1
|
Nartey MNN, Shimizu H, Sugiyama H, Higa M, Syeda PK, Nishimura K, Jisaka M, Yokota K. Eicosapentaenoic Acid Induces the Inhibition of Adipogenesis by Reducing the Effect of PPARγ Activator and Mediating PKA Activation and Increased COX-2 Expression in 3T3-L1 Cells at the Differentiation Stage. Life (Basel) 2023; 13:1704. [PMID: 37629561 PMCID: PMC10456008 DOI: 10.3390/life13081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity has received increasing attention in recent years because it is a factor in the development of non-communicable diseases. The current study aimed to analyze how representative fatty acids (FAs) such as palmitic acid, stearic acid, oleic acid, α-linolenic acid (ALA), and eicosapentaenoic acid (EPA) affected adipogenesis when/if introduced at the differentiation stage of 3T3-L1 cell culture. These FAs are assumed to be potentially relevant to the progression or prevention of obesity. EPA added during the differentiation stage reduced intracellular triacylglycerol (TAG) accumulation, as well as the expression of the established adipocyte-specific marker genes, during the maturation stage. However, no other FAs inhibited intracellular TAG accumulation. Coexistence of Δ12-prostaglandin J2, a peroxisome proliferator-activated receptor γ activator, with EPA during the differentiation stage partially attenuated the inhibitory effect of EPA on intracellular TAG accumulation. EPA increased cyclooxygenase-2 (COX-2) expression and protein kinase A (PKA) activity at the differentiation stage, which could explain the inhibitory actions of EPA. Taken together, exposure of preadipocytes to EPA only during the differentiation stage may be sufficient to finally reduce the mass of white adipose tissue through increasing COX-2 expression and PKA activity.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana;
| | - Hidehisa Shimizu
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| | - Hikaru Sugiyama
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
| | - Manami Higa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
| | - Pinky Karim Syeda
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
| | - Kohji Nishimura
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| | - Mitsuo Jisaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| | - Kazushige Yokota
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan; (H.S.); (M.H.); (K.N.); (K.Y.)
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan;
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| |
Collapse
|
2
|
Nartey MNN, Jisaka M, Syeda PK, Nishimura K, Shimizu H, Yokota K. Arachidonic Acid Added during the Differentiation Phase of 3T3-L1 Cells Exerts Anti-Adipogenic Effect by Reducing the Effects of Pro-Adipogenic Prostaglandins. Life (Basel) 2023; 13:life13020367. [PMID: 36836723 PMCID: PMC9962328 DOI: 10.3390/life13020367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
A linoleic acid (LA) metabolite arachidonic acid (AA) added to 3T3-L1 cells is reported to suppress adipogenesis. The purpose of the present study aimed to clarify the effects of AA added during the differentiation phase, including adipogenesis, the types of prostaglandins (PG)s produced, and the crosstalk between AA and the PGs produced. Adipogenesis was inhibited by AA added, while LA did not. When AA was added, increased PGE2 and PGF2α production, unchanged Δ12-PGJ2 production, and reduced PGI2 production were observed. Since the decreased PGI2 production was reflected in decreased CCAAT/enhancer-binding protein-β (C/EBPβ) and C/EBPδ expression, we expected that the coexistence of PGI2 with AA would suppress the anti-adipogenic effects of AA. However, the coexistence of PGI2 with AA did not attenuate the anti-adipogenic effects of AA. In addition, the results were similar when Δ12-PGJ2 coexisted with AA. Taken together, these results indicated that the metabolism of ingested LA to AA is necessary to inhibit adipogenesis and that exposure of AA to adipocytes during only the differentiation phase is sufficient. As further mechanisms for suppressing adipogenesis, AA was found not only to increase PGE2 and PGF2α and decrease PGI2 production but also to abrogate the pro-adipogenic effects of PGI2 and Δ12-PGJ2.
