1
|
Guo R, Chang Y, Wang D, Sun H, Gu T, Zong Y, Zhou S, Huang Z, Chen L, Tian Y, Xu W, Lu L, Zeng T. Interaction between cecal microbiota and liver genes of laying ducks with different residual feed intake. Anim Microbiome 2025; 7:30. [PMID: 40119394 PMCID: PMC11929276 DOI: 10.1186/s42523-025-00394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/08/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The gut microbiota exerts a critical influence on energy metabolism homeostasis and productive performance in avian species. Given the diminishing availability of arable land and intensifying competition for finite resources between livestock production and human populations, the agricultural sector faces dual imperatives to enhance productive efficiency while mitigating ecological footprints. Within this paradigm, optimizing nutrient assimilation efficiency in commercial waterfowl operations emerges as a strategic priority. This investigation employs an integrated multi-omics approach framework (metagenomic, metabolomic, and transcriptomic analyses) to elucidate the mechanistic relationships between cecal microbial consortia and feed conversion ratios in Shan Partridge ducks. RESULTS Based on the analysis of metagenome data, a total of 34 phyla, 1033 genera and 3262 species of bacteria were identified by metagenomic sequencing analysis. At the phylum level, 31 phylums had higher mean abundance in the low residual feed intake ( LRFI) group than in the high residual feed intake (HRFI) group. Among them, the expression of microbiome Elusimicrobiota was significantly higher in the LRFI group than in the HRFI group (P < 0.05). And we also found a significant differences in secondary metabolites biosynthesis, transport, and catabolism pathways between the two groups in microbial function (P < 0.05). Based on metabolomic analysis, 17 different metabolites were found. Among them, Lipids and lipid molecules accounted for the highest proportion. Whereas the liver is very closely related to lipid metabolism, we are close to understanding whether an individual's energy utilization efficiency is related to gene expression in the liver. We selected six ducks from each group of six ducks each for liver transcriptome analysis. A total of 322 differential genes were identified in the transcriptome analysis results, and 319 genes were significantly down-regulated. Among them, we found that prostaglandin endoperoxide synthase 2 (PTGS2) might be a key hub gene regulating RFI by co-occurrence network analysis. Interestingly, the differential gene PTGS2 was enriched in the arachidonic acid pathway at the same time as the differential metabolite 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2). In addition, the results of the association analysis of differential metabolites with microorganisms also revealed a significant negative correlation between 15d-PGJ2 and Elusimicrobiota. CONCLUSION Based on comprehensive analysis of the research results, we speculate that the Elusimicrobiota may affect the feed utilization efficiency in ducks by regulating the expression of the PTGS2 gene.
Collapse
Affiliation(s)
- Rongbing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Dandan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yibo Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shiheng Zhou
- Cherry Valley Agricultural Technology Co. Ltd, Zhoukou, 461300, China
| | - Zhizhou Huang
- Cherry Valley Agricultural Technology Co. Ltd, Zhoukou, 461300, China
| | - Li Chen
- Xianghu Laboratory, Hangzhou, 311231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lizhi Lu
- Xianghu Laboratory, Hangzhou, 311231, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
3
|
Steinmetz-Späh J, Liu J, Singh R, Ekoff M, Boddul S, Tang X, Bergqvist F, Idborg H, Heitel P, Rönnberg E, Merk D, Wermeling F, Haeggström JZ, Nilsson G, Steinhilber D, Larsson K, Korotkova M, Jakobsson PJ. Biosynthesis of prostaglandin 15dPGJ 2 -glutathione and 15dPGJ 2-cysteine conjugates in macrophages and mast cells via MGST3. J Lipid Res 2022; 63:100310. [PMID: 36370807 PMCID: PMC9792570 DOI: 10.1016/j.jlr.2022.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jianyang Liu
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rajkumar Singh
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sanjaykumar Boddul
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Elin Rönnberg
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Karin Larsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,For correspondence: Per-Johan Jakobsson
| |
Collapse
|
4
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
5
|
Eguez C, Clark MA, O'Connor AT. 15-Deoxy-Δ- 12,14-prostaglandin J2 effects in vascular smooth muscle cells: Implications in vascular smooth muscle cell proliferation and contractility. Prostaglandins Other Lipid Mediat 2021; 156:106583. [PMID: 34332056 DOI: 10.1016/j.prostaglandins.2021.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/04/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
15-Deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) is an endogenous agonist of the ligand dependent transcriptional factor, peroxisome proliferator-activated receptor -gamma (PPAR-γ). Although PPAR-γ mediates some actions of 15d-PGJ2, many actions of 15d-PGJ2 are independent of PPAR-γ. The PPAR-γ signaling pathway has beneficial effects on tumor progression, inflammation, oxidative stress, and angiogenesis in numerous studies. In this review, various studies were analyzed to understand the effects of 15d-PGJ2 in vascular smooth muscle cells (VSMC)s. 15d-PGJ2 inhibits proliferation of VSMCs during vascular remodeling and it alters the expression of contractile proteins and inflammatory components within these cells as well. However, the effects of 15d-PGJ2 as well as its ability to induce PPAR-γ activation remains controversial as contradictory effects of this prostaglandin in VSMCs exist. Understanding the mechanisms by which 15d-PGJ2 elicit beneficial actions whether by PPAR-γ activation or independently, will aid in developing new therapeutic strategies for diseases such as hypertension with an inflammatory component. Although great advances are being made, more research is needed to reach definitive conclusions.
