1
|
Chen YH, Dettipponpong P, Sin MY, Chang LC, Cheng CY, Huang SY, Walzem RL, Cheng HC, Chen SE. Ovarian expression of functional MTTP and apoB for VLDL assembly and secretion in chickens. Poult Sci 2025; 104:104993. [PMID: 40073639 PMCID: PMC11951013 DOI: 10.1016/j.psj.2025.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
In mammals, tissues other than liver and intestine are known to possess functional MTTP (microsomal triglyceride transfer protein) and apoB (apolipoprotein B) capable of VLDL (very low-density lipoprotein) assembly. Birds are oviparous and possess unique capabilities in lipid biology to accommodate yolk formation through massive deposition of hepatically assembled yolk-targeted VLDLy into ovarian follicles. Following identifications of MTTP and ApoB expression within chicken ovarian stroma, granulosa, theca, and epithelial cells of various classes of follicles, we sought to define the functionality of ovarian MTTP and ApoB in VLDL assembly. In situ hybridization analysis found that ApoB transcripts are most abundant in thecal layers, whereas immunohistochemistry showed that MTTP predominates in the granulosa layers. MTTP lipid transfer activity was greater in small yellow follicles than in hierarchical follicles. Metabolic labeling, electron microscopy, and Western blot studies confirmed the functionality of ovarian apoB and MTTP as newly assembled VLDL around 50-200 nm in diameter and lacking ApoVLDL-II dissimilar to VLDLy, were secreted from cultured follicular cells. Lomitapide and the ApoB-antisense oligonucleotide Mipomersen dose-dependently decreased MTTP activity and VLDL-apoB secretion from cultured follicular cells, while oleate addition or acute heat stress enhanced VLDL-apoB secretion. Ultrastructural images showed VLDL assembly and trafficking toward the secretion route. The findings support the notion that VLDL assembly and secretion within avian ovarian tissues functions as a protective mechanism against fuel and physical stressors to secure follicle development and/or nutritional quality control of yolk for embryo development.
Collapse
Affiliation(s)
- Yu-Hui Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Mei-Ying Sin
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404327, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404327, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| | - Chuen-Yu Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan
| | - Rosemary L Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan.
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Arias A, Quiroz A, Santander N, Morselli E, Busso D. Implications of High-Density Cholesterol Metabolism for Oocyte Biology and Female Fertility. Front Cell Dev Biol 2022; 10:941539. [PMID: 36187480 PMCID: PMC9518216 DOI: 10.3389/fcell.2022.941539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
Collapse
Affiliation(s)
- Andreina Arias
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alonso Quiroz
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Dolores Busso
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- *Correspondence: Dolores Busso,
| |
Collapse
|
3
|
Liu T, Qu J, Tian M, Yang R, Song X, Li R, Yan J, Qiao J. Lipid Metabolic Process Involved in Oocyte Maturation During Folliculogenesis. Front Cell Dev Biol 2022; 10:806890. [PMID: 35433675 PMCID: PMC9009531 DOI: 10.3389/fcell.2022.806890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Oocyte maturation is a complex and dynamic process regulated by the coordination of ovarian cells and numerous extraovarian signals. From mammal studies, it is learnt that lipid metabolism provides sufficient energy for morphological and cellular events during folliculogenesis, and numerous lipid metabolites, including cholesterol, lipoproteins, and 14-demethyl-14-dehydrolanosterol, act as steroid hormone precursors and meiotic resumption regulators. Endogenous and exogenous signals, such as gonadotropins, insulin, and cortisol, are the upstream regulators in follicular lipid metabolic homeostasis, forming a complex and dynamic network in which the key factor or pathway that plays the central role is still a mystery. Though lipid metabolites are indispensable, long-term exposure to a high-fat environment will induce irreversible damage to follicular cells and oocyte meiosis. This review specifically describes the transcriptional expression patterns of several lipid metabolism–related genes in human oocytes and granulosa cells during folliculogenesis, illustrating the spatiotemporal lipid metabolic changes in follicles and the role of lipid metabolism in female reproductive capacity. This study aims to elaborate the impact of lipid metabolism on folliculogenesis, thus providing guidance for improving the fertility of obese women and the clinical outcome of assisted reproduction.
Collapse
Affiliation(s)
- Tao Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangxue Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueling Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jie Yan,
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|
5
|
Khan R, Jiang X, Hameed U, Shi Q. Role of Lipid Metabolism and Signaling in Mammalian Oocyte Maturation, Quality, and Acquisition of Competence. Front Cell Dev Biol 2021; 9:639704. [PMID: 33748128 PMCID: PMC7973101 DOI: 10.3389/fcell.2021.639704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
It has been found that the quality of oocytes from obese women has been compromised and subsequent embryos displayed arrested development. The compromised quality may be either due to the poor or rich metabolic conditions such as imbalance or excession of lipids during oocyte development. Generally, lipids are mainly stored in the form of lipid droplets and are an important source of energy metabolism. Similarly, lipids are also essential signaling molecules involved in various biological cascades of oocyte maturation, growth and oocyte competence acquisition. To understand the role of lipids in controlling the oocyte development, we have comprehensively and concisely reviewed the literature and described the role of lipid metabolism in oocyte quality and maturation. Moreover, we have also presented a simplified model of fatty acid metabolism along with its implication on determining the oocyte quality and cryopreservation for fertilization.