Collapse
Affiliation(s)
- Michael N. N. Nartey
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Council for Scientific and Industrial Research-Animal Research Institute, Achimota, Accra P.O. Box AH20, Ghana
| | - Mitsuo Jisaka
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Correspondence:
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Kohji Nishimura
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Hidehisa Shimizu
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| | - Kazushige Yokota
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Shimane, Matsue 690-8504, Japan
| |
Collapse
|
3
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
4
|
He C, Wang Y, Zhu J, Li Y, Chen J, Lin Y. Integrative Analysis of lncRNA-miRNA-mRNA Regulatory Network Reveals the Key lncRNAs Implicated Potentially in the Differentiation of Adipocyte in Goats. Front Physiol 2022; 13:900179. [PMID: 35600305 PMCID: PMC9117728 DOI: 10.3389/fphys.2022.900179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Goats are popular in China because of their superior meat quality, delicate flesh, and unique flavor. Long noncoding RNAs (lncRNAs) play important roles in transcriptional and post-transcriptional regulation of gene expression. However, the effects of lncRNAs on adipocyte differentiation in goat has not been fully elucidated yet. In this investigation, we performed RNA-Seq analysis of intramuscular and subcutaneous adipocytes from Jianzhou Daer goat before and after differentiation, including both intramuscular preadipocytes (IMPA) vs. intramuscular adipocytes (IMA) and subcutaneous preadipocytes (SPA) vs. subcutaneous adipocytes (SA). A total of 289.49 G clean reads and 12,519 lncRNAs were obtained from 20 samples. In total, 3,733 differentially expressed RNAs (182 lncRNAs and 3,551 mRNAs) were identified by pairwise comparison. There were 135 differentially expressed lncRNAs (DELs) specific to intramuscular adipocytes, 39 DELs specific to subcutaneous adipocytes, and 8 DELs common to both adipocytes in these 182 DELs. Some well-known and novel pathways associated with preadipocyte differentiation were identified: fat acid metabolism, TGF-beta signaling pathway and PI3K-Akt signaling pathway. By integrating miRNA-seq data from another study, we also identified hub miRNAs in both types of fat cells. Our analysis revealed the unique and common lncRNA-miRNA-mRNA networks of two kinds of adipocytes. Several lncRNAs that regulate potentially goat preadipocyte differentiation were identified, such as XR_001918 647.1, XR_001917728.1, XR_001297263.2 and LNC_004191. Furthermore, our findings from the present study may contribute to a better understanding of the molecular mechanisms underlying in goat meat quality and provide a theoretical basis for further goat molecular breeding.
Collapse
Affiliation(s)
- Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Juan Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
- *Correspondence: Yaqiu Lin,
| |
Collapse
|
5
|
Phenotypical Conversions of Dermal Adipocytes as Pathophysiological Steps in Inflammatory Cutaneous Disorders. Int J Mol Sci 2022; 23:ijms23073828. [PMID: 35409189 PMCID: PMC8998946 DOI: 10.3390/ijms23073828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Adipocytes from the superficial layer of subcutaneous adipose tissue undergo cyclic de- and re-differentiation, which can significantly influence the development of skin inflammation under different cutaneous conditions. This inflammation can be connected with local loading of the reticular dermis with lipids released due to de-differentiation of adipocytes during the catagen phase of the hair follicle cycle. Alternatively, the inflammation parallels a widespread release of cathelicidin, which typically takes place in the anagen phase (especially in the presence of pathogens). Additionally, trans-differentiation of dermal adipocytes into myofibroblasts, which can occur under some pathological conditions, can be responsible for the development of collateral scarring in acne. Here, we provide an overview of such cellular conversions in the skin and discuss their possible involvement in the pathophysiology of inflammatory skin conditions, such as acne and psoriasis.