Collapse
Affiliation(s)
- Carl Eguez
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA(1).
| | - Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA(1).
| |
Collapse
|
6
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
7
|
Bláhová L, Nováková Z, Večeřa Z, Vrlíková L, Dočekal B, Dumková J, Křůmal K, Mikuška P, Buchtová M, Hampl A, Hilscherová K, Bláha L. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology 2019; 14:214-231. [PMID: 31726900 DOI: 10.1080/17435390.2019.1685696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although the production of engineered nanoparticles increases our knowledge of toxicity and mechanisms of bioactivity during relevant exposures is lacking. In the present study mice were exposed to PbO nanoparticles (PbONP; 192.5 µg/m3; 1.93 × 106 particles/cm3) for 2, 5 and 13 weeks through continuous inhalation. The analyses addressed Pb and PbONP distribution in organs (lung, liver, kidney, brain) using electrothermal atomic absorption spectrometry and transmission electron microscopy, as well as histopathology and analyses of oxidative stress biomarkers. New LC-MS/MS methods were validated for biomarkers of lipid damage F2-isoprostanes (8-iso-prostaglandins F2-alpha and E2) and hydroxylated deoxoguanosine (8-OHdG, marker of DNA oxidation). Commonly studied malondialdehyde was also measured as TBARS by HPLC-DAD. The study revealed fast blood transport and distribution of Pb from the lung to the kidney and liver. A different Pb accumulation trend was observed in the brain, suggesting transfer of NP along the nasal nerve to the olfactory bulbs. Long-term inhalation of PbONP caused lipid peroxidation in animal brains (increased levels of TBARS and both isoprostanes). Membrane lipid damage was also detected in the kidney after shorter exposures, but not in the liver or lung. On the contrary, longer exposures to PbONP increased levels of 8-OHdG in the lung and temporarily increased lung weight after 2 and 5 weeks of exposure. The histopathological changes observed mainly in the lung and liver indicated inflammation and general toxicity responses. The present long-term inhalation study indicates risks of PbONP to both human health and the environment.
Collapse
Affiliation(s)
- Lucie Bláhová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Zuzana Nováková
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Zbyněk Večeřa
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Lucie Vrlíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Bohumil Dočekal
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Dumková
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic
| | - Kamil Křůmal
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Pavel Mikuška
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Marcela Buchtová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic
| | - Klára Hilscherová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Chaves-Filho AB, Yoshinaga MY, Dantas LS, Diniz LR, Pinto IFD, Miyamoto S. Mass Spectrometry Characterization of Thiol Conjugates Linked to Polyoxygenated Polyunsaturated Fatty Acid Species. Chem Res Toxicol 2019; 32:2028-2041. [PMID: 31496224 DOI: 10.1021/acs.chemrestox.9b00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical mediated oxidation of polyunsaturated fatty acids (PUFA) is known to generate a series of polyoxygenated cyclic products (PUFA-On, n ≥ 3). Here, we describe the characterization of glutathione (GSH) conjugates bound to polyoxygenated docosahexaenoic (DHA-On, n = 3-9), arachidonic (ARA-On, n = 3-7), α-linolenic (ALA-O3), and linoleic (LA-O3) acid species. Similar conjugates were also characterized for N-acetylcysteine (NAC) and Cu,Zn-superoxide dismutase (SOD1). Extensive LC-MS/MS characterization using a synthetic α-linolenic hydroxy-endoperoxide (ALA-O3) derivative revealed at least two types of mechanisms leading to thiol adduction: a mechanism involving the nucleophilic attack by thiolate anion on 1,2-dioxolane to form a sulfenate ester-bonded conjugate and a mechanism involving cleavage of the dioxolane to form a α,β-unsaturated carbonyl followed by the Michael addition reaction. Finally, we detected a GSH conjugate with hydroxy-endoperoxide derived from linoleic acid (LA-O3) in mice liver. In summary, our study reveals the formation of a series of thiol conjugates that are bound to highly oxygenated PUFA species. GSH conjugates described in our study may potentially play relevant roles in redox and inflammatory processes, especially under high oxygen tension conditions.
