1
|
Qiu R, Lei Y, Yang Q, Zeng J, Zhou Y, Sun B, Sun Y. Identification and functional analysis of lysophosphatidic acid phosphatase type 6 (ACP6) gene in golden pompano (Trachinotusovatus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109904. [PMID: 39276813 DOI: 10.1016/j.fsi.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Golden pompano (Trachinotus ovatus), a marine farmed fish, is economically valuable in China. Lysophosphatidic acid phosphatase type 6 (ACP6) is a type of histidine acid phosphatase and plays an important role in regulating host inflammatory responses and anti-cancer effects in mammals. However, its function in teleost remains unknown. The present study aimed to investigate ACP6 function in golden pompano. ACP6 from golden pompano was identified, cloned, and named TroACP6. The open reading frame of TroACP6 was 1275 bp in length, encoding 424 amino acids. The TroACP6 protein shared high sequence identity (43.32%-90.57 %) with the ACP6 of other species. It contained a histidine phosphatase domain with the active site motif "RHGART" and the catalytic dipeptide HD (histidine and aspartate). Meanwhile, TroACP6 mRNA was widely distributed in the various tissues of healthy golden pompano, with the maximum expression in the head kidney. The function of TroACP6 was analyzed both in vitro and in vivo, and the results revealed that the purified recombinant TroACP6 protein exhibited optimum phosphatase activity at pH 6.0 and 50 °C in vitro. Meanwhile, upon Edwardsiella tarda challenge, TroACP6 expression in tissues increased significantly in vivo. In addition, TroACP6 overexpression enhanced the respiratory burst activity and superoxide dismutase activity of head kidney macrophages in vivo. Furthermore, the overexpression and knockdown of TroACP6 in vivo had a significant effect on bacterial infection. In summary, the study findings indicate that TroACP6 in golden pompano is involved in host defense against bacterial infection.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, China
| | - Yang Lei
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China
| | - Qiaoli Yang
- Yantai Scibio Biotechnology Co., Ltd, Yantai, 264000, China
| | - Jian Zeng
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China
| | - Yongcan Zhou
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China
| | - Bin Sun
- Institute of Ocean Research, Fujian Polytechnic Normal University, Fuzhou, 350300, China
| | - Yun Sun
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China.
| |
Collapse
|
2
|
Dacheux MA, Norman DD, Shin Y, Tigyi GJ, Lee SC. Deleting autotaxin in LysM+ myeloid cells impairs innate tumor immunity in models of metastatic melanoma. iScience 2024; 27:110971. [PMID: 39398245 PMCID: PMC11467674 DOI: 10.1016/j.isci.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/04/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Autotaxin (ATX) is a lysophospholipase D that generates lysophosphatidic acid (LPA) and regulates cancer metastasis, therapeutic resistance, and tumor immunity. We found that myeloid cells in human melanoma biopsies abundantly express ATX and investigated its role in modulating innate tumor immunity using two models of melanoma metastasis-spontaneous and experimental. Targeted knockout of ATX in LysM+ myeloid cells in mice (LysM-KO) reduced both spontaneous and experimental B16-F10 melanoma metastases by ≥ 50%. Immunoprofiling revealed differences in M2-like alveolar macrophages, neutrophils and regulatory T cells in the metastatic lungs of LysM-WT versus LysM-KO that are model-dependent. These differences extend systemically, with LysM-KO mice bearing experimental metastasis having fewer neutrophils in the spleen than LysM-WT mice. Our results show that (1) LysM+ myeloid cells are an important source of ATX/LPA that promote melanoma metastasis by altering innate tumor immunity, and (2) intratumor and systemic immune profiles vary dynamically during disease progression and are model-dependent.
Collapse
Affiliation(s)
- Mélanie A. Dacheux
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Yoojin Shin
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Gábor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 PMCID: PMC11533902 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
4
|
Eshaghi Ghalibaf MH, Taghavi zadeh Yazdi ME, Mansourian M, Mohammadian Roshan N, Boskabady MH. Evaluation of the protective effect of Curcuma longa and PPARγ agonist, pioglitazone on paraquat-induced lung injury in rats. Immun Inflamm Dis 2024; 12:e70001. [PMID: 39172009 PMCID: PMC11340013 DOI: 10.1002/iid3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The inhalation of paraquat (PQ), one of the most widely used herbicides in the world, can result in lung injury. Curcuma longa (Cl) has long history in traditional and folk medicine for the treatment of a wide range of disorders including respiratory diseases. AIM The aim of the present work was to evaluate the preventive effect of Cl on inhaled PQ-induced lung injury in rats. METHODS Male Wistar rats were divided into 8 groups (n = 7), one group exposed to saline (control) and other groups exposed to PQ aerosol. Saline (PQ), Cl extract, (two doses), curcumin (Cu), pioglitazone (Pio), and the combination of Cl-L + Pio and dexamethasone (Dex) were administered during the exposure period to PQ. Total and differential white blood cell (WBC) counts, oxidant and antioxidant indicators in the bronchoalveolar lavage (BALF), interleukin (IL)-10, and tumor necrosis alpha (TNF-α) levels in the lung tissues, lung histologic lesions score, and air way responsiveness to methacholine were evaluated. RESULTS WBC counts (Total and differential), malondialdehyde level, tracheal responsiveness (TR), IL-10, TNF-α and histopathological changes of the lung were markedly elevated but total thiol content and the activities of catalase and superoxide dismutase were decreased in the BALF in the PQ group. Both doses of Cl, Cu, Pio, Cl-L + Pio, and Dex markedly improved all measured variables in comparison with the PQ group. CONCLUSION CI, Pio, and Cl-L + Pio improved PQ-induced lung inflammation and oxidative damage comparable with the effects of Dex.