Collapse
|
6
|
Maimó-Barceló A, Martín-Saiz L, Fernández JA, Pérez-Romero K, Garfias-Arjona S, Lara-Almúnia M, Piérola-Lopetegui J, Bestard-Escalas J, Barceló-Coblijn G. Polyunsaturated Fatty Acid-Enriched Lipid Fingerprint of Glioblastoma Proliferative Regions Is Differentially Regulated According to Glioblastoma Molecular Subtype. Int J Mol Sci 2022; 23:ijms23062949. [PMID: 35328369 PMCID: PMC8949316 DOI: 10.3390/ijms23062949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ’s effects on GBM and healthy brain tissue could reveal new approaches to address chemotherapy side effects. In this context, we have previously demonstrated the membrane lipidome is highly cell type-specific and very sensitive to pathophysiological states. However, little remains known as to how membrane lipids participate in GBM onset and progression. Hence, we employed an ex vivo model to assess the impact of TMZ treatment on healthy and GBM lipidome, which was established through imaging mass spectrometry techniques. This approach revealed that bioactive lipid metabolic hubs (phosphatidylinositol and phosphatidylethanolamine plasmalogen species) were altered in healthy brain tissue treated with TMZ. To better understand these changes, we interrogated RNA expression and DNA methylation datasets of the Cancer Genome Atlas database. The results enabled GBM subtypes and patient survival to be linked with the expression of enzymes accounting for the observed lipidome, thus proving that exploring the lipid changes could reveal promising therapeutic approaches for GBM, and ways to ameliorate TMZ side effects.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - Karim Pérez-Romero
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Santiago Garfias-Arjona
- Quirónsalud Medical Center, 07300 Inca, Spain;
- Son Verí Quirónsalud Hospital, Balearic Islands, 07609 Son Veri Nou, Spain
- Hospital de Llevant, 07680 Porto Cristo, Spain
| | - Mónica Lara-Almúnia
- Department of Neurosurgery, Jimenez Diaz Foundation University Hospital, Reyes Catolicos Av., No 2, 28040 Madrid, Spain;
- Ruber International Hospital, Maso St., No 38, 28034 Madrid, Spain
| | - Javier Piérola-Lopetegui
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Joan Bestard-Escalas
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
- Correspondence: (J.B.-E.); (G.B.-C.)
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
- Correspondence: (J.B.-E.); (G.B.-C.)
| |
Collapse
|
7
|
Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, Norton L, DeFronzo RA, Shannon CE. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Front Physiol 2021; 12:784391. [PMID: 34925073 PMCID: PMC8674727 DOI: 10.3389/fphys.2021.784391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alberto Chavez-Velazquez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luke Norton
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christopher E. Shannon
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
Miura A, Ikeda A, Abe M, Seo K, Watanabe T, Ozaki-Masuzawa Y, Hosono T, Seki T. Diallyl Trisulfide Prevents Obesity and Decreases miRNA-335 Expression in Adipose Tissue in a Diet-Induced Obesity Rat Model. Mol Nutr Food Res 2021; 65:e2001199. [PMID: 34014027 DOI: 10.1002/mnfr.202001199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/19/2021] [Indexed: 01/03/2023]
Abstract
SCOPE Diallyl trisulfide (DATS), an organosulfur compound generates in crushed garlic, has various beneficial health effects. A growing body of evidence indicates that miRNAs are involved in the pathology of lifestyle diseases including obesity. The anti-obesogenic effect of garlic is previously reported; however, the effects of DATS on obesity, and the relationship between garlic compounds and the involvement of miRNA remains unclear. Here, the anti-obesogenic activity of DATS and the potential role of miRNA in a diet-induced obesity rat model are investigated. METHODS AND RESULTS Oral administration of DATS suppressed body and white adipose tissue (WAT) weight gain in rats fed a high-fat diet compared with vehicle-administered rats. DATS lowered the plasma and liver triglyceride levels in obese rats, and decreased lipogenic mRNA levels including those of Srebp1c, Fasn, and Scd1 in the liver. DATS also suppressed de novo lipogenesis in the liver. Transcriptomic analyses of miRNA and mRNA in the epididymal WAT of obese rats using microarrays revealed that DATS decreased miRNA-335 expression and normalized the obesity-related mRNA transcriptomic signatures in epididymal WAT. CONCLUSION The potent anti-obesogenic effects of DATS and its possible mechanism of action was clearly demonstrated in this study.