Collapse
Affiliation(s)
- Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
| | - Marcos Y Yoshinaga
- Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
| | - Lucas S Dantas
- Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
| | - Larissa R Diniz
- Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
| | - Isabella F D Pinto
- Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
| |
Collapse
|
9
|
Furman R, Lee JV, Axelsen PH. Analysis of eicosanoid oxidation products in Alzheimer brain by LC-MS with uniformly 13C-labeled internal standards. Free Radic Biol Med 2018; 118:108-118. [PMID: 29476920 PMCID: PMC5884722 DOI: 10.1016/j.freeradbiomed.2018.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 01/24/2023]
Abstract
The quantitative analysis of polyunsaturated fatty acyl (PUFA) chain oxidation products in tissue samples by mass spectrometry is hindered by the lack of durable internal standards for the large number of possible products. To address this problem in a study of oxidative PUFA degradation in Alzheimer's disease (AD) brain, uniformly 13C-labeled arachidonic acid (ARA) was produced biosynthetically, and allowed to oxidize under controlled conditions into a mixture of U-13C-labeled ARA oxidation products. The components of this mixture were characterized with respect to their partitioning behavior during lipid extraction, their durability during saponification, trends in mouse brain tissue concentrations during post mortem intervals, and their overall suitability as internal standards for multiple-reaction monitoring tandem mass spectrometry. This mixture has now been used as a set of internal standards to determine the relative abundance of ARA and 54 non-stereospecific oxidation products in milligram samples of brain tissue. Many of these oxidation products were recovered from both healthy mouse and healthy human brain, although some of them were unique to each source, and some have not heretofore been described. The list of oxidation products detected in AD brain tissue was the same as in healthy human brain, although simple hydroxy-eicosanoids were significantly increased in AD brain. while more complex oxidation products were not. These results are consistent with an increased level of chemically-mediated oxidative ARA degradation in Alzheimer's disease. However, they also point to the existence of processes that selectively produce or eliminate specific oxidation products, and those processes may account for some of the inconsistencies in previously reported results.
Collapse
Affiliation(s)
- Ran Furman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Jin V Lee
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States; Departments of Biochemistry and Biophysics, and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
10
|
Wu B, Jiang M, Peng Q, Li G, Hou Z, Milne GL, Mori S, Alonso R, Geisler JG, Duan W. 2,4 DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington's disease. Exp Neurol 2017; 293:83-90. [PMID: 28359739 PMCID: PMC9912814 DOI: 10.1016/j.expneurol.2017.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the gene huntingtin. There is no treatment to prevent or delay the disease course of HD currently. Oxidative stress and mitochondrial dysfunction have emerged as key determinants of the disease progression in HD. Therefore, counteracting mutant huntingtin (mHtt)-induced oxidative stress and mitochondrial dysfunction appears as a new approach to treat this devastating disease. Interestingly, mild mitochondrial uncoupling improves neuronal resistance to stress and facilitates neuronal survival. Mild mitochondrial uncoupling can be induced by the proper dose of 2,4-dinitrophenol (DNP), a proton ionophore that was previously used for weight loss. In this study, we evaluated the effects of chronic administration of DNP at three doses (0.5, 1, 5mg/kg/day) on mHtt-induced behavioral deficits and cellular abnormalities in the N171-82Q HD mouse model. DNP at a low dose (1mg/kg/day) significantly improved motor function and preserved medium spiny neuronal marker DARPP32 and postsynaptic protein PSD95 in the striatum of HD mice. Further mechanistic study suggests that DNP at this dose reduced oxidative stress in HD mice, which was indicated by reduced levels of F2-isoprostanes in the brain of HD mice treated with DNP. Our data indicated that DNP provided behavioral benefit and neuroprotective effect at a weight neutral dose in HD mice, suggesting that the potential value of repositioning DNP to HD treatment is warranted in well-controlled clinical trials in HD.