Collapse
Affiliation(s)
- Ranjha Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Uzma Hameed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Zarezadeh R, Nouri M, Hamdi K, Shaaker M, Mehdizadeh A, Darabi M. Fatty acids of follicular fluid phospholipids and triglycerides display distinct association with IVF outcomes. Reprod Biomed Online 2020; 42:301-309. [PMID: 33279420 DOI: 10.1016/j.rbmo.2020.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
RESEARCH QUESTION Are triglyceride fatty acids in the follicular fluid associated with either follicular fluid phospholipid fatty acids or IVF outcomes and, if so, how are they associated? DESIGN In a prospective cross-sectional study, 70 women undergoing intracytoplasmic sperm injection were recruited. Follicular fluid phospholipids and triglycerides were separated by thin-layer chromatography. Fatty acids were measured using gas-liquid chromatography and flame ionization detection system. RESULTS Significant differences in fatty acid composition were observed between follicular fluid phospholipid and triglyceride fractions. Phospholipid stearic acid and n-3 polyunsaturated fatty acids, particularly alpha-linolenic acid, were negatively associated with the number of mature oocytes and cleaved embryos, whereas arachidonic acid was in direct correlation with cleavage rate per IVF cycle (β = 0.325, P = 0.022). In the case of triglyceride fraction, total monounsaturated fatty acids, oleic acid in particular, displayed significantly positive associations with the number of oocytes (β = 0.261, P = 0.043) and embryos (β = 0.310, P = 0.018). Furthermore, cleavage rate correlated inversely with palmitic acid (β = -0.359, P = 0.007) and directly with pentadecanoic acid (β = 0.378, P = 0.005). Most of these associations, however, were not independent of predictive fatty acids belonging to phospholipid fraction, according to multivariate analysis. CONCLUSIONS Fatty acid compositions of phospholipid and triglyceride fractions from human follicular fluid differentially correlate with IVF cycle parameters.
Collapse
Affiliation(s)
- Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsod Shaaker
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
A Shift in Glycerolipid Metabolism Defines the Follicular Fluid of IVF Patients with Unexplained Infertility. Biomolecules 2020; 10:biom10081135. [PMID: 32752038 PMCID: PMC7465802 DOI: 10.3390/biom10081135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023] Open
Abstract
Follicular fluid (FF) constitutes the microenvironment of the developing oocyte. We recently characterized its lipid composition and found lipid signatures of positive pregnancy outcome after in vitro fertilization (IVF). In the current study, we aimed to test the hypothesis that unexplained female infertility is related to lipid metabolism, given the lipid signature of positive-outcome IVF patients we previously found. Assuming that FF samples from IVF patients with male factor infertility can represent a non-hindered metabolic microenvironment, we compared them to FF taken from women with unexplained infertility. FF from patients undergoing IVF was examined for its lipid composition. We found highly increased triacylglycerol levels, with a lower abundance of monoacylglycerols, phospholipids and sphingolipids in the FF of patients with unexplained infertility. The alterations in the lipid class accumulation were independent of the body mass index (BMI) and were altogether kept across the age groups. Potential lipid biomarkers for pregnancy outcomes showed a highly discriminative abundance in the FF of unexplained infertility patients. Lipid abundance distinguished IVF patients with unrecognized infertility and provided a potential means for the evaluation of female fertility.
Collapse
|
8
|
Jia C, Nagy RA, Homminga I, Hoek A, Tietge UJF. The anti-inflammatory function of follicular fluid HDL and outcome of modified natural cycle in vitro fertilization†. Biol Reprod 2020; 103:7-9. [PMID: 32333006 PMCID: PMC7313252 DOI: 10.1093/biolre/ioaa061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Congzhuo Jia
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ruxandra A Nagy
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Homminga
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke Hoek
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Gammerdinger WJ, Conte MA, Sandkam BA, Ziegelbecker A, Koblmüller S, Kocher TD. Novel Sex Chromosomes in 3 Cichlid Fishes from Lake Tanganyika. J Hered 2019; 109:489-500. [PMID: 29444291 DOI: 10.1093/jhered/esy003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
African cichlids are well known for their adaptive radiations, but it is now apparent that they also harbor an extraordinary diversity of sex chromosome systems. In this study, we sequenced pools of males and females from species in 3 different genera of cichlids from Lake Tanganyika. We then searched for regions that were differentiated following the patterns expected for sex chromosomes. We report 2 novel sex chromosomes systems, an XY system on LG19 in Tropheus sp. "black" and a ZW system on LG7 in Hemibates stenosoma. We also identify a ZW system on LG5 in Cyprichromis leptosoma that may be convergent with a system previously described in Lake Malawi cichlids. Our data also identify candidate single nucleotide polymorphisms for the blue/yellow tail color polymorphism observed among male C. leptosoma.
