5435 unscreened controls from the 1958 Birth Cohort and National Blood Service cohort from the Wellcome Trust Case Control Consortium. Eight suggestive associations with
P
<1×10
−4
were carried through to in silico replication in 1292 AAA cases and 30 503 controls. One single-nucleotide polymorphism associated with
P
<0.05 after Bonferroni correction in the in silico study underwent further replication (706 AAA cases and 1063 controls from the United Kingdom, 507 AAA cases and 199 controls from Denmark, and 885 AAA cases and 1000 controls from New Zealand). Low-density lipoprotein receptor (
LDLR
) rs6511720 A was significantly associated overall and in 3 of 5 individual replication studies. The full study showed an association that reached genome-wide significance (odds ratio, 0.76; 95% confidence interval, 0.70–0.83;
P
=2.08×10
−10
).
Conclusions—
LDLR rs6511720 is associated with AAA. This finding is consistent with established effects of this variant on coronary artery disease. Shared causal pathways with other cardiovascular diseases may present novel opportunities for preventative and therapeutic strategies for AAA.
Collapse
|
13
|
Al-Bustan SA, Al-Serri AE, Annice BG, Alnaqeeb MA, Ebrahim GA. Re-sequencing of the APOAI promoter region and the genetic association of the -75G > A polymorphism with increased cholesterol and low density lipoprotein levels among a sample of the Kuwaiti population. BMC MEDICAL GENETICS 2013; 14:90. [PMID: 24028463 PMCID: PMC3847302 DOI: 10.1186/1471-2350-14-90] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/10/2013] [Indexed: 11/11/2022]
Abstract
Background APOAI, a member of the APOAI/CIII/IV/V gene cluster on chromosome 11q23-24, encodes a major protein component of HDL that has been associated with serum lipid levels. The aim of this study was to determine the genetic association of polymorphisms in the APOAI promoter region with plasma lipid levels in a cohort of healthy Kuwaiti volunteers. Methods A 435 bp region of the APOAI promoter was analyzed by re-sequencing in 549 Kuwaiti samples. DNA was extracted from blood taken from 549 healthy Kuwaiti volunteers who had fasted for the previous 12 h. Univariate and multivariate analysis was used to determine allele association with serum lipid levels. Results The target sequence included a partial segment of the promoter region, 5’UTR and exon 1 located between nucleotides −141 to +294 upstream of the APOAI gene on chromosome 11. No novel single nucleotide polymorphisms (SNPs) were observed. The sequences obtained were deposited with the NCBI GenBank with accession number [GenBank: JX438706]. The allelic frequencies for the three SNPs were as follows: APOAI rs670G = 0.807; rs5069C = 0.964; rs1799837G = 0.997 and found to be in HWE. A significant association (p < 0.05) was observed for the APOAI rs670 polymorphism with increased serum LDL-C. Multivariate analysis showed that APOAI rs670 was an independent predictive factor when controlling for age, sex and BMI for both LDL-C (OR: 1.66, p = 0.014) and TC (OR: 1.77, p = 0.006) levels. Conclusion This study is the first to report sequence analysis of the APOAI promoter in an Arab population. The unexpected positive association found between the APOAI rs670 polymorphism and increased levels of LDL-C and TC may be due to linkage disequilibrium with other polymorphisms in candidate and neighboring genes known to be associated with lipid metabolism and transport.
Collapse
Affiliation(s)
- Suzanne A Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, PO Box 5069, Safat 13060, Kuwait.