Collapse
Affiliation(s)
- Atsushi Miura
- General Research Institute, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ayana Ikeda
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Marina Abe
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kiki Seo
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takahiro Watanabe
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Hosono
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| | - Taiichiro Seki
- General Research Institute, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
- Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
9
|
Mostoli R, Goudarzi F, Mohammadalipour A, Khodadadi I, Goodarzi MT. Evaluating the effect of arachidonic acid and eicosapentaenoic acid on induction of adipogenesis in human adipose-derived stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1028-1034. [PMID: 32952949 PMCID: PMC7478257 DOI: 10.22038/ijbms.2020.41557.9819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective(s): Adipose tissue is one of the most important endocrine organs that liberates many metabolic mediators such as hormones, cytokines, and chemokines. Different types of fatty acids have key roles in adipogenesis. The aim of this study was to evaluate the effects of two essential fatty acids, including Arachidonic acid (AA) and Eicosapentaenoic acid (EPA), on the process of adipogenicity in human Adipose-Derived Stem Cells (hADSCs). Materials and Methods: After immunophenotyping of hADSCs by flowcytometry, they were differentiated into adipocytes and simultaneously exposed to 30 μM and 60 μM of AA and 25 μM and 50 μM of EPA. Further, along with the MTS assay, the activity of glycalaldehyde-3-phosphate dehydrogenase (GAPDH) was also measured. In addition, expression of lipid markers including peroxisome proliferator-activated receptor γ2 (PPARγ2) and glucose transporter 4 (GLUT4) was evaluated, and the neutral lipid contents were determined using Oil red O staining. Results: MTS evaluation showed a significant decrease in proliferation in all treatment groups compared to the control group. Based on oil red O staining, fat droplets in the AA treatment groups were higher than in controls. The expression of PPARγ2 and GLUT4 genes and proteins increased in almost all AA and EPA groups compared to control. In addition, GAPDH activity was higher in AA groups than in the control group. In general, while different concentrations of EPA did not increase the adipogenic process compared to the control group, stimulation of differentiation to adipocytes was largely determined by the AA. Conclusion: The result indicates a positive effect of omega-6 versus omega-3 in stimulating the pathways of adipogenesis.
Collapse
Affiliation(s)
- Rezvan Mostoli
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
11
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The whole transcriptional profiling of cellular metabolism during adipogenesis from hMSCs. J Cell Physiol 2019; 235:349-363. [DOI: 10.1002/jcp.28974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
12
|
Ono K, Furugen A, Kurosawa Y, Jinno N, Narumi K, Kobayashi M, Iseki K. Analysis of the effects of polyunsaturated fatty acids on transporter expressions using a PCR array: Induction of xCT/SLC7A11 in human placental BeWo cells. Placenta 2018; 75:34-41. [PMID: 30712664 DOI: 10.1016/j.placenta.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/04/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Polyunsaturated fatty acids (PUFAs), including arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are essential for adequate fetal growth. The aim of the present study was to elucidate the effects of PUFAs on the expression and function of placental transporters, which play important roles in placental functions including the supply of nutrients to the fetus, excretion of metabolites, and protection of the fetus from xenobiotics. METHODS Human placental choriocarcinoma BeWo cells were used as a trophoblast model. PUFA-induced alteration in the gene expression of 84 transporters was investigated by a commercially available PCR array. Protein levels and the activity of transporters were assessed by western blotting and uptake experiments, respectively. The placental expression of the transporters was analyzed using pregnant Wistar rats. RESULTS PUFAs (AA, EPA, and DHA) increased cystine/glutamate transporter xCT/SLC7A11, which mediates the cellular uptake of cystine coupled with the efflux of glutamate in human placental choriocarcinoma BeWo cells. These PUFAs also increased [14C]-cystine uptake in BeWo cells. PUFA-induced xCT/SLC7A11 mRNA expression was not blocked by nuclear factor-erythroid 2-related factor-2 (NRF2) knockdown. Reverse transcription (RT)-PCR analysis indicated that xCT/Slc7a11 mRNA was detected in rat placenta and the expression level at gestational day (GD) 12 was higher than that at GD 20. CONCLUSION These results indicate that PUFAs promoted cystine uptake in placental cells by inducing xCT/SLC7A11 expression and NRF2 did not contribute to upregulation of xCT/SLC7A11 by PUFAs. Furthermore, xCT expression in rat placenta may change during pregnancy.