Collapse
Affiliation(s)
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | | | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
10
|
Pirnat A, DeRoo LA, Skjærven R, Morken NH. Lipid levels after childbirth and association with number of children: A population-based cohort study. PLoS One 2019; 14:e0223602. [PMID: 31648223 PMCID: PMC6812782 DOI: 10.1371/journal.pone.0223602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Low parity women are at increased risk of cardiovascular mortality. Unfavourable lipid profiles have been found in one-child mothers years before they conceive. However, it remains unclear whether unfavourable lipid profiles are evident in these women also after their first birth. The aim was to estimate post-pregnancy lipid levels in one-child mothers compared to mothers with two or more children and to assess these lipid's associations with number of children. METHODS We used data on 32 618 parous women (4 490 one-child mothers and 28 128 women with ≥2 children) examined after first childbirth as part of Cohort of Norway (1994-2003) with linked data on reproduction and number of children from the Medical Birth Registry of Norway (1967-2008). Odds ratios (ORs) with 95% confidence intervals (CIs) for one lifetime pregnancy (vs. ≥2 pregnancies) by lipid quintiles were obtained by logistic regression and adjusted for age at examination, year of first birth, body mass index, oral contraceptive use, smoking and educational level. RESULTS Compared to women with the lowest quintiles, ORs for one lifetime pregnancy for the highest quintiles of LDL and total cholesterol were 1.30 (95%CI: 1.14-1.45) and 1.43 (95%CI: 1.27-1.61), respectively. Sensitivity analysis (women <40 years) showed no appreciable change in our results. In stratified analyses, estimates were slightly stronger in overweight/obese, physically inactive and women with self-perceived bad health. CONCLUSIONS Mean lipid levels measured after childbirth in women with one child were significantly higher compared to mothers with two or more children and were associated with higher probability of having only one child. These findings corroborate an association between serum lipid levels and one lifetime pregnancy (as a feature of subfecundity), emphasizing that these particular women may be a specific predetermined risk group for cardiovascular related disease and death.
Collapse
Affiliation(s)
- Aleksandra Pirnat
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- * E-mail:
| | - Lisa A. DeRoo
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rolv Skjærven
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nils-Halvdan Morken
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Huang Q, Liu Y, Yang Z, Xie Y, Mo Z. The Effects of Cholesterol Metabolism on Follicular Development and Ovarian Function. Curr Mol Med 2019; 19:719-730. [PMID: 31526349 DOI: 10.2174/1566524019666190916155004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
Cholesterol is an important substrate for the synthesis of ovarian sex hormones and has an important influence on follicular development. The cholesterol in follicular fluid is mainly derived from plasma. High-density lipoprotein (HDL) and lowdensity lipoprotein (LDL) play important roles in ovarian cholesterol transport. The knockout of related receptors in the mammalian HDL and LDL pathways results in the reduction or absence of fertility, leading us to support the importance of cholesterol homeostasis in the ovary. However, little is known about ovarian cholesterol metabolism and the complex regulation of its homeostasis. Here, we reviewed the cholesterol metabolism in the ovary and speculated that regardless of the functioning of cholesterol metabolism in the system or the ovarian microenvironment, an imbalance in cholesterol homeostasis is likely to have an adverse effect on ovarian structure and function.
Collapse
Affiliation(s)
- Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yannan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, China
| | - Zhen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yuanjie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| |
Collapse
|
12
|
Nagy RA, Hollema H, Andrei D, Jurdzinski A, Kuipers F, Hoek A, Tietge UJ. The Origin of Follicular Bile Acids in the Human Ovary. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2036-2045. [DOI: 10.1016/j.ajpath.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 01/31/2023]
|
13
|
Anti-oxidative function of follicular fluid HDL and outcomes of modified natural cycle-IVF. Sci Rep 2019; 9:12817. [PMID: 31492916 PMCID: PMC6731220 DOI: 10.1038/s41598-019-49091-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
High density lipoproteins (HDL) are the main cholesterol carriers in follicular fluid (FF), the natural environment of oocyte development. Additionally, HDL have critical biological functions such as anti-oxidative capacity, which have not been studied in reproduction. Therefore, this study aimed to investigate whether the anti-oxidative function of FF-HDL is associated with fertility outcomes. From 253 women undergoing modified natural cycle (MNC)- IVF at a single academic centre FF and plasma were collected (n = 375 cycles). Anti-oxidative function of FF was mainly attributable to HDL (n = 8; 83%). FF-HDL had a higher anti-oxidative function than plasma HDL (n = 19, P < 0.001) coinciding with increased vitamin E and sphingosine 1 phosphate content (P = 0.028 each). Proteomic analysis indicated no significant differences in major anti-oxidative proteins such as paraoxonase 1, apolipoprotein (apo) A-I or apoA-IV between FF-HDL and matched plasma-HDL (n = 5), while apoC-III, apoE and apoC-II were relatively lower in FF-HDL. Finally, FF-HDL anti-oxidative function was related to a decrease in the odds of the oocyte undergoing normal fertilization, an association that persisted after adjustment for confounders (odds ratio 0.97 (0.93–1), P = 0.041). In conclusion, FF-HDL has considerable anti-oxidative properties that might be relevant for embryo quality.