Collapse
Affiliation(s)
- Mohammad Hossein Eshaghi Ghalibaf
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Mona Mansourian
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
5
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Naruse T, Otake H, Takahashi T. Effects of a Lysophosphatidic Acid Receptor 1 Antagonist on Hypertensive Renal Injury in Dahl-Iwai Salt-Sensitive Rats. J Pharmacol Sci 2022; 149:179-188. [DOI: 10.1016/j.jphs.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
|
7
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
8
|
Gamara J, Davis L, Leong AZ, Pagé N, Rollet-Labelle E, Zhao C, Hongu T, Funakoshi Y, Kanaho Y, Aoudji F, Pelletier M, Bourgoin SG. Arf6 regulates energy metabolism in neutrophils. Free Radic Biol Med 2021; 172:550-561. [PMID: 34245858 DOI: 10.1016/j.freeradbiomed.2021.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The small GTPase Arf6 regulates many cellular processes, including cytoskeletal remodeling, receptor endocytosis, and pathogen phagocytosis. Arf6 silencing in neutrophil (PMN)-like cells is well-known to inhibit chemotactic peptide-mediated activation of phospholipase D, the oxidative burst, and β2 integrin-dependent adhesion. In conditional knockout (cKO) mice, the migration to inflammatory sites of Arf6-deficient PMNs was diminished and associated with reduced cell surface expression of β2 integrins. In this study we assessed the impact of Arf6 depletion on the functions and gene expression profile of PMNs isolated from the mouse air pouch. Numerous genes involved in response to oxygen levels, erythrocyte and myeloid differentiation, macrophage chemotaxis, response to chemicals, apoptosis, RNA destabilization, endosome organization, and vesicle transport were differentially expressed in PMNs cKO for Arf6. Lpar6 and Lacc-1 were the most up-regulated and down-regulated genes, respectively. The deletion of Arf6 also decreased Lacc-1 protein level in PMNs, and silencing of Arf6 in THP-1 monocytic cells delayed LPS-mediated Lacc-1 expression. We report that fMLP or zymosan-induced glycolysis and oxygen consumption rate were both decreased in air pouch PMNs but not in bone marrow PMNs of Arf6 cKO mice. Reduced oxygen consumption correlated with a decrease in superoxide and ROS production. Deletion of Arf6 in PMNs also reduced phagocytosis and interfered with apoptosis. The data suggest that Arf6 regulates energy metabolism, which may contribute to impaired phagocytosis, ROS production, and apoptosis in PMN-Arf6 cKO. This study provides new information on the functions and the inflammatory pathways influenced by Arf6 in PMNs.
Collapse
Affiliation(s)
- Jouda Gamara
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Lynn Davis
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Andrew Z Leong
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Nathalie Pagé
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Emmanuelle Rollet-Labelle
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Chenqi Zhao
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Tsunaki Hongu
- German Cancer Research Centre (DFKZ), Group of Metastatic Niches, 69120, Heidelberg, Germany
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, 305-8575, Japan
| | - Fawzi Aoudji
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2; Centre ARThrite, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec, QC, Canada, G1V0A6
| | - Martin Pelletier
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2; Centre ARThrite, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec, QC, Canada, G1V0A6
| | - Sylvain G Bourgoin
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2; Centre ARThrite, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec, QC, Canada, G1V0A6.
| |
Collapse
|
9
|
Abstract
The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this article has been extensively used to identify potential anti-inflammatory drugs. © 2021 Wiley Periodicals LLC. Basic Protocol: Air pouch model in the rat Alternate Protocol: Air pouch model in the mouse.
Collapse
Affiliation(s)
- Jill C Fehrenbacher
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center (KIDDRC), Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
10
|
Hasse S, Duchez AC, Fortin P, Boilard E, Bourgoin SG. Interplay between LPA2 and LPA3 in LPA-mediated phosphatidylserine cell surface exposure and extracellular vesicles release by erythrocytes. Biochem Pharmacol 2021; 192:114667. [PMID: 34216604 DOI: 10.1016/j.bcp.2021.114667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Evidence is growing for the role of red blood cells (RBCs) in vascular homeostasis, including thrombogenic events and inflammation. Lysophosphatidic acid (LPA) is known to induce phosphatidylserine (PS) exposure and the release of RBC Extracellular Vesicles (REVs). Using high sensitivity flow cytometry, we examined the effects and the mechanisms by which the LPA species commonly found in human plasma could activate RBCs. We report that LPA 16:0, 18:0 and 18:1, but not LPA 20:4, induced PS exposure and the release of small PS- and large PS+ REVs through LPA3 receptor signalling in RBCs. The release of large PS+ REVs required higher concentrations of LPA. RBCs were not activated by LPA 20:4. Interestingly, blockade of LPA2 enhanced LPA-mediated PS- REV release in RBCs. Furthermore, LPA receptor agonists and antagonists highlighted that LPA 20:4 inhibited LPA3-dependent PS exposure and, through the LPA2 receptor, inhibited PS- REV production. Activation of RBCs with LPA 18:1 in normal plasma stimulated the release of PS- and PS+ REVs. REVs released in response to LPA were similar to those found in the plasma of systemic lupus erythematosus patients. Our results suggest that LPA species exhibit different biological activities in RBCs through targeting LPA2 and/or LPA3 receptors.
Collapse
Affiliation(s)
- Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Anne-Claire Duchez
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada
| | - Paul Fortin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de médecine, Faculté de médecine, Université Laval, QC G1V 4G2, Canada.
| | - Eric Boilard
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
11
|
Shi J, Jiang D, Yang S, Zhang X, Wang J, Liu Y, Sun Y, Lu Y, Yang K. LPAR1, Correlated With Immune Infiltrates, Is a Potential Prognostic Biomarker in Prostate Cancer. Front Oncol 2020; 10:846. [PMID: 32656075 PMCID: PMC7325998 DOI: 10.3389/fonc.2020.00846] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is a common malignancy in men worldwide. Lysophosphatidic acid receptor 1 (LPAR1) is a critical gene and it mediates diverse biologic functions in tumor. However, the correlation between LPAR1 and prognosis in prostate cancer, as well as the potential mechanism, remains unclear. In the present study, LPAR1 expression analysis was based on The Cancer Genome Atlas (TCGA) and the Oncomine database. The correlation of LPAR1 on prognosis was also analyzed based on R studio. The association between LPAR1 and tumor-infiltrating immune cells were evaluated in the Tumor Immune Estimation Resource site, ssGSEA, and MCPcounter packages in R studio. Gene Set Enrichment Analysis and Gene Ontology analysis were used to analyze the function of LPAR1. TCGA datasets and the Oncomine database revealed that LPAR1 was significantly downregulated in prostate cancer. High LPAR1 expression was correlated with favorable overall survival. LPAR1 was involved in the activation, proliferation, differentiation, and migration of immune cells, and its expression was positively correlated with immune infiltrates, including CD4+ T cells, B cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, and natural killer cells. Moreover, LPAR1 expression was positively correlated with those chemokine/chemokine receptors, indicating that LPAR1 may regulate the migration of immune cells. In summary, LPAR1 is a potential prognostic biomarker and plays an important part in immune infiltrates in prostate cancer.
