1
|
Chang YC, Hsieh ML, Lee HL, Hee SW, Chang CF, Yen HY, Chen YA, Chen YR, Chou YW, Li FA, Ke YY, Chen SY, Hung MS, Hung AFH, Huang JY, Chiu CH, Lin SY, Shih SF, Hsu CN, Hwang JJ, Yeh TK, Cheng TJR, Liao KCW, Laio D, Lin SW, Chen TY, Hu CM, Vogel U, Saar D, Kragelund BB, Tsou LK, Tseng YH, Chuang LM. Identification of PTGR2 inhibitors as a new therapeutic strategy for diabetes and obesity. EMBO Mol Med 2025:10.1038/s44321-025-00216-4. [PMID: 40119175 DOI: 10.1038/s44321-025-00216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master transcriptional regulator of systemic insulin sensitivity and energy balance. The anti-diabetic drug thiazolidinediones (TZDs) are potent synthetic PPARγ ligands with undesirable side effects, including obesity, fluid retention, and osteoporosis. 15-keto prostaglandin E2 (15-keto-PGE2) is an endogenous PPARγ ligand metabolized by prostaglandin reductase 2 (PTGR2). Here, we confirmed that 15-keto-PGE2 binds to and activates PPARγ via covalent binding. In patients with type 2 diabetes and obese mice, serum 15-keto-PGE2 levels were decreased. Administration of 15-keto-PGE2 improves glucose homeostasis and prevented diet-induced obesity in mice. Either genetic inhibition of PTGR2 or PTGR2 inhibitor BPRPT0245 protected mice from diet-induced obesity, insulin resistance, and hepatic steatosis without causing fluid retention and osteoporosis. In conclusion, inhibition of PTGR2 is a new therapeutic approach to treat diabetes and obesity through increasing endogenous PPARγ ligands while avoiding side effects including increased adiposity, fluid retention, and osteoporosis.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Meng-Lun Hsieh
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-An Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115201, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Ya-Wen Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-Yu Ke
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, 11571, Taiwan
| | - Shih-Yi Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | | | - Jing-Yong Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Chu-Hsuan Chiu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Shih-Yao Lin
- AltruBio Taiwan R&D Center, Taipei, 114063, Taiwan
| | | | - Chih-Neng Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin branch, Yunlin, 64041, Taiwan
| | - Juey-Jen Hwang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin branch, Yunlin, 64041, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan
| | | | - Karen Chia-Wen Liao
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel Laio
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100225, Taiwan
| | - Shu-Wha Lin
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 100225, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, 10048, Taiwan
| | - Tzu-Yu Chen
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 11571, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Daniel Saar
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan.
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 022515, USA.
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| |
Collapse
|
2
|
Boczki P, Colombo M, Weiner J, Rapöhn I, Lacher M, Kiess W, Hanschkow M, Körner A, Landgraf K. Inhibition of AHCY impedes proliferation and differentiation of mouse and human adipocyte progenitor cells. Adipocyte 2024; 13:2290218. [PMID: 38064408 PMCID: PMC10732623 DOI: 10.1080/21623945.2023.2290218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.
Collapse
Affiliation(s)
- Paula Boczki
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Marco Colombo
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Garmo LC, Herroon MK, Mecca S, Wilson A, Allen DR, Agarwal M, Kim S, Petriello MC, Podgorski I. The long-chain polyfluorinated alkyl substance perfluorohexane sulfonate (PFHxS) promotes bone marrow adipogenesis. Toxicol Appl Pharmacol 2024; 491:117047. [PMID: 39111555 DOI: 10.1016/j.taap.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) bioaccumulate in different organ systems, including bone. While existing research highlights the adverse impact of PFAS on bone density, a critical gap remains in understanding the specific effects on the bone marrow microenvironment, especially the bone marrow adipose tissue (BMAT). Changes in BMAT have been linked to various health consequences, such as the development of osteoporosis and the progression of metastatic tumors in bone. Studies presented herein demonstrate that exposure to a mixture of five environmentally relevant PFAS compounds promotes marrow adipogenesis in vitro and in vivo. We show that among the components of the mixture, PFHxS, an alternative to PFOS, has the highest propensity to accumulate in bone and effectively promote marrow adipogenesis. Utilizing RNAseq approaches, we identified the peroxisome proliferator-activated receptor (PPAR) signaling as a top pathway modulated by PFHxS exposure. Furthermore, we provide results suggesting the activation and involvement of PPAR-gamma (PPARγ) in PFHxS-mediated bone marrow adipogenesis, especially in combination with high-fat diet. In conclusion, our findings demonstrate the potential impact of elevated PFHxS levels, particularly in occupational settings, on bone health, and specifically bone marrow adiposity. This study contributes new insights into the health risks of PFHxS exposure, urging further research on the relationship between environmental factors, diet, and adipose tissue dynamics.