Collapse
Affiliation(s)
- Kanako Ono
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuko Kurosawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Naoko Jinno
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan; Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan.
| |
Collapse
|
13
|
Sharanova NE, Vasil'ev AV. Postgenomic Properties of Natural Micronutrients. Bull Exp Biol Med 2018; 166:107-117. [PMID: 30450516 DOI: 10.1007/s10517-018-4298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Modern medical approaches to the therapy of various diseases, including cancer, are based on the use of toxic drugs. The unfavorable side effects of traditional medicine could be counterbalanced by addition of natural bioactive substances to conventional therapy due to their mild action on cells combined with the multitargeted effects. To elucidate the real mechanisms of their biological activity, versatile approaches including a number of "omics" such as genomics, transcriptomics, proteomics, and metabolomics are used. This review highlights inclusion of bioactive natural compounds into the therapy of chronic diseases from the viewpoint of modern omics-based nutritional biochemistry. The recently accumulated data argue for necessity to employ nutrigenetic and nutrimetabolomic analyses to prevent or diminish the risk of chronic diseases.
Collapse
Affiliation(s)
- N E Sharanova
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - A V Vasil'ev
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| |
Collapse
|
14
|
Ballester M, Puig-Oliveras A, Castelló A, Revilla M, Fernández AI, Folch JM. Association of genetic variants and expression levels of porcine FABP4 and FABP5 genes. Anim Genet 2017; 48:660-668. [PMID: 29076225 DOI: 10.1111/age.12620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
The FABP4 and FABP5 genes, coding for fatty acid transport proteins, have long been studied as positional candidate genes for SSC4 QTL affecting fat deposition and composition traits in pigs. Polymorphisms in these genes, FABP4:g.2634_2635insC and FABP5:g.3000T>G, have previously been associated with fatness traits in an Iberian by Landrace cross (IBMAP). The aim of the present work was to evaluate the functional implication of these genetic variants. For this purpose, FABP4 and FABP5 mRNA expression levels in 114 BC1_LD animals (25% Iberian × 75% Landrace) were analyzed using real-time quantitative PCR in backfat and muscle. FABP4 gene expression in backfat, but not in muscle, was associated with FABP4:g.2634_2635insC. In contrast, FABP5:g.3000T>G was not associated with gene expression levels. An expression-based genome-wide association study highlighted the FABP4:g.2634_2635insC polymorphism as the polymorphism most associated with FABP4 gene expression in backfat. Furthermore, other genomic regions associated in trans with the mRNA expression of FABP4 in backfat and FABP5 in muscle were also identified. Finally, two putative transcription binding sites for PPARG and NR4A2 may be affected by the FABP4:g.2634_2635insC polymorphism, modifying FABP4 gene expression. Our results reinforce FABP4 as a candidate gene for fatness traits on SSC4.