Collapse
Affiliation(s)
- Jingqi Shi
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuchen Lu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Assessment of Arf6 Deletion in PLB-985 Differentiated in Neutrophil-Like Cells and in Mouse Neutrophils: Impact on Adhesion and Migration. Mediators Inflamm 2020; 2020:2713074. [PMID: 32322163 PMCID: PMC7166286 DOI: 10.1155/2020/2713074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chemoattractant sensing, adhesiveness, and migration are critical events underlying the recruitment of neutrophils (PMNs) to sites of inflammation or infection. Defects in leukocyte adhesion or migration result in immunodeficiency disorders characterized by recurrent infections. In this study, we evaluated the role of Arf6 on PMN adhesion in vitro and on migration to inflammatory sites using PMN-Arf6 conditional knockout (cKO) mice. In PMN-like PLB-985 silenced for Arf6 fMLP-mediated adhesion to the β2 integrin ligands, ICAM-1 and fibrinogen or the β1/β2 integrin ligand fibronectin was significantly reduced. Furthermore, overexpression of wild-type Arf6 promoted basal and fMLP-induced adhesion to immobilized integrin ligands, while overexpression of the dominant-negative Arf6 has the opposite effects. Using the Elane-Cre deleting mouse strains, we report that the level of Arf6 deletion in inflammatory PMNs isolated from the dorsal air pouches was stronger when compared to naïve cells isolated from the bone marrow. In PMN-Arf6 cKO mice, the recruitment of PMNs into the dorsal air pouch injected with LPS or the chemoattractant fMLP was significantly diminished. Impaired cell migration correlated with reduced cell surface expression of CD11a and CD11b in Arf6 cKO PMNs. Our results highlight that Arf6 regulates the activity and possibly the recycling of PMN integrins, and this compromises PMN migration to inflammatory sites.
Collapse
|
13
|
Genetic deletion of Autotaxin from CD11b+ cells decreases the severity of experimental autoimmune encephalomyelitis. PLoS One 2020; 15:e0226050. [PMID: 32240164 PMCID: PMC7117669 DOI: 10.1371/journal.pone.0226050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Autotaxin (ATX) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a growth factor-like signaling lysophospholipid. ATX and LPA signaling have been incriminated in the pathogenesis of different chronic inflammatory diseases and various types of cancer. In this report, deregulated ATX and LPA levels were detected in the spinal cord and plasma of mice during the development of experimental autoimmune encephalomyelitis (EAE). Among the different sources of ATX expression in the inflamed spinal cord, F4/80+ CD11b+ cells, mostly activated macrophages and microglia, were found to express ATX, further suggesting an autocrine role for ATX/LPA in their activation, an EAE hallmark. Accordingly, ATX genetic deletion from CD11b+ cells attenuated the severity of EAE, thus proposing a pathogenic role for the ATX/LPA axis in neuroinflammatory disorders.
Collapse
|
14
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
15
|
Magkrioti C, Galaris A, Kanellopoulou P, Stylianaki EA, Kaffe E, Aidinis V. Autotaxin and chronic inflammatory diseases. J Autoimmun 2019; 104:102327. [PMID: 31471142 DOI: 10.1016/j.jaut.2019.102327] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids including blood. ATX catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a growth factor-like, signaling phospholipid. LPA exerts pleiotropic effects mediated by its G-protein-coupled receptors that are widely expressed and exhibit overlapping specificities. Although ATX also possesses matricellular properties, the majority of ATX reported functions in adulthood are thought to be mediated through the extracellular production of LPA. ATX-mediated LPA synthesis is likely localized at the cell surface through the possible interaction of ATX with integrins or other molecules, while LPA levels are further controlled by a group of membrane-associated lipid-phosphate phosphatases. ATX expression was shown to be necessary for embryonic development, and ATX deficient embryos exhibit defective vascular homeostasis and aberrant neuronal system development. In adult life, ATX is highly expressed in the adipose tissue and has been implicated in diet-induced obesity and glucose homeostasis with multiple implications in metabolic disorders. Additionally, LPA has been shown to affect multiple cell types, including stromal and immune cells in various ways. Therefore, LPA participates in many processes that are intricately involved in the pathogenesis of different chronic inflammatory diseases such as vascular homeostasis, skeletal and stromal remodeling, lymphocyte trafficking and immune regulation. Accordingly, increased ATX and LPA levels have been detected, locally and/or systemically, in patients with chronic inflammatory diseases, most notably idiopathic pulmonary fibrosis (IPF), chronic liver diseases, and rheumatoid arthritis. Genetic and pharmacological studies in mice have confirmed a pathogenetic role for ATX expression and LPA signaling in chronic inflammatory diseases, and provided the proof of principle for therapeutic interventions, as exemplified by the ongoing clinical trials for IPF.