| | | | | | | | | |
Collapse
|
14
|
Taylor KC, Carty CL, Dumitrescu L, Bůžková P, Cole SA, Hindorff L, Schumacher FR, Wilkens LR, Shohet RV, Quibrera PM, Johnson KC, Henderson BE, Haessler J, Franceschini N, Eaton CB, Duggan DJ, Cochran B, Cheng I, Carlson CS, Brown-Gentry K, Anderson G, Ambite JL, Haiman C, Le Marchand L, Kooperberg C, Crawford DC, Buyske S, North KE, Fornage M. Investigation of gene-by-sex interactions for lipid traits in diverse populations from the population architecture using genomics and epidemiology study. BMC Genet 2013; 14:33. [PMID: 23634756 PMCID: PMC3669109 DOI: 10.1186/1471-2156-14-33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 04/17/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels are influenced by both genes and the environment. Genome-wide association studies (GWAS) have identified ~100 common genetic variants associated with HDL-C, LDL-C, and/or TG levels, mostly in populations of European descent, but little is known about the modifiers of these associations. Here, we investigated whether GWAS-identified SNPs for lipid traits exhibited heterogeneity by sex in the Population Architecture using Genomics and Epidemiology (PAGE) study. RESULTS A sex-stratified meta-analysis was performed for 49 GWAS-identified SNPs for fasting HDL-C, LDL-C, and ln(TG) levels among adults self-identified as European American (25,013). Heterogeneity by sex was established when phet < 0.001. There was evidence for heterogeneity by sex for two SNPs for ln(TG) in the APOA1/C3/A4/A5/BUD13 gene cluster: rs28927680 (p(het) = 7.4 x 10(-7)) and rs3135506 (p(het) = 4.3 x 10(-4)one SNP in PLTP for HDL levels (rs7679; p(het) = 9.9 x 10(-4)), and one in HMGCR for LDL levels (rs12654264; p(het) = 3.1 x 10(-5)). We replicated heterogeneity by sex in five of seventeen loci previously reported by genome-wide studies (binomial p = 0.0009). We also present results for other racial/ethnic groups in the supplementary materials, to provide a resource for future meta-analyses. CONCLUSIONS We provide further evidence for sex-specific effects of SNPs in the APOA1/C3/A4/A5/BUD13 gene cluster, PLTP, and HMGCR on fasting triglyceride levels in European Americans from the PAGE study. Our findings emphasize the need for considering context-specific effects when interpreting genetic associations emerging from GWAS, and also highlight the difficulties in replicating interaction effects across studies and across racial/ethnic groups.
Collapse
Affiliation(s)
- Kira C Taylor
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Musso G, Cassader M, Bo S, De Michieli F, Gambino R. Sterol regulatory element-binding factor 2 (SREBF-2) predicts 7-year NAFLD incidence and severity of liver disease and lipoprotein and glucose dysmetabolism. Diabetes 2013; 62:1109-20. [PMID: 23274901 PMCID: PMC3609558 DOI: 10.2337/db12-0858] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We prospectively assessed the impact of a sterol regulatory element-binding factor-2 (SREBF-2) polymorphism on the risk of developing nonalcoholic fatty liver disease (NAFLD) and on liver histology and lipoprotein and glucose metabolism in biopsy-proven NAFLD. In a population-based study, we followed 175 nonobese, nondiabetic participants without NAFLD or metabolic syndrome at baseline, characterized for the SREBF-2 rs133291 C/T polymorphism, dietary habits, physical activity, adipokines, C-reactive protein (CRP), and endothelial adhesion molecules. A comparable cohort of NAFLD patients underwent liver biopsy, an oral glucose tolerance test with minimal model analysis to yield glucose homeostasis parameters, and an oral fat tolerance test with measurement of plasma lipoproteins, adipokines, and cytokeratin-18 fragments. After 7 years, 27% of subjects developed NAFLD and 5% developed diabetes. SREBF-2 predicted incident NAFLD and diabetes and CRP and endothelial adhesion molecule changes. In biopsy-proven NAFLD patients, SREBF-2 predicted nonalcoholic steatohepatitis (odds ratio 2.92 [95% CI 2.08-4.18], P = 0.002) and the severity of tissue insulin resistance, β-cell dysfunction, and oral fat intolerance (characterized by higher postprandial lipemia, cholesterol enrichment of triglyceride-rich lipoproteins and oxidized LDLs, HDL cholesterol fall, adipokine imbalance, and postprandial apoptosis activation). An SREBF-2 polymorphism predisposes individuals to NAFLD and associated cardiometabolic abnormalities and affects liver histology and glucose and lipid metabolism in biopsy-proven NAFLD.
Collapse
|
16
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|