Collapse
|
14
|
Lipid Identification and Transcriptional Analysis of Controlling Enzymes in Bovine Ovarian Follicle. Int J Mol Sci 2018; 19:ijms19103261. [PMID: 30347829 PMCID: PMC6214003 DOI: 10.3390/ijms19103261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022] Open
Abstract
Ovarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3–8 mm ovarian follicles in bovine. Using liquid chromatography and mass spectrometry (MS), 438 and 439 lipids were identified in FF and follicular cells, respectively. From the MALDI-TOF MS lipid fingerprints of FF, TH, GC, CC, and oocytes, and the MS imaging of ovarian sections, we identified 197 peaks and determined more abundant lipids in each compartment. Transcriptomics revealed lipid metabolism-related genes, which were expressed constitutively or more specifically in TH, GC, CC, or oocytes. Coupled with differential lipid composition, these data suggest that the ovarian follicle contains the metabolic machinery that is potentially capable of metabolizing FA from nutrient uptake, degrading and producing lipoproteins, performing de novo lipogenesis, and accumulating lipid reserves, thus assuring oocyte energy supply, membrane synthesis, and lipid-mediated signaling to maintain follicular homeostasis.
Collapse
|
15
|
CoQ10 Supplementation in Patients Undergoing IVF-ET: The Relationship with Follicular Fluid Content and Oocyte Maturity. Antioxidants (Basel) 2018; 7:antiox7100141. [PMID: 30322142 PMCID: PMC6210096 DOI: 10.3390/antiox7100141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Background: The target of the reduced fecundity with aging is the oocyte. The follicular fluid and its components are strongly linked with the environment of the maturing oocyte. The aim of the present study was to evaluate CoQ10 bioavailability in follicular fluids after oral supplementation and its possible implication in oocyte maturation. Methods: Fifteen female partners of infertile couples, aged 31–46, undergoing IVF-ET and taking 200 mg/day oral CoQ10 were compared to unsupplemented patients. CoQ10 content, its oxidative status and total antioxidant capacity were evaluated also in relation to oocyte maturation indexes. Results: CoQ10 supplementation produced a significant increase in follicular content and a significant improvement of its oxidative status. Follicular fluid total antioxidant capacity highlighted a significant decrease in patients supplemented with CoQ10, specially in women >35 years. CoQ10 supplementation was associated with a significant decrease in total antioxidant capacity of fluid from follicles containing mature oocyte, moreover CoQ10 oxidative status was also significantly reduced but in follicles containing immature oocyte. Conclusions: Our observation leads to the hypothesis that the oral supplementation of CoQ10 may improve follicular fluid oxidative metabolism and oocyte quality, specially in over 35-year-old women.
Collapse
|
16
|
Zarezadeh R, Mehdizadeh A, Leroy JLMR, Nouri M, Fayezi S, Darabi M. Action mechanisms of n-3 polyunsaturated fatty acids on the oocyte maturation and developmental competence: Potential advantages and disadvantages. J Cell Physiol 2018; 234:1016-1029. [PMID: 30073662 DOI: 10.1002/jcp.27101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Infertility is a growing problem worldwide. Currently, in vitro fertilization (IVF) is widely performed to treat infertility. However, a high percentage of IVF cycles fails, due to the poor developmental potential of the retrieved oocyte to generate viable embryos. Fatty acid content of the follicular microenvironment can affect oocyte maturation and the subsequent developmental competence. Saturated and monounsaturated fatty acids are mainly used by follicle components as primary energy sources whereas polyunsaturated fatty acids (PUFAs) play a wide range of roles. A large body of evidence supports the beneficial effects of n-3 PUFAs in prevention, treatment, and amelioration of some pathophysiological conditions including heart diseases, cancer, diabetes, and psychological disorders. Nevertheless, current findings regarding the effects of n-3 PUFAs on reproductive outcomes in general and on oocyte quality more specifically are inconsistent. This review attempts to provide a comprehensive overview of potential molecular mechanisms by which n-3 PUFAs affect oocyte maturation and developmental competence, particularly in the setting of IVF and thereby aims to elucidate the reasons behind current discrepancies around this topic.
Collapse
Affiliation(s)
- Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jo L M R Leroy
- Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Université de Nice Sophia Antipolis, Inserm U1091 - CNRS U7277, Nice 06034, France
| | - Masoud Darabi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Pirnat A, DeRoo LA, Skjærven R, Morken NH. Women's prepregnancy lipid levels and number of children: a Norwegian prospective population-based cohort study. BMJ Open 2018; 8:e021188. [PMID: 29986867 PMCID: PMC6042606 DOI: 10.1136/bmjopen-2017-021188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To study prepregnancy serum lipid levels and the association with the number of children. DESIGN Prospective, population-based cohort. SETTING Linked data from the Cohort of Norway and the Medical Birth Registry of Norway. PARTICIPANTS 2645 women giving birth to their first child during 1994-2003 (488 one-child mothers and 2157 women with ≥2 births) and 1677 nulliparous women. MAIN OUTCOME MEASURES ORs for no and one lifetime pregnancy (relative to ≥2 pregnancies) obtained by multinomial logistic regression, adjusted for age at examination, education, body mass index (BMI), smoking, time since last meal and oral contraceptive use. RESULTS Assessed in quintiles, higher prepregnant triglyceride (TG) and TG to high-density lipoprotein (TG:HDL-c) ratio levels were associated with increased risk of one lifetime pregnancy compared with having ≥2 children. Compared with the highest quintile, women in the lowest quintile of HDL cholesterol levels had an increased risk of one lifetime pregnancy (OR 1.7, 95% CI 1.2 to 2.4), as were women with the highest low-density lipoprotein (LDL) cholesterol, TG and TG:HDL-c ratio quintiles (compared with the lowest) (OR 1.2, 95% CI 0.8 to 1.7; OR 2.2, 95% CI 1.5 to 3.2; and OR 2.2, 95% CI 1.5 to 3.2, respectively). Similar effects were found in women with BMI≥25 and the highest LDL and total cholesterol levels in risk of lifetime nulliparity. CONCLUSION Women with unfavourable prepregnant lipid profile had higher risk of having no or only one child. These findings substantiate an association between prepregnant serum lipid levels and number of children. Previously observed associations between low parity and increased cardiovascular mortality may in part be due to pre-existing cardiovascular disease lipid risk factors.