Collapse
Affiliation(s)
| | - Apostolos Galaris
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | | | | | - Eleanna Kaffe
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece.
| |
Collapse
|
16
|
ROCK2 Regulates Monocyte Migration and Cell to Cell Adhesion in Vascular Endothelial Cells. Int J Mol Sci 2019; 20:ijms20061331. [PMID: 30884801 PMCID: PMC6471293 DOI: 10.3390/ijms20061331] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPase Rho and its downstream effector, Rho-kinase (ROCK), regulate various cellular functions, including organization of the actin cytoskeleton, cell adhesion and migration. A pro-inflammatory lipid mediator, lysophosphatidic acid (LPA), is a potent activator of the Rho/ROCK signalling pathway and has been shown to induce the expression of chemokines and cell adhesion molecules (CAMs). In the present study, we aimed to elucidate the precise mechanism by which ROCK regulates LPA-induced expressions and functions of chemokines and CAMs. We observed that ROCK blockade reduced LPA-induced phosphorylation of IκBα and inhibited NF-κB RelA/p65 phosphorylation, leading to attenuation of RelA/p65 nuclear translocation. Furthermore, small interfering RNA-mediated ROCK isoform knockdown experiments revealed that LPA induces the expression of monocyte chemoattractant protein-1 (MCP-1) and E-selectin via ROCK2 in human aortic endothelial cells (HAECs). Importantly, we found that ROCK2 but not ROCK1 controls LPA-induced monocytic migration and monocyte adhesion toward endothelial cells. These findings demonstrate that ROCK2 is a key regulator of endothelial inflammation. We conclude that targeting endothelial ROCK2 is potentially effective in attenuation of atherosclerosis.
Collapse
|
17
|
Bui TM, Mascarenhas LA, Sumagin R. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers 2018; 6:e1431038. [PMID: 29424657 PMCID: PMC6179129 DOI: 10.1080/21688370.2018.1431038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging, and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and recruited immune cells.
Collapse
Affiliation(s)
- Triet M. Bui
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Lorraine A. Mascarenhas
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Ronen Sumagin
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| |
Collapse
|
18
|
Xu Q, Gu J, Lv Y, Yuan J, Yang N, Chen J, Wang C, Hou X, Jia X, Feng L, Yin G. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response. Oncol Lett 2018; 15:3437-3446. [PMID: 29467868 PMCID: PMC5795950 DOI: 10.3892/ol.2018.7734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5′-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3–9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3–9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Intervention, Cancer Hospital of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| | - Junfei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - You Lv
- Department of Intervention, Cancer Hospital of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| | - Jiarui Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Nan Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Juan Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Chunfei Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xuefeng Hou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiaobin Jia
- Key Laboratory of Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Liang Feng
- Key Laboratory of Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Guowen Yin
- Department of Intervention, Cancer Hospital of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
19
|
Hui W, Zhao C, Bourgoin SG. Differential Effects of Inhibitor Combinations on Lysophosphatidic Acid-Mediated Chemokine Secretion in Unprimed and Tumor Necrosis Factor-α-Primed Synovial Fibroblasts. Front Pharmacol 2017; 8:848. [PMID: 29209219 PMCID: PMC5702485 DOI: 10.3389/fphar.2017.00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic bioactive lysophospholipid involved in inflammatory mediator synthesis. Signaling through p38MAPK, ERK, Rho kinase, and MSK-CREB contributes to LPA-mediated IL-8 production in fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. The study was undertaken to investigate how LPA activates MSKs and how signaling crosstalk between TNFα and LPA contributes to the super-production of cytokines/chemokines. RAFLS pretreated or not with TNFα were stimulated with LPA. Immunoblotting with phospho-antibodies monitored MSK activation. Cytokine/chemokine production was measured using ELISA and multiplex immunoassays. LPA induced MSK activation by signaling through ERK whereas p38MAPK, Rho kinase, NF-κB or PI3K contribute to IL-8 synthesis mainly via MSK-independent pathways. Priming with TNFα enhanced LPA-mediated MSK phosphorylation and cytokine/chemokine production. After priming with TNFα, inhibition of ERK or MSK failed to attenuate LPA-mediated IL-8 synthesis even if the MSK-CREB signaling axis was completely or partially inhibited. In TNFα-primed cells, inhibition of LPA-mediated cytokine/chemokine synthesis required a specific combination of inhibitors such as p38MAPK and ERK for IL-8 and IL-6, and Rho kinase and NF-κB for MCP-1. The ability of the signaling inhibitors to block LPA induced cytokine/chemokine synthesis is dependent on the inflammatory cytokinic environment. In TNFα-primed RAFLS the super-production of IL-8 and IL-6 induced by LPA occurs mainly via MSK-independent pathways, and simultaneous inhibition of at least two MAPK signaling pathways was required to block their synthesis. Since simultaneous inhibition of both the p38MAPK and ERK-MSK-CREB pathways are required to significantly reduce LPA-mediated IL-8 and IL-6 production in TNFα-preconditioned RAFLS, drug combinations targeting these two pathways are potential new strategies to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Weili Hui
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada.,Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Chenqi Zhao
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada
| | - Sylvain G Bourgoin
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada.,Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
20
|
Ng MCY, Graff M, Lu Y, Justice AE, Mudgal P, Liu CT, Young K, Yanek LR, Feitosa MF, Wojczynski MK, Rand K, Brody JA, Cade BE, Dimitrov L, Duan Q, Guo X, Lange LA, Nalls MA, Okut H, Tajuddin SM, Tayo BO, Vedantam S, Bradfield JP, Chen G, Chen WM, Chesi A, Irvin MR, Padhukasahasram B, Smith JA, Zheng W, Allison MA, Ambrosone CB, Bandera EV, Bartz TM, Berndt SI, Bernstein L, Blot WJ, Bottinger EP, Carpten J, Chanock SJ, Chen YDI, Conti DV, Cooper RS, Fornage M, Freedman BI, Garcia M, Goodman PJ, Hsu YHH, Hu J, Huff CD, Ingles SA, John EM, Kittles R, Klein E, Li J, McKnight B, Nayak U, Nemesure B, Ogunniyi A, Olshan A, Press MF, Rohde R, Rybicki BA, Salako B, Sanderson M, Shao Y, Siscovick DS, Stanford JL, Stevens VL, Stram A, Strom SS, Vaidya D, Witte JS, Yao J, Zhu X, Ziegler RG, Zonderman AB, Adeyemo A, Ambs S, Cushman M, Faul JD, Hakonarson H, Levin AM, Nathanson KL, Ware EB, Weir DR, Zhao W, Zhi D, The Bone Mineral Density in Childhood Study (BMDCS) Group, Arnett DK, Grant SFA, Kardia SLR, Oloapde OI, Rao DC, Rotimi CN, Sale MM, Williams LK, Zemel BS, Becker DM, Borecki IB, et alNg MCY, Graff M, Lu Y, Justice AE, Mudgal P, Liu CT, Young K, Yanek LR, Feitosa MF, Wojczynski MK, Rand K, Brody JA, Cade BE, Dimitrov L, Duan Q, Guo X, Lange LA, Nalls MA, Okut H, Tajuddin SM, Tayo BO, Vedantam S, Bradfield JP, Chen G, Chen WM, Chesi A, Irvin MR, Padhukasahasram B, Smith JA, Zheng W, Allison MA, Ambrosone CB, Bandera EV, Bartz TM, Berndt SI, Bernstein L, Blot WJ, Bottinger EP, Carpten J, Chanock SJ, Chen YDI, Conti DV, Cooper RS, Fornage M, Freedman BI, Garcia M, Goodman PJ, Hsu YHH, Hu J, Huff CD, Ingles SA, John EM, Kittles R, Klein E, Li J, McKnight B, Nayak U, Nemesure B, Ogunniyi A, Olshan A, Press MF, Rohde R, Rybicki BA, Salako B, Sanderson M, Shao Y, Siscovick DS, Stanford JL, Stevens VL, Stram A, Strom SS, Vaidya D, Witte JS, Yao J, Zhu X, Ziegler RG, Zonderman AB, Adeyemo A, Ambs S, Cushman M, Faul JD, Hakonarson H, Levin AM, Nathanson KL, Ware EB, Weir DR, Zhao W, Zhi D, The Bone Mineral Density in Childhood Study (BMDCS) Group, Arnett DK, Grant SFA, Kardia SLR, Oloapde OI, Rao DC, Rotimi CN, Sale MM, Williams LK, Zemel BS, Becker DM, Borecki IB, Evans MK, Harris TB, Hirschhorn JN, Li Y, Patel SR, Psaty BM, Rotter JI, Wilson JG, Bowden DW, Cupples LA, Haiman CA, Loos RJF, North KE. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genet 2017; 13:e1006719. [PMID: 28430825 PMCID: PMC5419579 DOI: 10.1371/journal.pgen.1006719] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/05/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10−8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations. Genome-wide association studies (GWAS) have identified >300 genetic regions that influence body size and shape as measured by body mass index (BMI) and waist-to-hip ratio (WHR), respectively, but few have been identified in populations of African ancestry. We conducted large scale high coverage GWAS and replication of these traits in 52,895 and 23,095 individuals of African ancestry, respectively, followed by additional replication in European populations. We identified 10 genome-wide significant loci in all individuals, and an additional seven loci by analyzing men and women separately. We combined African and European ancestry GWAS and were able to narrow down 43 out of 74 African ancestry associated genetic regions to contain small number of putative causal variants. Our results highlight the improvement of applying high density genome coverage and combining multiple ancestries in the identification and refinement of location of genetic regions associated with adiposity traits.
Collapse
Affiliation(s)
- Maggie C. Y. Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icachn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Anne E. Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
| | - Kristin Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis MO, United States of America
| | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis MO, United States of America
| | - Kristin Rand
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Leslie A. Lange
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Michael A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
- Data Tecnica International, Glen Echo, MD, United States of America
| | - Hayrettin Okut
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Salman M. Tajuddin
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Bamidele O. Tayo
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| | - Sailaja Vedantam
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Jonathan P. Bradfield
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Wei-Min Chen
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Alessandra Chesi
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Badri Padhukasahasram
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, United States of America
| | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Matthew A. Allison
- Division of Preventive Medicine, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States of America
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, United States of America
| | - Elisa V. Bandera
- Department of Population Science, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States of America
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Leslie Bernstein
- Beckman Research Institute of the City of Hope, Duarte, CA, United States of America
| | - William J. Blot
- International Epidemiology Institute, Rockville, MD, United States of America
| | - Erwin P. Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icachn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States of America
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Richard S. Cooper
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| | - Myriam Fornage
- Center for Human Genetics, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Melissa Garcia
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Phyllis J. Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Yu-Han H. Hsu
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Hu
- Sylvester Comprehensive Cancer Center, University of Miami Leonard Miller School of Medicine, Miami, FL, United States of America
- Department of Public Health Sciences, University of Miami Leonard Miller School of Medicine, Miami, FL, United States of America
| | - Chad D. Huff
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Sue A. Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States of America
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, CA, United States of America
- Department of Health Research and Policy (Epidemiology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Rick Kittles
- Division of Urology, Department of Surgery, The University of Arizona, Tucson, AZ, United States of America
| | - Eric Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jin Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Barbara McKnight
- Cardiovascular Health Research Unit, Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Uma Nayak
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Barbara Nemesure
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | | | - Andrew Olshan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Michael F. Press
- Department of Pathology and Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States of America
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Benjamin A. Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States of America
| | | | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, United States of America
| | - Yaming Shao
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - David S. Siscovick
- The New York Academy of Medicine, New York, NY, United States of America
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Victoria L. Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, United States of America
| | - Alex Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Sara S. Strom
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Epidemiology, Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States of America
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Regina G. Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Alan B. Zonderman
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, United States of America
| | - Mary Cushman
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States of America
| | - Katherine L. Nathanson
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Erin B. Ware
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | | | - Donna K. Arnett
- School of Public Health, University of Kentucky, Lexington, KY, United States of America
| | - Struan F. A. Grant
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Sharon L. R. Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Olufunmilayo I. Oloapde
- Center for Clinical Cancer Genetics, Department of Medicine and Human Genetics, University of Chicago, Chicago, IL, United States of America
| | - D. C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Michele M. Sale
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - L. Keoki Williams
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, United States of America