Collapse
Affiliation(s)
- Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alexis Wilson
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - David R Allen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Manisha Agarwal
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - Michael C Petriello
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
4
|
Smith J, Rai V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024; 12:1939. [PMID: 39335453 PMCID: PMC11429312 DOI: 10.3390/biomedicines12091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Kaiser-Graf D, Schulz A, Mangelsen E, Rothe M, Bolbrinker J, Kreutz R. Tissue lipidomic profiling supports a mechanistic role of the prostaglandin E2 pathway for albuminuria development in glomerular hyperfiltration. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1271042. [PMID: 38205443 PMCID: PMC10777844 DOI: 10.3389/fnetp.2023.1271042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
Background: Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. The Munich Wistar Frömter (MWF) rat is a non-diabetic model of chronic kidney disease (CKD) with GH due to inherited low nephron number resulting in spontaneous albuminuria and podocyte injury. In MWF rats, we identified prostaglandin (PG) E2 (PGE2) signaling as a potential causative mechanism of albuminuria in GH. Method: For evaluation of the renal PGE2 metabolic pathway, time-course lipidomic analysis of PGE2 and its downstream metabolites 15-keto-PGE2 and 13-14-dihydro-15-keto-PGE2 was conducted in urine, plasma and kidney tissues of MWF rats and albuminuria-resistant spontaneously hypertensive rats (SHR) by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Results: Lipidomic analysis revealed no dysregulation of plasma PGs over the time course of albuminuria development, while glomerular levels of PGE2 and 15-keto-PGE2 were significantly elevated in MWF compared to albuminuria-resistant SHR. Overall, averaged PGE2 levels in glomeruli were up to ×150 higher than the corresponding 15-keto-PGE2 levels. Glomerular metabolic ratios of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) were significantly lower, while metabolic ratios of prostaglandin reductases (PTGRs) were significantly higher in MWF rats with manifested albuminuria compared to SHR, respectively. Conclusion: Our data reveal glomerular dysregulation of the PGE2 metabolism in the development of albuminuria in GH, resulting at least partly from reduced PGE2 degradation. This study provides first insights into dynamic changes of the PGE2 pathway that support a role of glomerular PGE2 metabolism and signaling for early albuminuria manifestation in GH.
Collapse
Affiliation(s)
- Debora Kaiser-Graf
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Angela Schulz
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Mangelsen
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Juliane Bolbrinker
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Hee SW, Chang YC, Su L, Chen IJ, Jeng YM, Hsieh ML, Chang YC, Li FA, Liao D, Chen SM, Chuang LM. 15-keto-PGE 2 alleviates nonalcoholic steatohepatitis through its covalent modification of NF-κB factors. iScience 2023; 26:107997. [PMID: 37810249 PMCID: PMC10551900 DOI: 10.1016/j.isci.2023.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
15-keto-PGE2 is one of the eicosanoids with anti-inflammatory properties. In this study, we demonstrated that 15-keto-PGE2 post-translationally modified the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunits p105/p50 and p65 at Cys59 and Cys120 sites, respectively, hence inhibiting the activation of NF-κB signaling in macrophages. In mice fed a high-fat and high-sucrose diet (HFHSD), 15-keto-PGE2 treatment reduced pro-inflammatory cytokines and fasting glucose levels. In mice with non-alcoholic steatohepatitis (NASH) induced by a prolonged HFHSD, 15-keto-PGE2 treatment significantly decreased liver inflammation, lowered serum levels of alanine transaminase (ALT) and aspartate transferase (AST), and inhibited macrophage infiltration. It also reduced lipid droplet size and downregulated key regulators of lipogenesis. These findings highlight the potential of 15-keto-PGE2, through NF-κB modification, in preventing the development and progression of steatohepatitis, emphasizing the significance of endogenous lipid mediators in the inflammatory response.