Collapse
Affiliation(s)
- Aleksandra Pirnat
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Lisa A DeRoo
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rolv Skjærven
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- (The Medical Birth Registry of Norway), Norwegian Institute of Public Health, Bergen, Norway
| | - Nils-Halvdan Morken
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Zenobi M, Gardinal R, Zuniga J, Dias A, Nelson C, Driver J, Barton B, Santos J, Staples C. Effects of supplementation with ruminally protected choline on performance of multiparous Holstein cows did not depend upon prepartum caloric intake. J Dairy Sci 2018; 101:1088-1110. [DOI: 10.3168/jds.2017-13327] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
19
|
Fayezi S, Ghaffari Novin M, Darabi M, Norouzian M, Nouri M, Farzadi L, Darabi M. Primary Culture of Human Cumulus Cells Requires Stearoyl-Coenzyme A Desaturase 1 Activity for Steroidogenesis and Enhancing Oocyte In Vitro Maturation. Reprod Sci 2017; 25:844-853. [PMID: 28345489 DOI: 10.1177/1933719117698578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) is a key enzyme in lipid metabolism and is expressed in cumulus cells. The objective of the present study was to evaluate the effect of SCD1 inhibition in human cumulus cells on triglyceride content, steroidogenesis, and oocyte in vitro maturation. Human cumulus cells were exposed to SCD1 inhibitor CAY10566 (SCDinhib) alone or in combination with oleic acid in primary culture. The SCDinhib markedly suppressed triglyceride accumulation (-47%, P = .01), aromatase gene expression (-36%, P = .02), and estradiol production (-49%, P = .01) even at a dose not affecting cell viability and apoptosis. Human immature oocytes at the germinal vesicle (GV) stage were cocultured with pretreated cumulus cells. The rate of oocytes reaching the metaphase II stage was significantly lower in coculture with SCDinhib-treated cumulus cells than with control cumulus cells (-18%, P < .01), which recovered by oleic acid supplementation. This finding on in vitro maturation rate was also reproducible with mouse GV oocytes. The results suggest that SCD1 activity is required for cumulus cell lipid storage and steroidogenesis. In addition, oocyte maturation is negatively affected by SCD1 inhibition in cumulus cells, possibly due to a deficient lipid-mediated paracrine support.
Collapse
Affiliation(s)
- Shabnam Fayezi
- 1 Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- 1 Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Darabi
- 2 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Norouzian
- 1 Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- 3 Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- 4 Women's Reproductive Health Research Center, Women University Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Darabi
- 5 UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, Paris, France
| |
Collapse
|
20
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
21
|
Sánchez-Guijo A, Blaschka C, Hartmann MF, Wrenzycki C, Wudy SA. Profiling of bile acids in bovine follicular fluid by fused-core-LC-MS/MS. J Steroid Biochem Mol Biol 2016; 162:117-25. [PMID: 26924583 DOI: 10.1016/j.jsbmb.2016.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 12/19/2022]
Abstract
Bile acids (BAs) are present in follicular fluid (FF) from humans and cattle. This fact has triggered an interest on the role BAs might play in folliculogenesis and their possible association with fertility. To achieve a better understanding about this subject, new methods are needed to provide reliable information about concentrations of the most important BAs in FF. In this context, liquid chromatography-tandem mass spectrometry (LC-MS/MS) offers high specificity with a relatively simple sample workup. We developed and validated a new assay for the quick profiling of the 9 most abundant BAs in follicular fluid from cattle. The method uses 200μl of FF and can quantify cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and their glycine (G) and taurine (T) conjugates. Lithocholic acid (LCA), its conjugates GLCA and TLCA, and sulfated forms, were present in some samples, but their concentration was low compared to other BAs (in average, below 60ng/ml for LCA, GLCA or TLCA and below 20ng/ml for their corresponding sulfates). Method performance was studied at three quality controls for each compound in consonance with their physiological concentration. Excellent linearity and recovery were found for all compounds at every control level. Intra-day and between-day precisions (%CV) and accuracies (relative errors) were below 15% for all the compounds. Matrix effects were negligible for most of the analytes. Samples undergoing freeze-thaw showed no degradation of their BAs. The method makes use of a fused-core phenyl column coupled to a triple quadrupole tandem mass spectrometer to achieve chromatographic separation within 5min. We quantified BAs grouped in four different follicle sizes (3-5mm, 6-8mm, 9-14mm, >15mm), obtaining a similar relative BA profile for all the sizes, with CA always in higher concentration, ranging between 1600 and 18000ng/ml, approximately, followed by its conjugate glycocholic acid, GCA, which ranged between 800 and 9000ng/ml. The highest concentration in CA, DCA or CDCA was always detected in FF stemming from follicles of 6-8mm. To our knowledge, this is the first report in which BAs subspecies have been detected and quantified in bovine follicular fluid.