Collapse
Affiliation(s)
- Bin Wu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of General Practice, The First hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gang Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Pharmacology, Inner Mongolian Medical University School of Pharmacy, Hohhot, Inner Mongolian, China
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ginger L. Milne
- Eicosanoid Core Laboratory, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert Alonso
- Mitochon Pharmaceuticals Inc., Radnor, PA, United States
| | | | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol 2017; 12:674-681. [PMID: 28395175 PMCID: PMC5388914 DOI: 10.1016/j.redox.2017.03.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/12/2017] [Accepted: 03/09/2017] [Indexed: 02/08/2023] Open
Abstract
Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a challenge for the immediate future since accurate evaluation of oxidative stress would contribute to improve the quality of care of our neonatal patients.
Collapse
Affiliation(s)
- Isabel Torres-Cuevas
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Anna Parra-Llorca
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Angel Sánchez-Illana
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Nuñez-Ramiro
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Julia Kuligowski
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Cernada
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Justo Escobar
- Scientific Department, Sabartech SL, Biopolo Instituto Investigación Sanitaria La Fe, Valencia, Spain
| | - Máximo Vento
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
12
|
Lu J, Guo S, Xue X, Chen Q, Ge J, Zhuo Y, Zhong H, Chen B, Zhao M, Han W, Suzuki T, Zhu M, Xia L, Schneider C, Blackwell TS, Porter NA, Zheng L, Tsimikas S, Yin H. Identification of a novel series of anti-inflammatory and anti-oxidative phospholipid oxidation products containing the cyclopentenone moiety in vitro and in vivo: Implication in atherosclerosis. J Biol Chem 2017; 292:5378-5391. [PMID: 28202546 DOI: 10.1074/jbc.m116.751909] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress and inflammation are two major contributing factors to atherosclerosis, a leading cause of cardiovascular disease. Oxidation of phospholipids on the surface of low density lipoprotein (LDL) particles generated under oxidative stress has been associated with the progression of atherosclerosis, but the underlying molecular mechanisms remain poorly defined. We identified a novel series of oxidation products containing the cyclopentenone moiety, termed deoxy-A2/J2-isoprostanes-phosphocholine, from 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine in vivo using mass spectrometry and by comparison to a chemically synthesized standard. Transcriptomic analysis (RNA-seq) demonstrated that these compounds affected >200 genes in bone marrow-derived macrophages, and genes associated with inflammatory and anti-oxidative responses are among the top 5 differentially expressed. To further investigate the biological relevance of these novel oxidized phospholipids in atherosclerosis, we chemically synthesized a representative compound 1-palmitoyl-2-15-deoxy-δ-12,14-prostaglandin J2-sn-glycero-3-phosphocholine (15d-PGJ2-PC) and found that it induced anti-inflammatory and anti-oxidant responses in macrophages through modulation of NF-κB, peroxisome proliferator-activated receptor γ (PPARγ), and Nrf2 pathways; this compound also showed potent anti-inflammatory properties in a mice model of LPS-induced systematic inflammatory response syndrome. Additionally, 15d-PGJ2-PC inhibited macrophage foam cell formation, suggesting a beneficial role against atherosclerosis. These properties were consistent with decreased levels of these compounds in the plasma of patients with coronary heart disease compared with control subjects. Our findings uncovered a novel molecular mechanism for the negative regulation of inflammation and positive enhancement of anti-oxidative responses in macrophages by these oxidized phospholipids in LDL in the context of atherosclerosis.
