1
|
Ye ZC, Liu JY, Chen CJ, Chen YY, Li WC, Liu MY. Investigating the binding products between human apolipoproteins and oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine by micellar electrokinetic chromatography. J Chromatogr A 2025; 1751:465898. [PMID: 40220603 DOI: 10.1016/j.chroma.2025.465898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
A micellar electrokinetic chromatography (MEKC) method has been developed to investigate the binding products between human apolipoproteins (Apos) and oxidized 1-palmitoyl-2-arachidonoyl-sn‑glycero-3-phosphocholine (ox-PAPC) products. The optimal MEKC separation buffer was composed of a solution mixture of 10 mM sodium phosphate, 50 mM bile salts (50 % sodium cholate and 50 % sodium deoxycholate), 30 % (v/v)1-propanol and 70 % (v/v) water, pH 7.4. The optimal MEKC sample buffer was composed of 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The selected separation voltage was 20 kV, and the capillary temperature was 25℃. The MEKC profiles of ox-PAPC products showed good separations and repeatability. The MEKC profiles of apos and their binding products also showed good repeatability. For the analysis of native PAPC (n-PAPC), the method is linear in the range of 0.00-6.00 mg/mL with a correlation coefficient 0.9984. The concentration limit of detection (LOD) is 0.29 mg/mL. The concentration limit of quantitation (LOQ) is 0.98 mg/mL. The binding reactions between several important human apolipoproteins (Apos A-I, A-II, C-I, C-II, C-III and E) and native PAPC, ox-PAPC products have been investigated. The concentrations of Apos and ox-PAPC products for binding reactions have been examined. The optimal binding buffer selected was 70 % (v/v) PBS buffer and 30 % (v/v) MeOH. The binding reaction was performed at 37 ℃ for 3 hr. The results indicated that ox-PAPC products bound to Apos A-I, A-II, C-I, and E more strongly than n-PAPC. However, both ox-PAPC products and n-PAPC did not bind to Apos C-II and C-III strongly. The results suggested pro-inflammatory properties of Apos A-I, A-II, C-I, and E, and implied one of the molecular mechanisms resulting in dysfunctional HDL particles. This study also demonstrated the feasibility of investigating the binding reactions between human apolipoproteins and ox-PAPC products by MEKC.
Collapse
Affiliation(s)
- Zhi-Cheng Ye
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Jia-Yuan Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Yi Chen
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Wen-Chun Li
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
| |
Collapse
|
2
|
Chen CJ, Chang CT, Lin ZR, Chiu WC, Liu JY, Ye ZC, Wang CJ, Shieh YT, Liu MY. Coupling capillary electrophoresis with mass spectrometry for the analysis of oxidized phospholipids in human high-density lipoproteins. Electrophoresis 2024; 45:333-345. [PMID: 37985935 DOI: 10.1002/elps.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human high-density lipoproteins (HDLs) were investigated by low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS). To accelerate the optimization, native PAPC (n-PAPC) standard was first analyzed by a commercial CE instrument with a photodiode array detector. The optimal separation buffer contained 60% (v/v) acetonitrile, 40% (v/v) methanol, 20 mM ammonium acetate, 0.5% (v/v) formic acid, and 0.1% (v/v) water. The selected separation voltage and capillary temperature were 20 kV and 23°C. The optimal CE separation buffer was then used for the low-flow CE-MS analysis. The selected MS conditions contained heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). No sheath gas was used for MS. The linear range for n-PAPC was 2.5-100.0 µg/mL. The coefficient of determination (R2 ) was 0.9918. The concentration limit of detection was 1.52 µg/mL, and the concentration limit of quantitation was 4.60 µg/mL. The optimal low-flow CE-MS method showed good repeatability and sensitivity. The ox-PAPC products in human HDLs were determined based on the in vitro ox-PAPC products of n-PAPC standard. Twenty-one ox-PAPC products have been analyzed in human HDLs. Uremic patients showed significantly higher levels of 15 ox-PAPC products than healthy subjects.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Proteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chiz-Tzung Chang
- Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Zhi-Ru Lin
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Wen-Chien Chiu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Jia-Yuan Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Zhi-Cheng Ye
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chuan-Jun Wang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Tzu Shieh
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
3
|
Gioia MD, Poli V, Tan PJ, Spreafico R, Chu A, Cuenca AG, Gordts PL, Pandolfi L, Meloni F, Witztum JL, Chou J, Springstead JR, Zanoni I. Host-derived oxidized phospholipids initiate effector-triggered immunity fostering lethality upon microbial encounter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568047. [PMID: 38045410 PMCID: PMC10690175 DOI: 10.1101/2023.11.21.568047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Macrophages detect invading microorganisms via pattern recognition receptors that recognize pathogen-associated molecular patterns, or via sensing the activity of virulence factors that initiates effector-triggered immunity (ETI). Tissue damage that follows pathogen encounter leads to the release of host-derived factors that participate to inflammation. How these self-derived molecules are sensed by macrophages and their impact on immunity remain poorly understood. Here we demonstrate that, in mice and humans, host-derived oxidized phospholipids (oxPLs) are formed upon microbial encounter. oxPL blockade restricts inflammation and prevents the death of the host, without affecting pathogen burden. Mechanistically, oxPLs bind and inhibit AKT, a master regulator of immunity and metabolism. AKT inhibition potentiates the methionine cycle, and epigenetically dampens Il10, a pluripotent anti-inflammatory cytokine. Overall, we found that host-derived inflammatory cues act as "self" virulence factors that initiate ETI and that their activity can be targeted to protect the host against excessive inflammation upon microbial encounter.