Collapse
Affiliation(s)
- Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100225, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Lynn Su
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Ing-Jung Chen
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100225, Taiwan
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Yu-Chia Chang
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Daniel Liao
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100225, Taiwan
| | - Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei 100225, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100225, Taiwan
| |
Collapse
|
7
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
8
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
9
|
Derežanin L, Blažytė A, Dobrynin P, Duchêne DA, Grau JH, Jeon S, Kliver S, Koepfli KP, Meneghini D, Preick M, Tomarovsky A, Totikov A, Fickel J, Förster DW. Multiple types of genomic variation contribute to adaptive traits in the mustelid subfamily Guloninae. Mol Ecol 2022; 31:2898-2919. [PMID: 35334142 DOI: 10.1111/mec.16443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Species of the mustelid subfamily Guloninae inhabit diverse habitats on multiple continents, and occupy a variety of ecological niches. They differ in feeding ecologies, reproductive strategies and morphological adaptations. To identify candidate loci associated with adaptations to their respective environments, we generated a de novo assembly of the tayra (Eira barbara), the earliest diverging species in the subfamily, and compared this with the genomes available for the wolverine (Gulo gulo) and the sable (Martes zibellina). Our comparative genomic analyses included searching for signs of positive selection, examining changes in gene family sizes, as well as searching for species-specific structural variants (SVs). Among candidate loci associated with phenotypic traits, we observed many related to diet, body condition and reproduction. For example, for the tayra, which has an atypical gulonine reproductive strategy of aseasonal breeding, we observe species-specific changes in many pregnancy-related genes. For the wolverine, a circumpolar hypercarnivore that must cope with seasonal food scarcity, we observed many changes in genes associated with diet and body condition. All types of genomic variation examined (single nucleotide polymorphisms, gene family expansions, structural variants) contributed substantially to the identification of candidate loci. This strongly argues for consideration of variation other than single nucleotide polymorphisms in comparative genomics studies aiming to identify loci of adaptive significance.
Collapse
Affiliation(s)
- Lorena Derežanin
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| | - Asta Blažytė
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST, Ulsan, 44919, Republic of Korea
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia
| | - David A Duchêne
- Center for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | - José Horacio Grau
- amedes Genetics, amedes Medizinische Dienstleistungen GmbH, Jägerstr. 61, 10117, Berlin, Germany
| | - Sungwon Jeon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST, Ulsan, 44919, Republic of Korea.,Clinomics Inc, Ulsan, 44919, Republic of Korea
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Klaus-Peter Koepfli
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Smithsonian-Mason School of Conservation, 1500 Remount Road, Front Royal, VA, 22630, USA.,Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Dorina Meneghini
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| | - Michaela Preick
- Institute for Biochemistry and Biology, Faculty of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, OT, Germany
| | - Andrey Tomarovsky
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 1 Pirogova str, Novosibirsk, 630090, Russia
| | - Azamat Totikov
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 1 Pirogova str, Novosibirsk, 630090, Russia
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany.,Institute for Biochemistry and Biology, Faculty of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, OT, Germany
| | - Daniel W Förster
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| |
Collapse
|
10
|
Kamoshita M, Kumar R, Anteghini M, Kunze M, Islinger M, Martins dos Santos V, Schrader M. Insights Into the Peroxisomal Protein Inventory of Zebrafish. Front Physiol 2022; 13:822509. [PMID: 35295584 PMCID: PMC8919083 DOI: 10.3389/fphys.2022.822509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.