Collapse
Affiliation(s)
- Jianhong Lu
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China
| | - Shuyuan Guo
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xinli Xue
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China
| | - Qun Chen
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China
| | - Jing Ge
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujuan Zhuo
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Huiqin Zhong
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China
| | - Buxing Chen
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Mingming Zhao
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | | | - Takashi Suzuki
- Division of Clinical Pharmacology, Department of Pharmacology
| | - Mingjiang Zhu
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China
| | - Lin Xia
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology
| | - Timothy S Blackwell
- Department of Medicine.,Department of Cancer Biology, and.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.,Department of Veterans Affairs, Nashville, Tennessee 37232
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, and
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Sotirios Tsimikas
- Department of Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, California 92093
| | - Huiyong Yin
- From the Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, .,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100000, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
13
|
Bromberg PA. Mechanisms of the acute effects of inhaled ozone in humans. Biochim Biophys Acta Gen Subj 2016; 1860:2771-81. [PMID: 27451958 DOI: 10.1016/j.bbagen.2016.07.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
Ambient air ozone (O3) is generated photochemically from oxides of nitrogen and volatile hydrocarbons. Inhaled O3 causes remarkably reversible acute lung function changes and inflammation. Approximately 80% of inhaled O3 is deposited on the airways. O3 reacts rapidly with CC double bonds in hydrophobic airway and alveolar surfactant-associated phospholipids and cholesterol. Resultant primary ozonides further react to generate bioactive hydrophilic products that also initiate lipid peroxidation leading to eicosanoids and isoprostanes of varying electrophilicity. Airway surface liquid ascorbate and urate also scavenge O3. Thus, inhaled O3 may not interact directly with epithelial cells. Acute O3-induced lung function changes are dominated by involuntary inhibition of inspiration (rather than bronchoconstriction), mediated by stimulation of intraepithelial nociceptive vagal C-fibers via activation of transient receptor potential (TRP) A1 cation channels by electrophile (e.g., 4-oxo-nonenal) adduction of TRPA1 thiolates enhanced by PGE2-stimulated sensitization. Acute O3-induced neutrophilic airways inflammation develops more slowly than the lung function changes. Surface macrophages and epithelial cells are involved in the activation of epithelial NFkB and generation of proinflammatory mediators such as IL-6, IL-8, TNFa, IL-1b, ICAM-1, E-selectin and PGE2. O3-induced partial depolymerization of hyaluronic acid and the release of peroxiredoxin-1 activate macrophage TLR4 while oxidative epithelial cell release of EGFR ligands such as TGFa or EGFR transactivation by activated Src may also be involved. The ability of lipid ozonation to generate potent electrophiles also provides pathways for Nrf2 activation and inhibition of canonical NFkB activation. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, and Division of Pulmonary and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
14
|
Egger J, Fischer S, Bretscher P, Freigang S, Kopf M, Carreira EM. Total Synthesis of Prostaglandin 15d-PGJ2 and Investigation of its Effect on the Secretion of IL-6 and IL-12. Org Lett 2015; 17:4340-3. [DOI: 10.1021/acs.orglett.5b02181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julian Egger
- Laboratory
of Organic Chemistry, ETH Zurich, HCI H335, Wolfgang-Pauli-Strasse
10, 8093 Zurich, Switzerland
| | - Stefan Fischer
- Laboratory
of Organic Chemistry, ETH Zurich, HCI H335, Wolfgang-Pauli-Strasse
10, 8093 Zurich, Switzerland
| | - Peter Bretscher
- Institute
for Integrative Biology, ETH Zurich, HPL-G 12, Schafmattstrasse 27, 8093 Zurich, Switzerland
| | - Stefan Freigang
- Institute
for Integrative Biology, ETH Zurich, HPL-G 12, Schafmattstrasse 27, 8093 Zurich, Switzerland
| | - Manfred Kopf
- Institute
for Integrative Biology, ETH Zurich, HPL-G 12, Schafmattstrasse 27, 8093 Zurich, Switzerland
| | - Erick M. Carreira
- Laboratory
of Organic Chemistry, ETH Zurich, HCI H335, Wolfgang-Pauli-Strasse
10, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Amer AO, Probert PM, Dunn M, Knight M, Vallance AE, Flecknell PA, Oakley F, Cameron I, White SA, Blain PG, Wright MC. Sustained Isoprostane E2 Elevation, Inflammation and Fibrosis after Acute Ischaemia-Reperfusion Injury Are Reduced by Pregnane X Receptor Activation. PLoS One 2015; 10:e0136173. [PMID: 26302150 PMCID: PMC4547732 DOI: 10.1371/journal.pone.0136173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Liver grafts donated after cardiac death are increasingly used to expand the donor pool but are prone to ischaemic-type biliary lesions. The anti-inflammatory effects of the activated pregnane X receptor have previously been shown to be beneficial in a number of inflammatory liver conditions. However, its role in reducing peri-portal inflammation and fibrosis following ischaemia-reperfusion injury has not been investigated. Hepatic injury and its response to pregnane X receptor activation was examined after partial hepatic ischaemia-reperfusion injury induced by surgically clamping the left and middle lobar blood vessels in rats. Molecular and pathological changes in the liver were examined over the following 28 days. Ischaemia-reperfusion injury resulted in transient cholestasis associated with microvillar changes in biliary epithelial cell membranes and hepatocellular injury which resolved within days after reperfusion. However, in contrast to chemically-induced acute liver injuries, this was followed by sustained elevation in isoprostane E2, peri-portal inflammation and fibrosis that remained unresolved in the ischaemic reperfused lobe for at least 28 days after clamping. Administration of pregnenolone-16α-carbonitrile—a rodent-specific pregnane X receptor activator—resulted in significant reductions in cholestasis, hepatic injury, ischaemic lobe isoprostane E2 levels, peri-portal inflammation and fibrosis. Hepatic ischaemia-reperfusion injury therefore results in inflammatory and fibrotic changes that persist well beyond the initial ischaemic insult. Drug-mediated activation of the pregnane X receptor reduced these adverse changes in rats, suggesting that the pregnane X receptor is a viable drug target to reduce ischaemic-type biliary lesions in recipients of liver transplants donated after cardiac death.
Collapse
Affiliation(s)
- Aimen O Amer
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Philip M Probert
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Michael Dunn
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Margaret Knight
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Abigail E Vallance
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Paul A Flecknell
- Comparative Biology Centre, Newcastle University, Newcastle, United Kingdom
| | - Fiona Oakley
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Iain Cameron
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Department of Pathology, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Steven A White
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Peter G Blain
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Matthew C Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
16
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol 2015; 171:3115-31. [PMID: 24646155 DOI: 10.1111/bph.12677] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context.
Collapse
Affiliation(s)
- Jochen Bauer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci 2015; 7:104. [PMID: 25628533 PMCID: PMC4292445 DOI: 10.3389/fnmol.2014.00104] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.
Collapse
Affiliation(s)
- Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Thomas Schmidt-Glenewinkel
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Peter Serrano
- Department of Psychology, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| |
Collapse
|
19
|
Vasil’ev YV, Tzeng SC, Huang L, Maier CS. Protein modifications by electrophilic lipoxidation products: adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification. MASS SPECTROMETRY REVIEWS 2014; 33:157-82. [PMID: 24818247 PMCID: PMC4138024 DOI: 10.1002/mas.21389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The post-translational modification of proteins by electrophilic oxylipids is emerging as an important mechanism that contributes to the complexity of proteomes. Enzymatic and non-enzymatic oxidation of biological lipids results in the formation of chemically diverse electrophilic carbonyl compounds, such as 2-alkenals and 4-hydroxy alkenals, epoxides, and eicosanoids with reactive cyclopentenone structures. These lipoxidation products are capable of modifying proteins. Originally considered solely as markers of oxidative insult, more recently the modifications of proteins by lipid peroxidation products are being recognized as a new mechanism of cell signaling with relevance to redox homeostasis, adaptive response and inflammatory resolution. The growing interest in protein modifications by reactive oxylipid species necessitates the availability of methods that are capable of detecting, identifying and characterizing these protein adducts in biological samples with high complexity. However, the efficient analysis of these chemically diverse protein adducts presents a considerable analytical challenge. We first provide an introduction into the chemistry and biological relevance of protein adductions by electrophilic lipoxidation products. We then provide an overview of tandem mass spectrometry approaches that have been developed in recent years for the interrogation of protein modifications by electrophilic oxylipid species.
Collapse
Affiliation(s)
| | | | | | - Claudia S. Maier
- Corresponding author: Department of Chemistry, Oregon State University, 153 Gilbert Hall Phone: 541-737-9533 Fax: 541-737-2062
| |
Collapse
|
20
|
Miller E, Morel A, Saso L, Saluk J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:572491. [PMID: 24868314 PMCID: PMC4020162 DOI: 10.1155/2014/572491] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/05/2023]
Abstract
Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs) especially F4-neuroprotanes (F4-NPs) are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.