Collapse
Affiliation(s)
- Marco Di Gioia
- Harvard Medical School and Boston Children's Hospital, Division of Immunology and Division of Gastroenterology, MA 02115, USA
| | - Valentina Poli
- Harvard Medical School and Boston Children's Hospital, Division of Immunology and Division of Gastroenterology, MA 02115, USA
| | - Piao J Tan
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anne Chu
- Harvard Medical School and Boston Children's Hospital, Division of Immunology and Division of Gastroenterology, MA 02115, USA
| | - Alex G Cuenca
- Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, MA 02114, USA
| | - Philip Lsm Gordts
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Laura Pandolfi
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, and Department of Internal Medicine and Pharmacology, University of Pavia, Pavia, 27100, Italy Pavia, 27100, Italy
| | - Federica Meloni
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, and Department of Internal Medicine and Pharmacology, University of Pavia, Pavia, 27100, Italy Pavia, 27100, Italy
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Janet Chou
- Harvard Medical School and Boston Children's Hospital, Division of Immunology and Division of Gastroenterology, MA 02115, USA
| | - James R Springstead
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, USA
| | - Ivan Zanoni
- Harvard Medical School and Boston Children's Hospital, Division of Immunology and Division of Gastroenterology, MA 02115, USA
| |
Collapse
|
4
|
Chang CT, Chiu WC, Lin ZR, Shieh YT, Chang IT, Hsia MH, Wang CJ, Chen CJ, Liu MY. Determination of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine products in human very low-density lipoproteins by nonaqueous low-flow capillary electrophoresis-mass spectrometry. J Chromatogr A 2023; 1687:463694. [PMID: 36502642 DOI: 10.1016/j.chroma.2022.463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A simple and fast low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS) method has been developed to analyze oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human very low-density lipoproteins (VLDLs). Native PAPC standard was analyzed to optimize the low-flow CE-MS method. The optimal CE conditions included separation buffer (60% (v/v) acetonitrile, 40% (v/v) methanol, 0.1% (v/v) water, 0.5% (v/v) formic acid, 20 mM ammonium acetate), sheath liquid (60% (v/v) acetonitrile, 40% (v/v) methanol, 0.1% (v/v) water, 20 mM ammonium acetate), separation voltage (20 kV), separation capillary internal diameter (i.d.) (75 µm), separation capillary temperature (23˚C) and sample injection time (6 s). The selected MS conditions included heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). Sheath gas was not used in this study. The total ion chromatograms (TICs), extracted ion chromatograms (EICs) and MS spectra of native PAPC standard and its in vitro oxidation products showed good repeatability and sensitivity. To determine the ox-PAPC products in human VLDLs, the EICs and MS spectra of VLDLs were compared with the in vitro oxidation products of native PAPC standard. For native PAPC standard, the measured linear range was 2.5 - 100.0 µg/mL, and the coefficients of determination (R2) was 0.9994. The concentration limit of detection (LOD) was 0.44 µg/mL, and the concentration limit of quantitation (LOQ) was 1.34 µg/mL. A total of 21 ox-PAPC products were analyzed for the VLDLs of healthy and uremic subjects. The levels of 7 short-chain and 5 long-chain ox-PAPC products on uremic VLDLs were significantly higher than healthy VLDLs. This simple low-flow CE-MS method might be a good alternative for LC-MS for the analysis of ox-PAPC products. Furthermore, it might also help scientists to expedite the search for uremic biomarkers.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- Department of Medicine, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Chiu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Zhi-Ru Lin