Collapse
Affiliation(s)
- M Ballester
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Genètica i Millora Animal, IRTA, Torre Marimon, 08140, Caldes de Montbui, Spain
| | - A Puig-Oliveras
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - A Castelló
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - M Revilla
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - A I Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
15
|
Wang Q, Shi G, Teng Y, Li X, Xie J, Shen Q, Zhang C, Ni S, Tang Z. Successful reduction of inflammatory responses and arachidonic acid-cyclooxygenase 2 pathway in human pulmonary artery endothelial cells by silencing adipocyte fatty acid-binding protein. JOURNAL OF INFLAMMATION-LONDON 2017; 14:8. [PMID: 28331434 PMCID: PMC5359915 DOI: 10.1186/s12950-017-0155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
Abstract
Background Adipocyte fatty acid-binding protein, also known as aP2 or fatty acid-binding protein 4 (FABP4), plays an important role in inflammatory and metabolic responses in adipocytes and macrophages. Recent work has demonstrated that macrophage FABP4 integrates inflammatory and lipid metabolic responses, thereby contributing to the development of insulin resistance and atherosclerosis. However, it is not known whether FABP4 in human pulmonary artery endothelial cells(HPAECs) modulates inflammation. Results Here, we demonstrate that FABP4 and inflammatory cytokines are upregulated in lipopolysaccharide(LPS)-stimulated HPAECs. In addition, LPS increases the expression of molecules in the arachidonic acid(AA)–cyclooxygenase (COX) 2 signaling pathway in FABP4-expressing, but not FABP4-deficient, HPAECs. Conclusions Our findings demonstrate that silencing FABP4 could decrease inflammatory cytokines, which were reported to be expressed via the AA–COX2 pathway, in HPAECs. In addition, silencing FABP4 could inhibit the expression of molecules in the AA–COX2 pathways. So we speculate silencing FABP4 could decrease the inflammatory response in HPAECs, which involves in the AA–COX2 signaling pathway. Our study suggests that FABP4 could be a potential biomarker and intervention point for the inflammation-related disease in HPAECs such as pulmonary thromboembolism.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Guanglin Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Ying Teng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Xia Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Jin Xie
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Caixin Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| |
Collapse
|
16
|
Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, Xue Q, Fan X. Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PLoS One 2017; 12:e0172389. [PMID: 28199418 PMCID: PMC5310915 DOI: 10.1371/journal.pone.0172389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/03/2017] [Indexed: 02/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate metabolic tissue development and function, including adipogenesis. However, little is known about the function and profile of lncRNAs in intramuscular preadipocyte differentiation in chicken. Here, we identified lncRNAs in chicken intramuscular preadipocytes at different differentiation stages using RNA sequencing. A total of 1,311,382,604 clean reads and 25,435 lncRNAs were obtained from 12 samples. In total, 7,433 differentially expressed genes (4,698 lncRNAs and 2,735 mRNAs) were identified by pairwise comparison. These 7,433 differentially expressed genes were grouped into 11 clusters based on their expression patterns by K-means clustering. Using Weighted Gene Coexpression Network Analysis, we identified four stage-specific modules positively related to I0, I2, I4, and I6 stages and two stage-specific modules negatively related to I0 and I2 stages, respectively. Many well-known and novel pathways associated with intramuscular preadipocyte differentiation were identified. We also identified hub genes in each stage-specific module and visualized them in Cytoscape. Our analysis revealed many highly-connected genes, including XLOC_058593, BMP3, MYOD1, and LAMP3. This study provides a valuable resource for chicken lncRNA study and improves our understanding of the biology of preadipocyte differentiation in chicken.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail:
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiaomei Fan