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Diane M. Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ingrid B. Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis MO, United States of America
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc, United States of America
| | - Michele K. Evans
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Tamara B. Harris
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Joel N. Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- Departments of Genetics and Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sanjay R. Patel
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, United States of America
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States of America
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
- Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, CA, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Donald W. Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
- NHLBI Framingham Heart Study, Framingham, MA, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States of America
- * E-mail: (CAH); (RJFL); (KEN)
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icachn School of Medicine at Mount Sinai, New York, NY, United States of America
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail: (CAH); (RJFL); (KEN)
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
- * E-mail: (CAH); (RJFL); (KEN)
| |
Collapse
|
21
|
Duarte DB, Vasko MR, Fehrenbacher JC. Models of Inflammation: Carrageenan Air Pouch. ACTA ACUST UNITED AC 2016; 72:5.6.1-5.6.9. [DOI: 10.1002/0471141755.ph0506s72] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Djane B. Duarte
- Pharmacy Department, Health Sciences School, University of Brasília Brazil
| | - Michael R. Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis Indiana
- Department of Anesthesiology, Indiana University School of Medicine Indianapolis Indiana
| | - Jill C. Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis Indiana
| |
Collapse
|
22
|
Bourgoin SG, Hui W. Role of mitogen- and stress-activated kinases in inflammatory arthritis. World J Pharmacol 2015; 4:265-273. [DOI: 10.5497/wjp.v4.i4.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that promotes motility, survival, and the synthesis of chemokines/cytokines in human fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis. LPA activates several proteins within the mitogen activated protein (MAP) kinase signaling network, including extracellular signal-regulated kinases (ERK) 1/2 and p38 MAP kinase (MAPK). Upon docking to mitogen- and stress-activated kinases (MSKs), ERK1/2 and p38 MAPK phosphorylate serine and threonine residues within its C-terminal domain and cause autophosphorylation of MSKs. Activated MSKs can then directly phosphorylate cAMP response element-binding protein (CREB) at Ser133 in FLS. Phosphorylation of CREB by MSKs is essential for the production of pro-inflammatory and anti-inflammatory cytokines. However, other downstream effectors of MSK1/2 such as nuclear factor-kappa B, histone H3, and high mobility group nucleosome binding domain 1 may also regulate gene expression in immune cells involved in disease pathogenesis. MSKs are master regulators of cell function that integrate signals induced by growth factors, pro-inflammatory cytokines, and cellular stresses, as well as those induced by LPA.
Collapse
|
23
|
Benesch MGK, Tang X, Dewald J, Dong WF, Mackey JR, Hemmings DG, McMullen TPW, Brindley DN. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. FASEB J 2015; 29:3990-4000. [DOI: 10.1096/fj.15-274480] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
|
24
|
LPA Promotes T Cell Recruitment through Synthesis of CXCL13. Mediators Inflamm 2015; 2015:248492. [PMID: 26339130 PMCID: PMC4539179 DOI: 10.1155/2015/248492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/05/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid playing an important role in various inflammatory diseases by inducing expression and secretion of many inflammatory cytokines/chemokines. Here we report in a murine air pouch model of inflammation that LPA induced CXCL13 secretion in a time-dependent manner and with exacerbation of the response when LPA was administered after a pretreatment with TNF-α, a key inflammatory cytokine. LPA mediates recruitment of leukocytes, including that of CD3+ cells into unprimed and TNF-α-primed air pouches. CXCL13 neutralization using a blocking antibody injected into air pouches prior to administration of LPA into TNF-α-primed air pouches decreased CD3+ cell influx. Our data highlight that LPA-mediated CXCL13 secretion plays a role in T cell recruitment and participates in regulation of the inflammatory response.
Collapse
|
25
|
Territo PR, Maluccio M, Riley AA, McCarthy BP, Fletcher J, Tann M, Saxena R, Skill NJ. Evaluation of 11C-acetate and 18F-FDG PET/CT in mouse multidrug resistance gene-2 deficient mouse model of hepatocellular carcinoma. BMC Med Imaging 2015; 15:15. [PMID: 25981587 PMCID: PMC4493966 DOI: 10.1186/s12880-015-0058-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a global health problem with unique diagnostic and therapeutic challenges, including difficulties in identifying the highest risk patients. Previous work from our lab has established the murine multidrug resistance-2 mouse (MDR2) model of HCC as a reasonable preclinical model that parallels the changes seen in human inflammatory associated HCC. The purpose of this study is to evaluate modalities of PET/CT in MDR2(-/-) mice in order to facilitate therapeutic translational studies from bench to bedside. METHODS 18F-FDG and 11C-acetate PET/CT was performed on 12 m MDR2(-/-) mice (n = 3/tracer) with HCC and 12 m MDR2(-/+) control mice (n = 3/tracer) without HCC. To compare PET/CT to biological markers of HCC and cellular function, serum alpha-fetoprotein (AFP), lysophosphatidic acid (LPA), cAMP and hepatic tumor necrosis factor α (TNFα) were quantified in 3-12 m MDR2(-/-) (n = 10) mice using commercially available ELISA analysis. To translate results in mice to patients 11C-acetate PET/CT was also performed in 8 patents suspected of HCC recurrence following treatment and currently on the liver transplant wait list. RESULTS Hepatic18F-FDG metabolism was not significantly increased in MDR2(-/-) mice. In contrast, hepatic 11C-acetate metabolism was significantly elevated in MDR2(-/-) mice when compared to MDR2(-/+) controls. Serum AFP and LPA levels increased in MDR2(-/-) mice contemporaneous with the emergence of HCC. This was accompanied by a significant decrease in serum cAMP levels and an increase in hepatic TNFα. In patients suspected of HCC recurrence there were 5 true positives, 2 true negatives and 1 suspected false 11C-acetate negative. CONCLUSIONS Hepatic 11C-acetate PET/CT tracks well with HCC in MDR2(-/-) mice and patients with underlying liver disease. Consequently 11C-acetate PET/CT is well suited to study (1) HCC emergence/progression in patients and (2) reduce animal numbers required to study new chemotherapeutics in murine models of HCC.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Mary Maluccio
- Department of Surgery, Indiana University School of Medicine, C519 Walthur Cancer Research Building (R3), 980 W Walnut Street, Indianapolis, IN, 46077, USA.
| | - Amanda A Riley
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Brian P McCarthy
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - James Fletcher
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Mark Tann
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Romil Saxena
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, C519 Walthur Cancer Research Building (R3), 980 W Walnut Street, Indianapolis, IN, 46077, USA.