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Tzu Shieh
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - I-Ting Chang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Min-Hui Hsia
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chuan-Jun Wang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
| |
Collapse
|
5
|
Analysis of Oxidized 1-Palmitoyl-2-Arachidonoyl-Sn-Glycero-3 Phosphocholine Products in Uremic Patients by LC-ESI/MS. SEPARATIONS 2022. [DOI: 10.3390/separations9080192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A simple liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS) method has been developed to analyze oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products on the lipoproteins of uremic patients. The native PAPC standard was in vitro oxidized by the Fenton reaction, and the ox-PAPC products were analyzed by LC- ESI/MS. For LC, a C8 column and a mobile phase (acetonitrile-isopropanol containing 0.1% formic acid (70:30, v/v)) were selected. For ESI/MS, the optimal conditions included sheath gas pressure (10 psi), capillary temperature (270 °C), and injection time (1000 ms). The identification of ox-PAPC products on human lipoproteins was based on the extracted ion chromatograms (EICs) and the ESI-MS spectra of the in vitro oxidation products of PAPC standard. The EICs and ESI-MS spectra showed good repeatability and sensitivity. A total of 21 ox-PAPC products was determined. Linear analysis has been performed for the phospholipid standard, 1, 2-Di-O-hexadecyl-sn-glycero-3-phosphocholine (PC(O-16:0/O-16:0)). The linear range was 5.0–100.0 µg/mL, and the coefficient of determination (R2) was 0.989. The concentration limit of detection (LOD) was 1.50 µg/mL, and the concentration limit of quantitation (LOQ) was 4.54 µg/mL. The selected 21 ox-PAPC products have been identified and quantified in very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) of uremic and healthy subjects. Interestingly, the results showed that the levels of 18 products in VLDL, one product in LDL, and 19 products in HDL were significantly higher for uremic patients than healthy controls. This simple LC-ESI/MS method might accelerate the searching for biomarkers of uremia in the future.
Collapse
|
6
|
Di Gioia M, Zanoni I. Dooming Phagocyte Responses: Inflammatory Effects of Endogenous Oxidized Phospholipids. Front Endocrinol (Lausanne) 2021; 12:626842. [PMID: 33790857 PMCID: PMC8005915 DOI: 10.3389/fendo.2021.626842] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
Endogenous oxidized phospholipids are produced during tissue stress and are responsible for sustaining inflammatory responses in immune as well as non-immune cells. Their local and systemic production and accumulation is associated with the etiology and progression of several inflammatory diseases, but the molecular mechanisms that underlie the biological activities of these oxidized phospholipids remain elusive. Increasing evidence highlights the ability of these stress mediators to modulate cellular metabolism and pro-inflammatory signaling in phagocytes, such as macrophages and dendritic cells, and to alter the activation and polarization of these cells. Because these immune cells serve a key role in maintaining tissue homeostasis and organ function, understanding how endogenous oxidized lipids reshape phagocyte biology and function is vital for designing clinical tools and interventions for preventing, slowing down, or resolving chronic inflammatory disorders that are driven by phagocyte dysfunction. Here, we discuss the metabolic and signaling processes elicited by endogenous oxidized lipids and outline new hypotheses and models to elucidate the impact of these lipids on phagocytes and inflammation.