Collapse
Affiliation(s)
- A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany.
| | - C Blaschka
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Department of Molecular Reproductive Medicine, Justus Liebig University, Giessen, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - C Wrenzycki
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Department of Molecular Reproductive Medicine, Justus Liebig University, Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
22
|
Scalici E, Bechoua S, Astruc K, Duvillard L, Gautier T, Drouineaud V, Jimenez C, Hamamah S. Apolipoprotein B is regulated by gonadotropins and constitutes a predictive biomarker of IVF outcomes. Reprod Biol Endocrinol 2016; 14:28. [PMID: 27209151 PMCID: PMC4875704 DOI: 10.1186/s12958-016-0150-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/18/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Follicular fluid (FF) is an important micro-environment influencing oocyte growth, its development competence, and embryo viability. The FF content analysis allows to identify new relevant biomarkers, which could be predictive of in vitro fertilization (IVF) outcomes. Inside ovarian follicle, the amount of FF components from granulosa cells (GC) secretion, could be regulated by gonadotropins, which play a major role in follicle development. METHODS This prospective study included 61 female undergoing IVF or Intra-cytoplasmic sperm injection (ICSI) procedure. Apolipoprotein B (APOB) concentrations in follicular fluid and APOB gene and protein expression in granulosa cells from reproductively aged women undergoing an in vitro fertilization program were measured. The statistical analyses were performed according to a quartile model based on the amount of APOB level found in FF. RESULTS Amounts of APOB were detected in human FF samples (mean ± SD: 244.6 ± 185.9 ng/ml). The odds of obtaining an oocyte in the follicle and a fertilized oocyte increased significantly when APOB level in FF was higher than 112 ng/ml [i.e., including in Quartile Q 2, Q3 and Q4] (p = 0.001; p < 0.001, respectively). The probabilities of obtaining an embryo and a top quality embryo on day 2, were significantly higher if APOB levels were within the ranges of 112 and 330 ng/ml (i.e. in Q2 and Q3) or 112 and 230 ng/ml (i.e. in Q2), respectively (p < 0.001; p = 0.047, respectively). In addition, our experiments in vitro indicated that APOB gene and protein expression, along with APOB content into culture were significantly under-expressed in GC upon stimulation with gonadotropins (follicular stimulating hormone: FSH and/or human chorionic gonadotropin: hCG). CONCLUSION We are reporting a positive and statistically significant associations between APOB and oocyte retrieval, oocyte fertilization, and embryo quality. Using an experimental study component, the authors report significant reduced APOB expression and content for luteinized granulosa cells cultured in the presence of gonadotropins.
Collapse
Affiliation(s)
- Elodie Scalici
- />ART-PGD Department, INSERM U1203, Arnaud de Villeneuve Hospital, CHU Montpellier, Montpellier, France
| | - Shaliha Bechoua
- />University of Burgundy, UFR Sciences de Santé de Dijon, Dijon, France
| | - Karine Astruc
- />Department of Epidemiology, Bocage Hospital, CHU Dijon, Dijon, France
| | | | - Thomas Gautier
- />INSERM UMR 866, lipids, Nutrition and Cancer, UFR of Medicine, Dijon, France
| | | | - Clément Jimenez
- />Service de Biologie de la Reproduction-CECOS, CHU de Bordeaux, Centre Aliénor d’Aquitaine, Bordeaux, France
| | - Samir Hamamah
- />ART-PGD Department, INSERM U1203, Arnaud de Villeneuve Hospital, CHU Montpellier, Montpellier, France
| |
Collapse
|
23
|
Developmental changes in polyunsaturated fetal plasma phospholipids and feto-maternal plasma phospholipid ratios and their association with bronchopulmonary dysplasia. Eur J Nutr 2015; 55:2265-74. [DOI: 10.1007/s00394-015-1036-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/05/2015] [Indexed: 12/31/2022]
|
24
|
Twigt JM, Bezstarosti K, Demmers J, Lindemans J, Laven JSE, Steegers-Theunissen RP. Preconception folic acid use influences the follicle fluid proteome. Eur J Clin Invest 2015; 45:833-41. [PMID: 26094490 DOI: 10.1111/eci.12478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND The investigation of the human follicle fluid proteome has gained much interest in the search of new markers as predictors for in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatment outcome. Follicular fluid folate, as substrate of one carbon (1-C) metabolism, affects follicular metabolism and oocyte and embryo quality. From this background, we aim to identify a folate-related follicle fluid proteome that associates with IVF/ICSI treatment outcome. METHODS In a nested case-control study embedded in a periconception cohort, we performed qualitative and quantitative proteomic analyses using nanoflow LC-MS/MS and TMT labelling in 30 monofollicular fluid samples from women undergoing IVF/ICSI treatment of which 15 used and 15 did not use a folic acid supplement. The protein data are analysed using scaffold proteome Software and differential abundances are expressed as Log2-fold change. Blood samples were obtained before and after treatment for determination of biomarkers of 1-C metabolism and estradiol. RESULTS We identified 227 uniquely expressed proteins in follicular fluid. In folic acid supplement users compared to nonusers, we established a lower abundance of C-reactive protein (-2.03; P = < 0.01) and higher abundances of apolipoproteins from high-density lipoprotein (HDL), most notably A-I (+1.28; P = < 0.01) and C-I (+1.11; P = 0.016). CONCLUSION Preconception folic acid supplement use is associated with suppression of the inflammatory pathway and upregulation of the HDL pathway in human follicular fluid, being a preferential source of cholesterol for steroid hormone synthesis. Studies are needed on the tissue specificity and on the beneficial effects of embryo quality and IVF/ICSI treatment outcome of the proteome of these pathways.