Collapse
Affiliation(s)
- Elżbieta Miller
- Department of Physical Medicine, Medical University of Lodz, Hallera 1, Lodz, Poland
- Neurorehabilitation Ward, III General Hospital in Lodz, Milionowa 14, Lodz, Poland
| | - Agnieszka Morel
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Department of Toxicology, Faculty of Pharmacy with Division of Medical Analytics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
21
|
Delmastro-Greenwood M, Freeman BA, Wendell SG. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids. Annu Rev Physiol 2013; 76:79-105. [PMID: 24161076 DOI: 10.1146/annurev-physiol-021113-170341] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unsaturated fatty acids are metabolized to reactive products that can act as pro- or anti-inflammatory signaling mediators. Electrophilic fatty acid species, including nitro- and oxo-containing fatty acids, display salutary anti-inflammatory and metabolic actions. Electrophilicity can be conferred by both enzymatic and oxidative reactions, via the homolytic addition of nitrogen dioxide to a double bond or via the formation of α,β-unsaturated carbonyl and epoxide substituents. The endogenous formation of electrophilic fatty acids is significant and influenced by diet, metabolic, and inflammatory reactions. Transcriptional regulatory proteins and enzymes can sense the redox status of the surrounding environment upon electrophilic fatty acid adduction of functionally significant, nucleophilic cysteines. Through this covalent and often reversible posttranslational modification, gene expression and metabolic responses are induced. At low concentrations, the pleiotropic signaling actions that are regulated by these protein targets suggest that some classes of electrophilic lipids may be useful for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Meghan Delmastro-Greenwood
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; , ,
| | | | | |
Collapse
|
22
|
Solecki GM, Groh IAM, Kajzar J, Haushofer C, Scherhag A, Schrenk D, Esselen M. Genotoxic properties of cyclopentenone prostaglandins and the onset of glutathione depletion. Chem Res Toxicol 2013; 26:252-61. [PMID: 23339592 DOI: 10.1021/tx300435p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostaglandins are endogenous mediators formed from arachidonic acid by cyclooxygenases and prostaglandin synthases during inflammatory processes. The five-membered ring can be dehydrated, and α,β-unsaturated cyclopentenone PGs (cyPGs) are generated. Recent studies have been focused on their potential pharmacological use against inflammation and cancer. However, little is known so far about possible adverse health effects of cyPGs. We addressed the question whether selected cyPGs at a concentration range of 0.1-10 μM exhibit mutagenic and genotoxic properties in the hamster lung fibroblast V79 cell line and whether these effects are accompanied by a depletion of intracellular glutathione (GSH). The cyPGs 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) and prostaglandin A2 (PGA2) significantly induced DNA damage in V79 cells after 1 h of incubation. Furthermore, a more pronounced increase in formamidopyrimidine-DNA glycosylase (FPG) sensitive sites, indicative of oxidative DNA-damage, was observed. The findings on DNA-damaging properties were supported by our results that 15dPGJ(2) acts as an aneugenic agent which induces the amount of kinetochore positive micronuclei associated with an increase of apoptosis. The strong potency of cyPGs to rapidly bind GSH measured in a chemical assay and to significantly reduce the GSH level after only 1 h of incubation may contribute to the observed oxidative DNA strand breaks, whereas directly induced oxidative stress via reactive oxygen species could be excluded. However, after an extended incubation time of 24 h no genotoxicity could be measured, this may contribute to the lack of mutagenicity in the hypoxanthine phosphorybosyltransferase (HPRT) assay. In conclusion, potential in vitro genotoxicity of cyPG and a strong impact on GSH homeostasis have been demonstrated, which may be involved in carcinogenesis mediated by chronic inflammation.