- Vazyme Biotech Co.,Ltd., Economic and Technological Development Zone, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Park CH, Kim JH, Lee EB, Hur W, Kwon OJ, Park HJ, Yoon SK. Aronia melanocarpa Extract Ameliorates Hepatic Lipid Metabolism through PPARγ2 Downregulation. PLoS One 2017; 12:e0169685. [PMID: 28081181 PMCID: PMC5230775 DOI: 10.1371/journal.pone.0169685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Studies have demonstrated that anthocyanin-rich foods may improve hyperlipidemia and ameliorate hepatic steatosis. Here, effects of Aronia melanocarpa (AM), known to be rich of anthocyanins, on hepatic lipid metabolism and adipogenic genes were determined. AM was treated to C57BL/6N mice fed with high fat diet (HFD) or to FL83B cells treated with free fatty acid (FFA). Changes in levels of lipids, enzymes and hormones were observed, and expressions of adipogenic genes involved in hepatic lipid metabolism were detected by PCR, Western blotting and luciferase assay. In mice, AM significantly reduced the body and liver weight, lipid accumulation in the liver, and levels of biochemical markers such as fatty acid synthase, hepatic triglyceride and leptin. Serum transaminases, indicators for hepatocyte injury, were also suppressed, while superoxide dismutase activity and liver antioxidant capacity were significantly increased. In FL83B cells, AM significantly reduced FFA-induced lipid droplet accumulation. Protein synthesis of an adipogenic transcription factor, peroxisome proliferator-activated receptor γ2 (PPARγ2) was inhibited in vivo. Furthermore, transcriptional activity of PPARγ2 was down-regulated in vitro, and mRNA expression of PPARγ2 and its downstream target genes, adipocyte protein 2 and lipoprotein lipase were down-regulated by AM both in vitro and in vivo. These results show beneficial effects of AM against hepatic lipid accumulation through the inhibition of PPARγ2 expression along with improvements in body weight, liver functions, lipid profiles and antioxidant capacity suggesting the potential therapeutic efficacy of AM on NAFLD.
Collapse
Affiliation(s)
- Chung-Hwa Park
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center (CULRC), The Catholic University of Korea, Seoul, Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center (CULRC), The Catholic University of Korea, Seoul, Korea
- WHO Collaborating Center of Viral Hepatitis, The Catholic University of Korea, Seoul, Korea
| | - Eun Byul Lee
- The Catholic University Liver Research Center (CULRC), The Catholic University of Korea, Seoul, Korea
- WHO Collaborating Center of Viral Hepatitis, The Catholic University of Korea, Seoul, Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center (CULRC), The Catholic University of Korea, Seoul, Korea
- WHO Collaborating Center of Viral Hepatitis, The Catholic University of Korea, Seoul, Korea
| | - Oh-Joo Kwon
- Department of Medical Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Seung Kew Yoon
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- The Catholic University Liver Research Center (CULRC), The Catholic University of Korea, Seoul, Korea
- WHO Collaborating Center of Viral Hepatitis, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
18
|
Barquissau V, Ghandour RA, Ailhaud G, Klingenspor M, Langin D, Amri EZ, Pisani DF. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 2016; 136:3-11. [PMID: 28034718 DOI: 10.1016/j.biochi.2016.12.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/23/2016] [Indexed: 01/15/2023]
Abstract
Oxylipins are bioactive metabolites derived from the oxygenation of ω3 and ω6 polyunsaturated fatty acids, triggered essentially by cyclooxygenase and lipoxygenase activities. Oxylipins are involved in the development and function of adipose tissue and their productions are strictly related to diet quality and quantity. Oxylipins signal via cell surface membrane (G Protein-coupled receptors) and nuclear receptors (peroxisome proliferator-activated receptors), two pathways playing a pivotal role in adipocyte biology. In this review, we made an attempt to cover the available knowledge about synthesis and molecular function of oxylipins known to modulate adipogenesis, adipocyte function and phenotype conversion, with a focus on their interaction with peroxisome proliferator-activated nuclear receptor family.
Collapse
Affiliation(s)
- Valentin Barquissau
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, 31432, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, 31432, France
| | | | | | - Martin Klingenspor
- Technische Universität München, Chair of Molecular Nutritional Medicine, Else Kröner-Fresenius Center, 85350, Freising-Weihenstephan, Germany
| | - Dominique Langin
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, 31432, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, 31432, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, 31059, France
| | | | | |
Collapse
|
19
|
Dietary Arachidonic Acid Has a Time-Dependent Differential Impact on Adipogenesis Modulated via COX and LOX Pathways in Grass Carp Ctenopharyngodon idellus. Lipids 2016; 51:1325-1338. [DOI: 10.1007/s11745-016-4205-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
|