Collapse
Affiliation(s)
- John M Twigt
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Demmers
- Proteomics center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Jan Lindemans
- Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Joop S E Laven
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Régine P Steegers-Theunissen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Nagy RA, van Montfoort APA, Dikkers A, van Echten-Arends J, Homminga I, Land JA, Hoek A, Tietge UJF. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF. Hum Reprod 2015; 30:1102-9. [PMID: 25753582 DOI: 10.1093/humrep/dev034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? SUMMARY ANSWER BA concentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid (UDCA) derivatives were associated with development of top quality embryos on Day 3 after fertilization. WHAT IS KNOWN ALREADY Granulosa cells are capable of synthesizing BA, but a potential correlation with oocyte and embryo quality as well as information on the presence and role of BA subspecies in follicular fluid have yet to be investigated. STUDY DESIGN, SIZE, DURATION Between January 2001 and June 2004, follicular fluid and serum samples were collected from 303 patients treated in a single academic centre that was involved in a multicentre cohort study on the effectiveness of MNC-IVF. PARTICIPANTS/MATERIALS, SETTING, METHODS Material from patients who underwent a first cycle of MNC-IVF was used. Serum was not stored from all patients, and the available material comprised 156 follicular fluid and 116 matching serum samples. Total BA and BA subspecies were measured in follicular fluid and in matching serum by enzymatic fluorimetric assay and liquid chromatography-mass spectrometry, respectively. The association of BA in follicular fluid with oocyte and embryo quality parameters, such as fertilization rate and cell number, presence of multinucleated blastomeres and percentage of fragmentation on Day 3, was analysed. MAIN RESULTS AND THE ROLE OF CHANCE Embryos with eight cells on Day 3 after oocyte retrieval were more likely to originate from follicles with a higher level of UDCA derivatives than those with fewer than eight cells (P < 0.05). Furthermore, follicular fluid levels of chenodeoxycholic derivatives were higher and deoxycholic derivatives were lower in the group of embryos with fragmentation compared with those without (each P < 0.05). Levels of total BA were 2-fold higher in follicular fluid compared with serum (P < 0.001), but had no predictive value for oocyte and embryo quality. LIMITATIONS, REASONS FOR CAUTION Only samples originating from first cycle MNC-IVF were used, which resulted in 14 samples only from women with an ongoing pregnancy, therefore further prospective studies are required to confirm the association of UDCA with IVF pregnancy outcomes. The inter-cycle variability of BA levels in follicular fluid within individuals has yet to be investigated. We checked for macroscopic signs of contamination of follicular fluid by blood but the possibility that small traces of blood were present within the follicular fluid remains. Finally, although BA are considered stable when stored at -20°C, there was a time lag of 10 years between the collection and analysis of follicular fluid and serum samples. WIDER IMPLICATIONS OF THE FINDINGS The favourable relation between UDCA derivatives in follicular fluid and good embryo development and quality deserves further prospective research, with live birth rates as the end-point. STUDY FUNDING/COMPETING INTERESTS This work was supported by a grant from the Netherlands Organisation for Scientific Research (VIDI Grant 917-56-358 to U.J.F.T.). No competing interests are reported.
Collapse
Affiliation(s)
- R A Nagy
- Department of Obstetrics and Gynaecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - A P A van Montfoort
- Department of Obstetrics and Gynaecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - A Dikkers
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - J van Echten-Arends
- Department of Obstetrics and Gynaecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - I Homminga
- Department of Obstetrics and Gynaecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - J A Land
- Department of Obstetrics and Gynaecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - A Hoek
- Department of Obstetrics and Gynaecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - U J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
26
|
van Montfoort AP, Plösch T, Hoek A, Tietge UJ. Impact of maternal cholesterol metabolism on ovarian follicle development and fertility. J Reprod Immunol 2014; 104-105:32-6. [DOI: 10.1016/j.jri.2014.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/02/2014] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
|
27
|
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 2014; 148:R15-27. [DOI: 10.1530/rep-13-0251] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolism and ATP levels within the oocyte and adjacent cumulus cells are associated with quality of oocyte and optimal development of a healthy embryo. Lipid metabolism provides a potent source of energy and its importance during oocyte maturation is being increasingly recognised. The triglyceride and fatty acid composition of ovarian follicular fluid has been characterised for many species and is influenced by nutritional status (i.e. dietary fat, fasting, obesity and season) as well as lactation in cows. Lipid in oocytes is a primarily triglyceride of specific fatty acids which differ by species, stored in distinct droplet organelles that re-localise during oocyte maturation. The presence of lipids, particularly saturated vs unsaturated fatty acids, in in vitro maturation systems affects oocyte lipid content as well as developmental competence. Triglycerides are metabolised by lipases that have been localised to cumulus cells as well as oocytes. Fatty acids generated by lipolysis are further metabolised by β-oxidation in mitochondria for the production of ATP. β-oxidation is induced in cumulus–oocyte complexes (COCs) by the LH surge, and pharmacological inhibition of β-oxidation impairs oocyte maturation and embryo development. Promoting β-oxidation with l-carnitine improves embryo development in many species. Thus, fatty acid metabolism in the mammalian COC is regulated by maternal physiological and in vitro environmental conditions; and is important for oocyte developmental competence.