Collapse
Affiliation(s)
- Marco Di Gioia
- Division of Immunology, Harvard Medical School, Boston Children’s Hospital, Boston, MA, United States
| | - Ivan Zanoni
- Division of Immunology, Harvard Medical School, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Harvard Medical School, Boston Children’s Hospital, Boston, MA, United States
- *Correspondence: Ivan Zanoni,
| |
Collapse
|
7
|
Mursalin MH, Coburn PS, Miller FC, Livingston ET, Astley R, Callegan MC. Innate Immune Interference Attenuates Inflammation In Bacillus Endophthalmitis. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 33180117 PMCID: PMC7671874 DOI: 10.1167/iovs.61.13.17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To explore the consequences of innate interference on intraocular inflammatory responses during Bacillus endophthalmitis. Methods Bacillus endophthalmitis was induced in mice. Innate immune pathway activation was interfered by injecting S layer protein-deficient (∆slpA) B. thuringiensis or by treating wild-type (WT)-infected mice with a TLR2/4 inhibitor (WT+OxPAPC). At 10 hours postinfection, eyes were harvested and RNA was purified. A NanoString murine inflammation panel was used to compare gene expression in WT-infected, WT+OxPAPC, ∆slpA-infected, and uninfected eyes. Results In WT-infected eyes, 56% of genes were significantly upregulated compared to uninfected controls. Compared to WT-infected eyes, the expression of 27% and 50% of genes were significantly reduced in WT+OxPAPC and ∆slpA-infected eyes, respectively. Expression of 61 genes that were upregulated in WT-infected eyes was decreased in WT+OxPAPC and ∆slpA-infected eyes. Innate interference resulted in blunted expression of complement factors (C3, Cfb, and C6) and several innate pathway genes (TLRs 2, 4, 6, and 8, MyD88, Nod2, Nlrp3, NF-κB, STAT3, RelA, RelB, and Ptgs2). Innate interference also reduced the expression of several inflammatory cytokines (CSF2, CSF3, IL-6, IL-1β, IL-1α, TNFα, IL-23α, TGFβ1, and IL-12β) and chemokines (CCL2, CCL3, and CXCLs 1, 2, 3, 5, 9, and 10). All of the aforementioned genes were significantly upregulated in WT-infected eyes. Conclusions These results suggest that interfering with innate activation significantly reduced the intraocular inflammatory response in Bacillus endophthalmitis. This positive clinical outcome could be a strategy for anti-inflammatory therapy of an infection typically refractory to corticosteroid treatment.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Erin T. Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| |
Collapse
|
8
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Oskolkova OV, Bochkov VN. Gain of function mechanisms triggering biological effects of oxidized phospholipids. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med 2017; 111:156-168. [PMID: 28232205 PMCID: PMC5511074 DOI: 10.1016/j.freeradbiomed.2017.02.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/26/2022]
Abstract
Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, macrophages exposed to oxidized phospholipids drastically change their gene expression pattern and function. These 'Mox,'macrophages were identified in atherosclerotic lesions, however, it remains unclear how lipid oxidation products are sensed by macrophages and how they influence their biological function. Here, we review recent developments in the field that provide insight into the structure, recognition, and downstream signaling of oxidized phospholipids in macrophages.
Collapse
Affiliation(s)
- Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Dory DeWeese
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| |
Collapse
|
12
|
Oehler B, Kistner K, Martin C, Schiller J, Mayer R, Mohammadi M, Sauer RS, Filipovic MR, Nieto FR, Kloka J, Pflücke D, Hill K, Schaefer M, Malcangio M, Reeh PW, Brack A, Blum R, Rittner HL. Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. Sci Rep 2017; 7:5447. [PMID: 28710476 PMCID: PMC5511297 DOI: 10.1038/s41598-017-05348-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Katrin Kistner
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Corinna Martin
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Rafaela Mayer
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Milad Mohammadi
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Reine-Solange Sauer
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,University of Bordeaux, IBGC, UMR 5095, Bordeaux, France
| | - Francisco R Nieto
- Wolfson CARD, King's College London, Guys' Campus, London, United Kingdom.,University of Granada, Department of Pharmacology, Granada, Spain
| | - Jan Kloka
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Diana Pflücke
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Hill
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Marzia Malcangio
- Wolfson CARD, King's College London, Guys' Campus, London, United Kingdom
| | - Peter W Reeh
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
13
|
Identification of Oxidized Phosphatidylinositols Present in OxLDL and Human Atherosclerotic Plaque. Lipids 2016; 52:11-26. [PMID: 27914034 DOI: 10.1007/s11745-016-4217-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/19/2016] [Indexed: 01/11/2023]
Abstract
Oxidized low-density lipoprotein (OxLDL) plays an important role in initiation and progression of atherosclerosis. Proatherogenic effects of OxLDL have been attributed to bioactive phospholipids generated during LDL oxidation. It is unknown what effect oxidation has on the phosphatidylinositol (PtdIns) molecules in LDL, even though PtdIns is 6% of the total LDL phospholipid pool. We sought to identify and quantitate oxidized phosphatidylinositol (OxPtdIns) species in OxLDL and human atherosclerotic plaque. Bovine liver PtdIns was subjected to non-enzymatic and lipoxygenase-catalyzed oxidation. Reversed-phase liquid chromatography with negative ESI-MS identified and confirmed compounds by fragmentation pattern analysis from which an OxPtdIns library was generated. Twenty-three OxPtdIns molecules were identified in copper-oxidized human LDL at 0, 6, 12, 24, 30, and 48 h, and in human atherosclerotic plaque. In OxLDL, OxPtdIns species containing aldehydes and carboxylates comprised 17.3 ± 0.1 and 0.9 ± 0.2%, respectively, of total OxPtdIns in OxLDL at 48 h. Hydroperoxides and isoprostanes at 24 h (68.5 ± 0.2 and 22.8 ± 0.2%) were significantly greater than 12 h (P < 0.01) without additional changes thereafter. Hydroxides decreased with increased oxidation achieving a minimum at 24 h (5.2 ± 0.3%). Human atherosclerotic plaques contained OxPtdIns species including aldehydes, carboxylates, hydroxides, hydroperoxides and isoprostanes, comprising 18.6 ± 4.7, 1.5 ± 0.7, 16.5 ± 7.4, 33.3 ± 1.1 and 30.2 ± 3.3% of total OxPtdIns compounds. This is the first identification of OxPtdIns molecules in human OxLDL and atherosclerotic plaque. With these novel molecules identified we can now investigate their potential role in atherosclerosis.