| |
Collapse
|
26
|
Zhao C, Sardella A, Davis L, Poubelle PE, Bourgoin SG, Fernandes MJ. A transgenic mouse model for the in vivo bioluminescence imaging of the expression of the lysophosphatidic acid receptor 3: relevance for inflammation and uterine physiology research. Transgenic Res 2015; 24:625-34. [PMID: 25982332 DOI: 10.1007/s11248-015-9882-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 05/02/2015] [Indexed: 01/08/2023]
Abstract
Lysophosphatidic acid (LPA) is a lipid-derived signaling molecule that plays key roles in diverse biological processes including inflammation and uterine remodeling. Although the function of LPA and its receptors has been extensively studied using knock-out mice, the temporal-spatial expression of LPA receptors is less well-characterized. To gain further insight into the dynamic regulation of LPA receptor 3 (Lpar3) expression in vivo by bioluminescence imaging, we generated and characterized mice transgenic for a putative Lpar3 promoter fragment. A non-coding region of the Lpar3 gene immediately upstream of the start site was subcloned adjacent to the luciferase gene. Promoter activity was determined by in vitro luciferase assays, in vivo bioluminescent imaging or by semi-quantitative real-time PCR. The air-pouch model was used to investigate Lpar3 promoter activity in the context of inflammation. The putative Lpar3 promoter fragment behaved similarly to the endogenous promoter in vitro and in vivo. In male mice, elevated levels of Lpar3-induced luciferase activity were observed in the testis. In female mice, the basal level of luciferase activity in the uterus significantly increased during pseudopregnancy. Moreover, luciferase activity was upregulated by TNF-α in the air-pouch model. We report the identification of a functional Lpar3 promoter fragment and the generation of a transgenic mouse model to investigate the regulation of Lpar3 promoter activity non-invasively in vivo by bioluminescence imaging. This mouse model is a valuable tool for reproductive biology and inflammation research as well as other biological processes in which this receptor is involved.
Collapse
Affiliation(s)
- Chenqi Zhao
- Rheumatology and Immunology Research Center, Local T1-49, CHUQ-CHUL Research Center and Faculty of Medicine, Laval University, 2705, Boul. Laurier, Québec, QC, G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Muinonen-Martin AJ, Susanto O, Zhang Q, Smethurst E, Faller WJ, Veltman DM, Kalna G, Lindsay C, Bennett DC, Sansom OJ, Herd R, Jones R, Machesky LM, Wakelam MJO, Knecht DA, Insall RH. Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol 2014; 12:e1001966. [PMID: 25313567 PMCID: PMC4196730 DOI: 10.1371/journal.pbio.1001966] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022] Open
Abstract
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.
Collapse
Affiliation(s)
- Andrew J. Muinonen-Martin
- CRUK Beatson Institute, Glasgow, United Kingdom
- York Teaching Hospital NHS Foundation Trust, York, United Kingdom
- The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Qifeng Zhang
- The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | - Colin Lindsay
- CRUK Beatson Institute, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Dorothy C. Bennett
- Molecular Cell Sciences Research Centre, St. George's, University of London, London, United Kingdom
| | | | - Robert Herd
- Alan Lyell Centre for Dermatology, Glasgow, United Kingdom
| | - Robert Jones
- CRUK Beatson Institute, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | | | | | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | |
Collapse
|
28
|
Lysophosphatidic acid-induced IL-8 secretion involves MSK1 and MSK2 mediated activation of CREB1 in human fibroblast-like synoviocytes. Biochem Pharmacol 2014; 90:62-72. [PMID: 24792438 DOI: 10.1016/j.bcp.2014.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that promotes motility, survival, and the synthesis of chemokines/cytokines such as interleukin-8 (IL-8) and interleukin-6 by human fibroblast-like synoviocytes from patients with rheumatoid arthritis (RAFLS). In those cells LPA was reported to induce IL-8 secretion through activation of various signaling pathways including p38 mitogen-activated protein kinase (p38 MAPK), p42/44 MAPK, and Rho kinase. In addition to those pathways we report that mitogen- and stress-activated protein kinases (MSKs) known to be activated downstream of the ERK1/2 and p38 MAPK cascades and CREB are phosphorylated in response to LPA. The silencing of MSKs with small-interfering RNAs and the pharmacological inhibitor of MSKs SB747651A shows a role for both MSK1 and MSK2 in LPA-mediated phosphorylation of CREB at Ser-133 and secretion of IL-8 and MCP-1. Whereas CREB inhibitors have off target effects and increased LPA-mediated IL-8 secretion, the silencing of CREB1 with short hairpin RNA significantly reduced LPA-induced chemokine production in RAFLS. Taken together the data clearly suggest that MSK1 and MSK2 are the major CREB kinases in RAFLS stimulated with LPA and that phosphorylation of CREB1 at Ser-133 downstream of MSKs plays a significant role in chemokine production.