Collapse
|
28
|
Bartels ED, Ploug T, Størling J, Mandrup-Poulsen T, Nielsen LB. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation. Scand J Clin Lab Invest 2014; 74:351-7. [DOI: 10.3109/00365513.2014.893446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Bernhard W, Raith M, Koch V, Kunze R, Maas C, Abele H, Poets CF, Franz AR. Plasma phospholipids indicate impaired fatty acid homeostasis in preterm infants. Eur J Nutr 2014; 53:1533-47. [PMID: 24464176 DOI: 10.1007/s00394-014-0658-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/13/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND During fetal development, docosahexaenoic (DHA) and arachidonic acid (ARA) are particularly enriched in brain phospholipids. After preterm delivery, fetal enrichment of DHA and ARA via placental transfer is replaced by enteral and parenteral nutrition, which is rich in linoleic acid (LA) instead. Specific DHA and ARA enrichment of lipoproteins is reflected by plasma phosphatidylcholine (PC) species, whereas plasma phosphatidylethanolamine (PE) composition reflects hepatic stores. OBJECTIVE We profiled PC and PE species in preterm infant plasma, compared with cord and maternal blood, to assess whether current feeding practice meets fetal conditions in these patients. DESIGN Preterm infant plasma (N = 171, 23-35 w postmenstrual age (PMA), postnatal day 1-103), cord plasma (N = 194) and maternal serum (N = 121) (both 24-41 w PMA) were collected. After lipid extraction, PC and PE molecular species were analyzed using tandem mass spectrometry. RESULTS Phospholipid concentrations were higher in preterm infant than in cord plasma after correction for PMA. This was mainly due to postnatal increases in LA-containing PC and PE, resulting in decreased fractions of their DHA- and ARA-containing counterparts. These changes in preterm infant plasma phospholipids occurred during the time of transition to full enteral feeds (day 0-10 after delivery). Thereafter, the fraction of ARA-containing phospholipids further decreased, whereas that of DHA slowly reincreased but remained at a level 50% of that of PMA-matched cord blood. CONCLUSIONS The postnatal increase in LA-PC in preterm infant plasma results in decreased fractions of DHA-PC and ARA-PC. These changes are also reflected by PE molecular composition as an indicator of altered hepatic fatty acid homeostasis. They are presumably caused by inadequately high LA, and low ARA and DHA supply, at a stage of development when ARA-PC and DHA-PC should be high, probably reducing the availability of DHA and ARA to the developing brain and contributing to impaired neurodevelopment of preterm infants.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, Faculty of Medicine, Eberhard-Karls-University, Calwer Straße 7, 72076, Tübingen, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu X, Wang Y, Qu H, Hou M, Cao W, Ma Z, Wang H. Associations of polymorphisms of rs693 and rs1042031 in apolipoprotein B gene with risk of breast cancer in Chinese. Jpn J Clin Oncol 2013; 43:362-8. [PMID: 23444115 DOI: 10.1093/jjco/hyt018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Lipid synthesis is an integrated result of genetic, epigenetic and environmental factors, and also can promote growth and survival of cancer cells. Apolipoprotein B plays a central role in lipid metabolism as the major protein component of very-low-density lipoprotein and low-density lipoprotein. METHODS We investigated the associations of polymorphisms of rs693 (-7673C>T) and rs1042031 (-12669 G>A) in the APOB gene with risk of breast cancer in 675 blood-unrelated Chinese patients with breast cancer and 712 healthy controls. RESULTS Polymorphisms of -12669 G>A and -7673C>T in the APOB gene were significantly associated with an increased risk of breast cancer (P = 0.000), especially for postmenopausal women (P = 0.000, 0.023). The positive associations still remained after further analysis of the two polymorphisms' distribution according to body mass index. However, no statistical associations were found between -12669 G>A and -7673C>T polymorphisms and other clinical characteristics, including tumor size, lymph node metastasis, histological grade, estrogen and progesterone receptor status and Her-2 status. CONCLUSIONS rs693 and rs1042031 polymorphisms in the APOB gene increased the risk of breast cancer in Chinese, and this role of the two polymorphisms in connection with breast cancer was not dependent on body mass index.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Department of Galactophore, Qingdao University, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil Steril 2012; 97:1078-84.e1-8. [DOI: 10.1016/j.fertnstert.2012.01.122] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/01/2012] [Accepted: 01/25/2012] [Indexed: 12/01/2022]
|
32
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|