Collapse
|
14
|
Liu B, Tai Y, Caceres AI, Achanta S, Balakrishna S, Shao X, Fang J, Jordt SE. Oxidized Phospholipid OxPAPC Activates TRPA1 and Contributes to Chronic Inflammatory Pain in Mice. PLoS One 2016; 11:e0165200. [PMID: 27812120 PMCID: PMC5094666 DOI: 10.1371/journal.pone.0165200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023] Open
Abstract
Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to inflammatory pain and peripheral neuronal excitability in these conditions. Here, we observed that OxPAPC dose-dependently and selectively activated human TRPA1 nociceptive ion channels expressed in HEK293 cells in vitro, without any effect on other TRP channels, including TRPV1, TRPV4 and TRPM8. OxPAPC agonist activity was dependent on essential cysteine and lysine residues within the N-terminus of the TRPA1 channel protein. OxPAPC activated calcium influx into a subset of mouse sensory neurons which were also sensitive to the TRPA1 agonist mustard oil. Neuronal OxPAPC responses were largely abolished in neurons isolated from TRPA1-deficient mice. Intraplantar injection of OxPAPC into the mouse hind paw induced acute pain and persistent mechanical hyperalgesia and this effect was attenuated by the TRPA1 inhibitor, HC-030031. More importantly, we found levels of OxPAPC to be significantly increased in inflamed tissue in a mouse model of chronic inflammatory pain, identified by the binding of an OxPAPC-specific antibody. These findings suggest that TRPA1 is a molecular target for OxPAPC and OxPAPC may contribute to chronic inflammatory pain through TRPA1 activation. Targeting against OxPAPC and TRPA1 signaling pathway may be promising in inflammatory pain treatment.
Collapse
Affiliation(s)
- Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Yan Tai
- Department of Laboratory and Equipment Administration, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ana I. Caceres
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shrilatha Balakrishna
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J, Shi J, Donado CA, Shao F, Wu H, Springstead JR, Kagan JC. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 2016; 352:1232-6. [PMID: 27103670 PMCID: PMC5111085 DOI: 10.1126/science.aaf3036] [Citation(s) in RCA: 448] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) use pattern recognition receptors to detect microorganisms and activate protective immunity. These cells and receptors are thought to operate in an all-or-nothing manner, existing in an immunologically active or inactive state. Here, we report that encounters with microbial products and self-encoded oxidized phospholipids (oxPAPC) induce an enhanced DC activation state, which we call "hyperactive." Hyperactive DCs induce potent adaptive immune responses and are elicited by caspase-11, an enzyme that binds oxPAPC and bacterial lipopolysaccharide (LPS). oxPAPC and LPS bind caspase-11 via distinct domains and elicit different inflammasome-dependent activities. Both lipids induce caspase-11-dependent interleukin-1 release, but only LPS induces pyroptosis. The cells and receptors of the innate immune system can therefore achieve different activation states, which may permit context-dependent responses to infection.