Collapse
Affiliation(s)
- Maki Kamoshita
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vítor Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
- *Correspondence: Michael Schrader,
| |
Collapse
|
11
|
Novo LC, Cavani L, Pinedo P, Melendez P, Peñagaricano F. Genomic Analysis of Visceral Fat Accumulation in Holstein Cows. Front Genet 2022; 12:803216. [PMID: 35058972 PMCID: PMC8764383 DOI: 10.3389/fgene.2021.803216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Visceral fat is related to important metabolic processes, including insulin sensitivity and lipid mobilization. The goal of this study was to identify individual genes, pathways, and molecular processes implicated in visceral fat deposition in dairy cows. Data from 172 genotyped Holstein cows classified at slaughterhouse as having low (n = 77; omental fold <5 mm in thickness and minimum fat deposition in omentum) or high (n = 95; omental fold ≥20 mm in thickness and marked fat deposition in omentum) omental fat were analyzed. The identification of regions with significant additive and non-additive genetic effects was performed using a two-step mixed model-based approach. Genomic scans were followed by gene-set analyses in order to reveal the genetic mechanisms controlling abdominal obesity. The association mapping revealed four regions located on BTA19, BTA20 and BTA24 with significant additive effects. These regions harbor genes, such as SMAD7, ANKRD55, and the HOXB family, that are implicated in lipolysis and insulin tolerance. Three regions located on BTA1, BTA13, and BTA24 showed marked non-additive effects. These regions harbor genes MRAP, MIS18A, PRNP and TSHZ1, that are directly implicated in adipocyte differentiation, lipid metabolism, and insulin sensitivity. The gene-set analysis revealed functional terms related to cell arrangement, cell metabolism, cell proliferation, cell signaling, immune response, lipid metabolism, and membrane permeability, among other functions. We further evaluated the genetic link between visceral fat and two metabolic disorders, ketosis, and displaced abomasum. For this, we analyzed 28k records of incidence of metabolic disorders from 14k cows across lactations using a single-step genomic BLUP approach. Notably, the region on BTA20 significantly associated with visceral fat deposition was also associated with the incidence of displaced abomasum. Overall, our findings suggest that visceral fat deposition in dairy cows is controlled by both additive and non-additive effects. We detected at least one region with marked pleiotropic effects affecting both visceral fat accumulation and displaced abomasum.
Collapse
Affiliation(s)
- Larissa C Novo
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Ligia Cavani
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Pablo Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Pedro Melendez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
12
|
Goroshchuk O, Kolosenko I, Kunold E, Vidarsdottir L, Pirmoradian M, Azimi A, Jafari R, Palm-Apergi C. Thermal proteome profiling identifies PIP4K2A and ZADH2 as off-targets of Polo-like kinase 1 inhibitor volasertib. FASEB J 2021; 35:e21741. [PMID: 34143546 DOI: 10.1096/fj.202100457rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Polo-like kinase 1 (PLK1) is an important cell cycle kinase and an attractive target for anticancer treatments. An ATP-competitive small molecular PLK1 inhibitor, volasertib, has reached phase III in clinical trials in patients with refractory acute myeloid leukemia as a combination treatment with cytarabine. However, severe side effects limited its use. The origin of the side effects is unclear and might be due to insufficient specificity of the drug. Thus, identifying potential off-targets to volasertib is important for future clinical trials and for the development of more specific drugs. In this study, we used thermal proteome profiling (TPP) to identify proteome-wide targets of volasertib. Apart from PLK1 and proteins regulated by PLK1, we identified about 200 potential volasertib off-targets. Comparison of this result with the mass-spectrometry analysis of volasertib-treated cells showed that phosphatidylinositol phosphate and prostaglandin metabolism pathways are affected by volasertib. We confirmed that PIP4K2A and ZADH2-marker proteins for these pathways-are, indeed, stabilized by volasertib. PIP4K2A, however, was not affected by another PLK1 inhibitor onvansertib, suggesting that PIP4K2A is a true off-target of volasertib. Inhibition of these proteins is known to impact both the immune response and fatty acid metabolism and could explain some of the side effects seen in volasertib-treated patients.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Elena Kunold
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Mohammad Pirmoradian
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Leslie E, Lopez V, Anti NAO, Alvarez R, Kafeero I, Welsh DG, Romero M, Kaushal S, Johnson CM, Bosviel R, Blaženović I, Song R, Brito A, Frano MRL, Zhang L, Newman JW, Fiehn O, Wilson SM. Gestational long-term hypoxia induces metabolomic reprogramming and phenotypic transformations in fetal sheep pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2021; 320:L770-L784. [PMID: 33624555 DOI: 10.1152/ajplung.00469.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Eric Leslie