Collapse
Affiliation(s)
- Gergely Morten Solecki
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Kaikkonen S, Paakinaho V, Sutinen P, Levonen AL, Palvimo JJ. Prostaglandin 15d-PGJ(2) inhibits androgen receptor signaling in prostate cancer cells. Mol Endocrinol 2012. [PMID: 23192983 DOI: 10.1210/me.2012-1313] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Androgen signaling, in particular overexpression of the androgen receptor (AR), is critical for the growth and progression of prostate cancer. Because the AR is amenable to targeting by small-molecule inhibitors, it remains the major druggable target for the advanced disease. Inflammation has also been implicated in the cancerous growth in the prostate. Here we show that 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), an endogenously produced antiinflammatory prostaglandin, targets the AR and acts as a potent AR inhibitor, rapidly repressing AR target genes, such as FKBP51 and TMPRSS2 in prostate cancer cells. However, exposure of prostate cancer cells to 15d-PGJ(2) does not simply evoke a general inhibition of nuclear receptor activity or transcription because under the same conditions, peroxisome proliferator-activated receptor-γ is activated by 15d-PGJ(2). Moreover, 15d-PGJ(2) rapidly triggers modifications of AR by small ubiquitin-related modifier-2/3 (SUMO-2/3), which may modulate the repressing effect of 15d-PGJ(2) on AR-dependent transcription. Chromatin immunoprecipitation assays indicate that the inhibitory effect of 15d-PGJ(2) on FKBP51 and TMPRSS2 expression occurs in parallel with the inhibition of the AR binding to the regulatory regions of these genes. However, the DNA-binding activity is not the only AR function targeted by 15d-PGJ(2) because the prostaglandin also blunted the androgen-dependent interaction between the AR amino and carboxy termini. In conclusion, our results identify 15d-PGJ(2) as a potent and direct inhibitor of androgen signaling, suggesting novel possibilities in restricting the AR activity in prostate cancer cells.
Collapse
Affiliation(s)
- Sanna Kaikkonen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
24
|
Kansanen E, Jyrkkänen HK, Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 2012; 52:973-82. [PMID: 22198184 DOI: 10.1016/j.freeradbiomed.2011.11.038] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 12/20/2022]
Abstract
Unsaturated fatty acids are prone to radical reactions that occur in biological situations where extensive formation of reactive oxygen and nitrogen species (ROS and RNS) takes place. These reactions are frequent in inflammatory conditions such as atherosclerosis, and yield a variety of biologically active species, many of which are electrophilic in nature. Electrophilic lipid oxidation and nitration products can influence redox cell signaling via S-alkylation of protein thiols, and moderate exposure to these species evokes protective cell signaling responses through this mechanism. Herein, we review the stress signaling pathways elicited by electrophiles derived from unsaturated fatty acids, focusing on the Keap1-Nrf2 pathway, the heat shock response pathway (HSR), and the unfolded protein response pathway (UPR).
Collapse
Affiliation(s)
- Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211, Kuopio, Finland
| | | | | |
Collapse
|
25
|
Abstract
Transient receptor potential A1 (TRPA1) is a calcium permeable non-selective cation channel that is selectively localized to peptidergic C-fibres in the pain pathway. TRPA1 is highly conserved across the animal kingdom and it is able to detect a wide range of potentially toxic environmental chemicals. An unusual mechanism of TRPA1 activation was recently elucidated in which reactive agonists bind covalently to cysteines and lysine in the intracellular N-terminus. Despite a covalent activation mechanism, only transient TRPA1 activation is seen in the maintained presence of reactive agonists in whole-cell patch clamp experiments. I suggest that previous patch clamp studies are performed under conditions that do not fully mimic all aspects of TRPA1 activation. Here, I argue that compelling evidence exists for sustained TRPA1 activation in several chronic (neuropathic) pain-related pathophysiological conditions in vivo. I discuss briefly putative mechanisms that are likely to contribute to and maintain sustained TRPA1 agonist levels through increased production and/or decreased metabolism and inactivation. Chronic pain can be understood as a false alarm evoked by sustained and increased levels of endogenous TRPA1 agonists in various pathophysiological conditions.
Collapse
Affiliation(s)
- A Koivisto
- In Vitro Pharmacology, Orion Pharma Orion Corporation, Turku, Finland.
| |
Collapse
|
26
|
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | |
Collapse
|
27
|
Garzón B, Oeste CL, Díez-Dacal B, Pérez-Sala D. Proteomic studies on protein modification by cyclopentenone prostaglandins: Expanding our view on electrophile actions. J Proteomics 2011; 74:2243-63. [DOI: 10.1016/j.jprot.2011.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023]
|