Collapse
Affiliation(s)
- Ivan Zanoni
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA. Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy. Unit of Cell Signalling and Innate Immunity, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Yunhao Tan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Marco Di Gioia
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Achille Broggi
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jianjin Shi
- National Institute of Biological Sciences, Beijing 102206, China
| | - Carlos A Donado
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - James R Springstead
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Endothelial transcriptomic changes induced by oxidized low density lipoprotein disclose an up-regulation of Jak–Stat pathway. Vascul Pharmacol 2015; 73:104-14. [DOI: 10.1016/j.vph.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/17/2015] [Accepted: 05/24/2015] [Indexed: 01/23/2023]
|
17
|
Byon CH, Han T, Wu J, Hui ST. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice. Atherosclerosis 2015; 241:313-21. [PMID: 26062991 PMCID: PMC4509824 DOI: 10.1016/j.atherosclerosis.2015.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/09/2015] [Accepted: 05/17/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. METHODS AND RESULTS Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. CONCLUSION Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Adhesion
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Hydrogen Peroxide/pharmacology
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Inflammation Mediators/metabolism
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/metabolism
- Oxidation-Reduction
- Oxidative Stress
- Plaque, Atherosclerotic
- Signal Transduction/drug effects
- Thioredoxins/genetics
- Thioredoxins/metabolism
Collapse
Affiliation(s)
- Chang Hyun Byon
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Tieyan Han
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Judy Wu
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Simon T Hui
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Emert B, Hasin-Brumshtein Y, Springstead JR, Vakili L, Berliner JA, Lusis AJ. HDL inhibits the effects of oxidized phospholipids on endothelial cell gene expression via multiple mechanisms. J Lipid Res 2014; 55:1678-92. [PMID: 24859737 DOI: 10.1194/jlr.m047738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 11/20/2022] Open
Abstract
Oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phospholcholine (OxPAPC) and its component phospholipids accumulate in atherosclerotic lesions and regulate the expression of >1,000 genes, many proatherogenic, in human aortic endothelial cells (HAECs). In contrast, there is evidence in the literature that HDL protects the vasculature from inflammatory insult. We have previously shown that in HAECs, HDL attenuates the expression of several proatherogenic genes regulated by OxPAPC and 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. We now demonstrate that HDL reverses >50% of the OxPAPC transcriptional response. Genes reversed by HDL are enriched for inflammatory and vascular development pathways, while genes not affected by HDL are enriched for oxidative stress response pathways. The protective effect of HDL is partially mimicked by cholesterol repletion and treatment with apoA1 but does not require signaling through scavenger receptor class B type I. Furthermore, our data demonstrate that HDL protection requires direct interaction with OxPAPC. HDL-associated platelet-activating factor acetylhydrolase (PAF-AH) hydrolyzes short-chain bioactive phospholipids in OxPAPC; however, inhibiting PAF-AH activity does not prevent HDL protection. Our results are consistent with HDL sequestering specific bioactive lipids in OxPAPC, thereby preventing their regulation of select target genes. Overall, this work implicates HDL as a major regulator of OxPAPC action in endothelial cells via multiple mechanisms.
Collapse
Affiliation(s)
- Benjamin Emert
- Department of Medicine, Division of Cardiology University of California, Los Angeles, Los Angeles, CA 90095
| | - Yehudit Hasin-Brumshtein
- Department of Medicine, Division of Cardiology University of California, Los Angeles, Los Angeles, CA 90095
| | - James R Springstead
- Department of Chemical Engineering, Western Michigan University, Kalamazoo, MI 49008
| | - Ladan Vakili
- Department of Medicine, Division of Cardiology University of California, Los Angeles, Los Angeles, CA 90095
| | - Judith A Berliner
- Department of Medicine, Division of Cardiology University of California, Los Angeles, Los Angeles, CA 90095 Departments of Pathology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology University of California, Los Angeles, Los Angeles, CA 90095 Departments of Pathology, University of California, Los Angeles, Los Angeles, CA 90095 Human Genetics University of California, Los Angeles, Los Angeles, CA 90095 Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