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Vanessa Lopez
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Nana A O Anti
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Rafael Alvarez
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Isaac Kafeero
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Donald G Welsh
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shawn Kaushal
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Remy Bosviel
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Ivana Blaženović
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California.,Center for Health Research, California Polytechnic State University, San Luis Obispo, California.,Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John W Newman
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,Department of Nutrition, University of California, Davis, California.,USDA-ARS Western Human Nutrition Research Center, Davis, California
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,West Coast Metabolomics Center, University of California, Davis, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
14
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
15
|
Concerted EP2 and EP4 Receptor Signaling Stimulates Autocrine Prostaglandin E 2 Activation in Human Podocytes. Cells 2020; 9:cells9051256. [PMID: 32438662 PMCID: PMC7290667 DOI: 10.3390/cells9051256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glomerular hyperfiltration is an important mechanism in the development of albuminuria. During hyperfiltration, podocytes are exposed to increased fluid flow shear stress (FFSS) in Bowman’s space. Elevated Prostaglandin E2 (PGE2) synthesis and upregulated cyclooxygenase 2 (Cox2) are associated with podocyte injury by FFSS. We aimed to elucidate a PGE2 autocrine/paracrine pathway in human podocytes (hPC). We developed a modified liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS) protocol to quantify cellular PGE2, 15-keto-PGE2, and 13,14-dihydro-15-keto-PGE2 levels. hPC were treated with PGE2 with or without separate or combined blockade of prostaglandin E receptors (EP), EP2, and EP4. Furthermore, the effect of FFSS on COX2, PTGER2, and PTGER4 expression in hPC was quantified. In hPC, stimulation with PGE2 led to an EP2- and EP4-dependent increase in cyclic adenosine monophosphate (cAMP) and COX2, and induced cellular PGE2. PTGER4 was downregulated after PGE2 stimulation in hPC. In the corresponding LC/ESI-MS/MS in vivo analysis at the tissue level, increased PGE2 and 15-keto-PGE2 levels were observed in isolated glomeruli obtained from a well-established rat model with glomerular hyperfiltration, the Munich Wistar Frömter rat. COX2 and PTGER2 were upregulated by FFSS. Our data thus support an autocrine/paracrine COX2/PGE2 pathway in hPC linked to concerted EP2 and EP4 signaling.
Collapse
|
16
|
Yao L, Chen W, Song K, Han C, Gandhi CR, Lim K, Wu T. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury. PLoS One 2017; 12:e0176106. [PMID: 28423012 PMCID: PMC5397067 DOI: 10.1371/journal.pone.0176106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
The NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of prostaglandin E2 (PGE2), converting the pro-inflammatory PGE2 to the anti-inflammatory 15-keto-PGE2 (an endogenous ligand for peroxisome proliferator-activated receptor-gamma [PPAR-γ]). To evaluate the significance of 15-PGDH/15-keto-PGE2 cascade in liver inflammation and tissue injury, we generated transgenic mice with targeted expression of 15-PGDH in the liver (15-PGDH Tg) and the animals were subjected to lipopolysaccharide (LPS)/Galactosamine (GalN)-induced acute liver inflammation and injury. Compared to the wild type mice, the 15-PGDH Tg mice showed lower levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), less liver tissue damage, less hepatic apoptosis/necrosis, less macrophage activation, and lower inflammatory cytokine production. In cultured Kupffer cells, treatment with 15-keto-PGE2 or the conditioned medium (CM) from 15-PGDH Tg hepatocyes inhibited LPS-induced cytokine production, in vitro. Both 15-keto-PGE2 and the CM from15-PGDH Tg hepatocyes also up-regulated the expression of PPAR-γ downstream genes in Kupffer cells. In cultured hepatocytes, 15-keto-PGE2 treatment or 15-PGDH overexpression did not influence TNF-α-induced hepatocyte apoptosis. These findings suggest that 15-PGDH protects against LPS/GalN-induced liver injury and the effect is mediated via 15-keto-PGE2, which activates PPAR-γ in Kupffer cells and thus inhibits their ability to produce inflammatory cytokines. Accordingly, we observed that the PPAR-γ antagonist, GW9662, reversed the effect of 15-keto-PGE2 in Kupffer cell in vitro and restored the susceptibility of 15-PGDH Tg mice to LPS/GalN-induced acute liver injury in vivo. Collectively, our findings suggest that 15-PGDH-derived 15-keto-PGE2 from hepatocytes is able to activate PPAR-γ and inhibit inflammatory cytokine production in Kupffer cells and that this paracrine mechanism negatively regulates LPS-induced necro-inflammatory response in the liver. Therefore, induction of 15-PGDH expression or utilization of 15-keto-PGE2 analogue may have therapeutic benefits for the treatment of endotoxin-associated liver inflammation/injury.