Collapse
|
29
|
Sun B, Hu X, Liu G, Ma B, Xu Y, Yang T, Shi J, Yang F, Li H, Zhang L, Zhao Y. Phosphatase Wip1 negatively regulates neutrophil migration and inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 192:1184-95. [PMID: 24395919 DOI: 10.4049/jimmunol.1300656] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neutrophils are critically involved in host defense and tissue damage. Intrinsic signal mechanisms controlling neutrophil activities are poorly defined. We found that the expression of wild-type p53-induced phosphatase 1 (Wip1) in mouse and human neutrophils was downregulated quickly after neutrophil activation through JNK-microRNA-16 pathway. Importantly, the Wip1 expression level was negatively correlated with inflammatory cytokine productions of neutrophils in sepsis patients. Wip1-deficient mice displayed increased bactericidal activities to Staphylococcus aureus and were hypersensitive to LPS-induced acute lung damage with increased neutrophil infiltration and inflammation. Mechanism studies showed that the enhanced inflammatory activity of neutrophils caused by Wip1 deficiency was mediated by p38 MAPK-STAT1 and NF-κB pathways. The increased migration ability of Wip1KO neutrophils was mediated by the decreased CXCR2 internalization and desensitization, which was directly regulated by p38 MAPK activity. Thus, our findings identify a previously unrecognized function of Wip1 as an intrinsic negative regulator for neutrophil proinflammatory cytokine production and migration through multiple signal pathways.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nikitopoulou I, Kaffe E, Sevastou I, Sirioti I, Samiotaki M, Madan D, Prestwich GD, Aidinis V. A metabolically-stabilized phosphonate analog of lysophosphatidic acid attenuates collagen-induced arthritis. PLoS One 2013; 8:e70941. [PMID: 23923032 PMCID: PMC3726599 DOI: 10.1371/journal.pone.0070941] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/25/2013] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eleanna Kaffe
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ioanna Sevastou
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ivi Sirioti
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Martina Samiotaki
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Damian Madan
- Echelon Biosciences Inc, Salt Lake City, Utah, United States of America
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Vassilis Aidinis
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
- * E-mail:
| |
Collapse
|
31
|
Lysoglycerophospholipids in chronic inflammatory disorders: The PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:42-60. [DOI: 10.1016/j.bbalip.2012.07.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 02/08/2023]
|
32
|
Kumar GSS, Venugopal AK, Kashyap MK, Raju R, Marimuthu A, Palapetta SM, Subbanayya Y, Goel R, Chawla A, Dikshit JB, Tata P, Harsha HC, Maharudraiah J, Ramachandra YL, Satishchandra P, Prasad TSK, Pandey A, Mahadevan A, Shankar SK. Gene Expression Profiling of Tuberculous Meningitis Co-infected with HIV. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2012; 5:235-244. [PMID: 27053842 PMCID: PMC4820295 DOI: 10.4172/jpb.1000243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tuberculous meningitis (TBM) is a fatal form of Mycobacterium tuberculosis infection of the central nervous system (CNS). The similarities in the clinical and radiological findings in TBM cases with or without HIV make the diagnosis very challenging. Identification of genes, which are differentially expressed in brain tissues of HIV positive and HIV negative TBM patients, would enable better understanding of the molecular aspects of the infection and would also serve as an initial platform to evaluate potential biomarkers. Here, we report the identification of 796 differentially regulated genes in brain tissues of TBM patients co-infected with HIV using oligonucleotide DNA microarrays. We also performed immunohistochemical validation and confirmed the abundance of four gene products-glial fibrillary acidic protein (GFAP), serpin peptidase inhibitor, clade A member 3 (SERPINA3), thymidine phosphorylase (TYMP/ECGF1) and heat shock 70 kDa protein 8 (HSPA8). Our study paves the way for understanding the mechanism of TBM in HIV positive patients and for further validation of potential disease biomarkers.
Collapse
Affiliation(s)
- Ghantasala S. Sameer Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, India
| | - Abhilash K. Venugopal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, India
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manoj Kumar Kashyap
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Rajesh Raju
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Arivusudar Marimuthu
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Shyam Mohan Palapetta
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Yashwanth Subbanayya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Rajiv Gandhi University of Health Sciences, Bangalore 560041, India
| | - Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, India
| | - Ankit Chawla
- Armed Forces Medical College, Pune-411040, India
| | | | - Pramila Tata
- Strand Life Sciences, Bangalore 560024, Karnataka, India
| | - H. C. Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Jagadeesha Maharudraiah
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Y. L. Ramachandra
- Department of Biotechnology, Kuvempu University, Shimoga 577451, India
| | | | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Corresponding authors: Akhilesh Pandey, McKusick-Nathans Institute of Genetic Medicine, 733 N. Broadway, BRB 527, Johns Hopkins University, Baltimore, USA, Tel: 410-502-6662; Fax: 410-502-7544; , S. K. Shankar, Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India, Tel: 91-080-26995001/5002; Fax: 91-080-26564830;
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - S. K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Corresponding authors: Akhilesh Pandey, McKusick-Nathans Institute of Genetic Medicine, 733 N. Broadway, BRB 527, Johns Hopkins University, Baltimore, USA, Tel: 410-502-6662; Fax: 410-502-7544; , S. K. Shankar, Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India, Tel: 91-080-26995001/5002; Fax: 91-080-26564830;
| |
Collapse
|
33
|
Choi JW, Chun J. Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:20-32. [PMID: 22884303 DOI: 10.1016/j.bbalip.2012.07.015] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two of the best-studied lysophospholipids, are known to influence diverse biological events, including organismal development as well as function and pathogenesis within multiple organ systems. These functional roles are due to a family of at least 11 G protein-coupled receptors (GPCRs), named LPA(1-6) and S1P(1-5), which are widely distributed throughout the body and that activate multiple effector pathways initiated by a range of heterotrimeric G proteins including G(i/o), G(12/13), G(q) and G(s), with actual activation dependent on receptor subtypes. In the central nervous system (CNS), a major locus for these signaling pathways, LPA and S1P have been shown to influence myriad responses in neurons and glial cell types through their cognate receptors. These receptor-mediated activities can contribute to disease pathogenesis and have therapeutic relevance to human CNS disorders as demonstrated for multiple sclerosis (MS) and possibly others that include congenital hydrocephalus, ischemic stroke, neurotrauma, neuropsychiatric disorders, developmental disorders, seizures, hearing loss, and Sandhoff disease, based upon the experimental literature. In particular, FTY720 (fingolimod, Gilenya, Novartis Pharma, AG) that becomes an analog of S1P upon phosphorylation, was approved by the FDA in 2010 as a first oral treatment for MS, validating this class of receptors as medicinal targets. This review will provide an overview and update on the biological functions of LPA and S1P signaling in the CNS, with a focus on results from studies using genetic null mutants for LPA and S1P receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
34
|
Duarte DB, Vasko MR, Fehrenbacher JC. Models of inflammation: carrageenan air pouch. CURRENT PROTOCOLS IN PHARMACOLOGY 2012; Chapter 5:Unit5.6. [PMID: 22383000 PMCID: PMC5954990 DOI: 10.1002/0471141755.ph0506s56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The subcutaneous air pouch is an in vivo model that can be used to study acute and chronic inflammation, the resolution of the inflammatory response, and the oxidative stress response. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti-inflammatory drugs.
Collapse
Affiliation(s)
- Djane B. Duarte
- Pharmacy Department, Health Sciences School, University of Brasília, Brazil
| | - Michael R. Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anesthesiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jill C. Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|