19
|
Yan X, Lee S, Gugiu BG, Koroniak L, Jung ME, Berliner J, Cheng J, Li R. Fatty acid epoxyisoprostane E2 stimulates an oxidative stress response in endothelial cells. Biochem Biophys Res Commun 2014; 444:69-74. [PMID: 24434148 DOI: 10.1016/j.bbrc.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
Atherosclerosis is the main underlying cause of major cardiovascular diseases such as stroke and heart attack. Oxidized phospholipids such as oxidized 1-palmitoyl-2-arachidonoyl-sn-Glycero-3-phosphorylcholine (OxPAPC) accumulate in lesions of and promote atherosclerosis. OxPAPC activates endothelial cells, a critical early event of atherogenesis. Epoxyisoprostane E2 (EI) is an oxidized fatty acid contained at the sn-2 position of 1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine (PEIPC), the most active component of OxPAPC in regulating inflammation. OxPAPC and its components including PEIPC activate endothelial cells to express an array of genes in different categories including oxidative stress response genes such as tumor suppressor gene OKL38 and Heme oxygenase-1 (HO-1). EI can be released by lipase from PEIPC. In this study, we examined the ability of EI to stimulate oxidative stress response in endothelial cells. EI released from OxPAPC and synthetic EI stimulated the expression of oxidative stress response gene OKL38 and antioxidant gene HO-1. Treatment of endothelial cells with EI increased the production of superoxide. NADPH oxidase inhibitor Apocynin and superoxide scavenger N-acetyl-cysteine (NAC) significantly attenuated EI-stimulated expression of OKL38 and HO-1. We further demonstrated that EI activated oxidative stress-sensitive transcription factor Nrf2. Silencing of Nrf2 with siRNA significantly reduced EI stimulated expression of OKL38 and HO-1. Thus, we demonstrated that EI induced oxidative stress in endothelial cells leading to increased expression of oxidative stress response gene OKL38 and HO-1 via Nrf2 signaling pathway relevant to atherosclerosis.
Collapse
Affiliation(s)
- Xinmin Yan
- Changzhou No. 2 People's Hospital, Diabetes Institute, 29 Xinglong Lane, Changzhou City, Jiangsu Prov. 213003, China
| | - Sangderk Lee
- Department of Medicine, University of California, Los Angeles, 650 Charles Young Dr., Los Angeles, CA 90095, USA
| | - B Gabriel Gugiu
- Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lukasz Koroniak
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA
| | - Judith Berliner
- Department of Medicine, University of California, Los Angeles, 650 Charles Young Dr., Los Angeles, CA 90095, USA
| | - Jinluo Cheng
- Changzhou No. 2 People's Hospital, Diabetes Institute, 29 Xinglong Lane, Changzhou City, Jiangsu Prov. 213003, China.
| | - Rongsong Li
- Department of Medicine, University of California, Los Angeles, 650 Charles Young Dr., Los Angeles, CA 90095, USA; Department of Biomedical Engineering, University of Southern California Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Zimman A, Titz B, Komisopoulou E, Biswas S, Graeber TG, Podrez EA. Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS One 2014; 9:e84488. [PMID: 24400094 PMCID: PMC3882224 DOI: 10.1371/journal.pone.0084488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Specific oxidized phospholipids (oxPCCD36) promote platelet hyper-reactivity and thrombosis in hyperlipidemia via the scavenger receptor CD36, however the signaling pathway(s) induced in platelets by oxPCCD36 are not well defined. We have employed mass spectrometry-based tyrosine, serine, and threonine phosphoproteomics for the unbiased analysis of platelet signaling pathways induced by oxPCCD36 as well as by the strong physiological agonist thrombin. oxPCCD36 and thrombin induced differential phosphorylation of 115 proteins (162 phosphorylation sites) and 181 proteins (334 phosphorylation sites) respectively. Most of the phosphoproteome changes induced by either agonist have never been reported in platelets; thus they provide candidates in the study of platelet signaling. Bioinformatic analyses of protein phosphorylation dependent responses were used to categorize preferential motifs for (de)phosphorylation, predict pathways and kinase activity, and construct a phosphoproteome network regulating integrin activation. A putative signaling pathway involving Src-family kinases, SYK, and PLCγ2 was identified in platelets activated by oxPCCD36. Subsequent ex vivo studies in human platelets demonstrated that this pathway is downstream of the scavenger receptor CD36 and is critical for platelet activation by oxPCCD36. Our results provide multiple insights into the mechanism of platelet activation and specifically in platelet regulation by oxPCCD36.