Collapse
Affiliation(s)
- Lu Yao
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Chandrashekhar R. Gandhi
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, United States of America
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Cancer Research Institute and Infection Signaling Network Research Center, Chungnam National University, Daejeon, Korea
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016; 61:149-62. [DOI: 10.1016/j.plipres.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
|
18
|
Nasrallah R, Hassouneh R, Hébert RL. PGE2, Kidney Disease, and Cardiovascular Risk: Beyond Hypertension and Diabetes. J Am Soc Nephrol 2015; 27:666-76. [PMID: 26319242 DOI: 10.1681/asn.2015050528] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An important measure of cardiovascular health is obtained by evaluating the global cardiovascular risk, which comprises a number of factors, including hypertension and type 2 diabetes, the leading causes of illness and death in the world, as well as the metabolic syndrome. Altered immunity, inflammation, and oxidative stress underlie many of the changes associated with cardiovascular disease, diabetes, and the metabolic syndrome, and recent efforts have begun to elucidate the contribution of PGE2 in these events. This review summarizes the role of PGE2 in kidney disease outcomes that accelerate cardiovascular disease, highlights the role of cyclooxygenase-2/microsomal PGE synthase 1/PGE2 signaling in hypertension and diabetes, and outlines the contribution of PGE2 to other aspects of the metabolic syndrome, particularly abdominal adiposity, dyslipidemia, and atherogenesis. A clearer understanding of the role of PGE2 could lead to new avenues to improve therapeutic options and disease management strategies.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramzi Hassouneh
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Mesa J, Alsina C, Oppermann U, Parés X, Farrés J, Porté S. Human prostaglandin reductase 1 (PGR1): Substrate specificity, inhibitor analysis and site-directed mutagenesis. Chem Biol Interact 2015; 234:105-13. [PMID: 25619643 DOI: 10.1016/j.cbi.2015.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/19/2014] [Accepted: 01/15/2015] [Indexed: 11/24/2022]
Abstract
Prostaglandins (PGs) are lipid compounds derived from arachidonic acid by the action of cyclooxygenases, acting locally as messenger molecules in a wide variety of physiological processes, such as inflammation, cell survival, apoptosis, smooth muscle contraction, adipocyte differentiation, vasodilation and platelet aggregation inhibition. In the inactivating pathway of PGs, the first metabolic intermediates are 15-keto-PGs, which are further converted into 13,14-dihydro-15-keto-PGs by different enzymes having 15-keto-PG reductase activity. Three human PG reductases (PGR), zinc-independent members of the medium-chain dehydrogenase/reductase (MDR) superfamily, perform the first irreversible step of the degradation pathway. We have focused on the characterization of the recombinant human enzyme prostaglandin reductase 1 (PGR1), also known as leukotriene B4 dehydrogenase. Only a partial characterization of this enzyme, isolated from human placenta, had been previously reported. In the present work, we have developed a new HPLC-based method for the determination of the 15-keto-PG reductase activity. We have performed an extensive kinetic characterization of PGR1, which catalyzes the NADPH-dependent reduction of the α,β-double bond of aliphatic and aromatic aldehydes and ketones, and 15-keto-PGs. PGR1 also shows low activity in the oxidation of leukotriene B4. The best substrates in terms of kcat/Km were 15-keto-PGE2, trans-3-nonen-2-one and trans-2-decenal. Molecular docking simulations, based on the three-dimensional structure of the human enzyme (PDB ID 2Y05), and site-directed mutagenesis studies were performed to pinpoint important structural determinants, highlighting the role of Arg56 and Tyr245 in 15-keto-PG binding. Finally, inhibition analysis was done using non-steroidal anti-inflammatory drugs (NSAIDs) as potential inhibitors.
Collapse
Affiliation(s)
- Julio Mesa
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Faculty of Biosciences, E-08193 Bellaterra (Barcelona), Spain
| | - Cristina Alsina
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Faculty of Biosciences, E-08193 Bellaterra (Barcelona), Spain
| | - Udo Oppermann
- University of Oxford, Nuffield Department of Orthopaedics, Oxford, UK
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Faculty of Biosciences, E-08193 Bellaterra (Barcelona), Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Faculty of Biosciences, E-08193 Bellaterra (Barcelona), Spain
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Faculty of Biosciences, E-08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|