Collapse
Affiliation(s)
- Alejandro Zimman
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Bjoern Titz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Evangelia Komisopoulou
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sudipta Biswas
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thomas G. Graeber
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eugene A. Podrez
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zhong W, Springstead JR, Al-Mubarak R, Lee S, Li R, Emert B, Berliner JA, Jung ME. An epoxyisoprostane is a major regulator of endothelial cell function. J Med Chem 2013; 56:8521-32. [PMID: 24117045 DOI: 10.1021/jm400959q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The goal of these studies was to determine the effect of 5,6-epoxyisoprostane, EI, on human aortic endothelial cells (HAEC). EI can form as a phospholipase product of 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine, PEIPC, a proinflammatory molecule that accumulates in sites of inflammation where phospholipases are also increased. To determine the effect of EI on HAEC, we synthesized several stereoisomers of EI using a convergent approach from the individual optically pure building blocks, the epoxyaldehydes 5 and 6 and the bromoenones 14 and 16. The desired stereoisomer of EI can be prepared from these materials in only six operations, and thus, large amounts of the product can be obtained. The trans/trans isomers had the most potent activity, suggesting specificity in the interaction of EI with the cell surface. EI has potent anti-inflammatory effects in HAEC. EI strongly inhibits the production of MCP-1, a major monocyte chemotactic factor, and either decreases or minimally increases the levels of 10 proinflammatory molecules increased by PEIPC. EI also strongly down-regulates the inflammatory effects of IL-1β, a major inflammatory cytokine. Thus EI, a hydrolytic product of PEIPC, has potent anti-inflammatory function.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Chemistry and Biochemistry and ‡Department of Medicine, University of California, Los Angeles , 405 Hilgard Avenue, Los Angeles, California 90095, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Navab M, Reddy ST, Van Lenten BJ, Buga GM, Hough G, Wagner AC, Fogelman AM. High-density lipoprotein and 4F peptide reduce systemic inflammation by modulating intestinal oxidized lipid metabolism: novel hypotheses and review of literature. Arterioscler Thromb Vasc Biol 2012; 32:2553-60. [PMID: 23077141 DOI: 10.1161/atvbaha.112.300282] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidized phospholipids are found in the vasculature of animal models of atherosclerosis, in human atherosclerotic lesions, and in other inflammatory diseases. Oxidized phospholipids cause vascular and nonvascular cells to initiate an inflammatory reaction. Metabolites of arachidonic acid, such as 12-hydroxyeicosatetraenoic acid, can mimic some of the inflammatory properties of oxidized phospholipids. In vitro and in vivo normal high-density lipoprotein (HDL), normal apolipoprotein A-I, and apolipoprotein A-I mimetic peptides, each likely acting in a different manner, prevent the inflammatory reaction characteristic of atherosclerosis, and this is associated with decreased levels of oxidized lipids in tissues and cells. HDL from animal models of atherosclerosis or from humans with atherosclerosis or from humans or animals with other chronic inflammatory diseases does not prevent the inflammatory reaction characteristic of atherosclerosis and may even enhance the inflammatory reaction. In mice and perhaps humans, ≈30% of the steady-state plasma HDL-cholesterol pool is derived from the small intestine. The metabolism of phospholipids by gut bacteria has been recently implicated in atherosclerosis in both mice and humans. Studies with apolipoprotein A-I mimetic peptides suggest that the small intestine is a major tissue regulating systemic inflammation in mouse models of atherosclerosis and may be important for determining the functionality of HDL.
Collapse
Affiliation(s)
- Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room A2-237 CHS, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. Role of phospholipid oxidation products in atherosclerosis. Circ Res 2012; 111:778-99. [PMID: 22935534 DOI: 10.1161/circresaha.111.256859] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms. It has been recognized that Ox-PL promote phenotypic changes in these cell types that have long-term consequences for the vessel wall. Individual Ox-PL responsible for specific cellular effects have been identified. A model of the configuration of bioactive truncated Ox-PL within membranes has been developed that demonstrates that the oxidized fatty acid moiety protrudes into the aqueous phase, rendering it accessible for receptor recognition. Receptors and signaling pathways for individual Ox-PL species are now determined and receptor independent signaling pathways identified. The effects of Ox-PL are mediated both by gene regulation and transcription independent processes. It has now become apparent that Ox-PL affects multiple genes and pathways, some of which are proatherogenic and some are protective. However, at concentrations that are likely present in the vessel wall in atherosclerotic lesions, the effects promote atherogenesis. There have also been new insights on enzymes that metabolize Ox-PL and the significance of these enzymes for atherosclerosis. With the knowledge we now have of the regulation and effects of Ox-PL in different vascular cell types, it should be possible to design experiments to test the role of specific Ox-PL on the development of atherosclerosis.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology, University of California-Los Angeles, MRL 4760, 675 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|