1
|
Sun C, Li Y, Kidd JM, Han J, Ding L, May AE, Zhou L, Liu Q. Characterization of a New Hsp110 Inhibitor as a Potential Antifungal. J Fungi (Basel) 2024; 10:732. [PMID: 39590652 PMCID: PMC11595998 DOI: 10.3390/jof10110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for innovative antifungal strategies. Notably, 2H stands out as a promising candidate in the endeavor to target Hsp110s and combat fungal infections. Our study reveals that 2H exhibits broad-spectrum antifungal activity, effectively disrupting the in vitro chaperone activity of Hsp110 from Candida auris and inhibiting the growth of Cryptococcus neoformans. Pharmacokinetic analysis indicates that oral administration of 2H may offer enhanced efficacy compared to intravenous delivery, emphasizing the importance of optimizing the AUC/MIC ratio for advancing its clinical therapy.
Collapse
Affiliation(s)
- Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yi Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Justin M. Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Liangliang Ding
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Heme-deficient metabolism and impaired cellular differentiation as an evolutionary trade-off for human infectivity in Trypanosoma brucei gambiense. Nat Commun 2022; 13:7075. [PMID: 36400774 PMCID: PMC9674590 DOI: 10.1038/s41467-022-34501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.
Collapse
|
3
|
Steroidal Antimetabolites Protect Mice against Trypanosoma brucei. Molecules 2022; 27:molecules27134088. [PMID: 35807334 PMCID: PMC9268410 DOI: 10.3390/molecules27134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei, the causative agent for human African trypanosomiasis, is an emerging ergosterol-dependent parasite that produces chokepoint enzymes, sterol methyltransferases (SMT), not synthesized in their animal hosts that can regulate cell viability. Here, we report the lethal effects of two recently described natural product antimetabolites that disrupt Acanthamoeba sterol methylation and growth, cholesta-5,7,22,24-tetraenol (CHT) and ergosta-5,7,22,24(28)-tetraenol (ERGT) that can equally target T. brucei. We found that CHT/ERGT inhibited cell growth in vitro, yielding EC50 values in the low nanomolar range with washout experiments showing cidal activity against the bloodstream form, consistent with their predicted mode of suicide inhibition on SMT activity and ergosterol production. Antimetabolite treatment generated altered T. brucei cell morphology and death rapidly within hours. Notably, in vivo ERGT/CHT protected mice infected with T. brucei, doubling their survival time following daily treatment for 8-10 days at 50 mg/kg or 100 mg/kg. The current study demonstrates a new class of lead antibiotics, in the form of common fungal sterols, for antitrypanosomal drug development.
Collapse
|
4
|
Roohani K, Haubrich BA, Yue KL, D'Souza N, Montalbano A, Rynearson T, Menden-Deuer S, Reid CW. Trophic upgrading and mobilization of wax esters in microzooplankton. PeerJ 2019; 7:e7549. [PMID: 31489268 PMCID: PMC6705382 DOI: 10.7717/peerj.7549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/25/2019] [Indexed: 11/25/2022] Open
Abstract
Heterotrophic protists play pivotal roles in aquatic ecosystems by transferring matter and energy, including lipids, from primary producers to higher trophic predators. Using Oxyrrhis marina as a model organism, changes to the non-saponifiable protist lipids were investigated under satiation and starvation conditions. During active feeding on the alga Cryptomonas sp., the O. marina hexane soluble non-saponifiable fraction lipid profile reflected its food source with the observed presence of long chain mono-unsaturated fatty alcohols up to C25:1. Evidence of trophic upgrading in O. marina was observed with long chain mono-unsaturated fatty alcohol accumulation of up to C35:1. To the best of our knowledge, this is the first evidence that heterotrophic dinoflagellates are capable of producing ester derived alcohols and that dinoflagellates like O. marina are capable of synthesizing fatty alcohols up to C35. Additionally, we show evidence of trophic upgrading of lipids. During a 20-day resource deprivation, the lipid profile remained constant. During starvation, the mobilization of wax esters as energy stores was observed with long chain fatty alcohols mobilized first. Changes in lipid class profile and utilization of wax esters in O. marina provides insight into the types of lipids available for energy demand, the transfer of lipids through the base of marine food webs, and the catabolic response induced by resource deprivation.
Collapse
Affiliation(s)
- Keyana Roohani
- Science and Technology, Bryant University, Smithfield, RI, USA
| | - Brad A Haubrich
- Science and Technology, Bryant University, Smithfield, RI, USA.,Chemistry, University of Nevada, Reno, Reno, NV, USA
| | - Kai-Lou Yue
- Science and Technology, Bryant University, Smithfield, RI, USA
| | - Nigel D'Souza
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Amanda Montalbano
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Tatiana Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Susanne Menden-Deuer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | |
Collapse
|
5
|
Nickels JT. Anti-parasitic drug discovery takes a giant leap forward. J Lipid Res 2019; 60:919-921. [PMID: 30918064 DOI: 10.1194/jlr.c094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Joseph T Nickels
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ 08691, and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901.
| |
Collapse
|
6
|
Osorio-Méndez JF, Cevallos AM. Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease. Front Cell Infect Microbiol 2019; 8:439. [PMID: 30666299 PMCID: PMC6330712 DOI: 10.3389/fcimb.2018.00439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
There is an urgent need to develop new treatments for Chagas' disease. To identify drug targets, it is important to understand the basic biology of Trypanosoma cruzi, in particular with respect to the biological pathways or proteins that are essential for its survival within the host. This review provides a streamlined approach for identifying drug targets using freely available chemogenetic databases and outlines the relevant characteristics of an ideal chemotherapeutic target. Among those are their essentiality, druggability, availability of structural information, and selectivity. At the moment only 16 genes have been found as essential by gene disruption in T. cruzi. At the TDR Targets database, a chemogenomics resource for neglected diseases, information about published structures for these genes was only found for three of these genes, and annotation of validated inhibitors was found in two. These inhibitors have activity against the parasitic stages present in the host. We then analyzed three of the pathways that are considered promising in the search for new targets: (1) Ergosterol biosynthesis, (2) Resistance to oxidative stress, (3) Synthesis of surface glycoconjugates. We have annotated all the genes that participate in them, identified those that are considered as druggable, and incorporated evidence from either Trypanosoma brucei, and Leishmania spp. that supports the hypothesis that these pathways are essential for T. cruzi survival.
Collapse
Affiliation(s)
- Juan Felipe Osorio-Méndez
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia.,Grupo de Estudio en Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Lepesheva GI, Friggeri L, Waterman MR. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology 2018; 145:1820-1836. [PMID: 29642960 PMCID: PMC6185833 DOI: 10.1017/s0031182018000562] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The efficiency of treatment of human infections with the unicellular eukaryotic pathogens such as fungi and protozoa remains deeply unsatisfactory. For example, the mortality rates from nosocomial fungemia in critically ill, immunosuppressed or post-cancer patients often exceed 50%. A set of six systemic clinical azoles [sterol 14α-demethylase (CYP51) inhibitors] represents the first-line antifungal treatment. All these drugs were discovered empirically, by monitoring their effects on fungal cell growth, though it had been proven that they kill fungal cells by blocking the biosynthesis of ergosterol in fungi at the stage of 14α-demethylation of the sterol nucleus. This review briefs the history of antifungal azoles, outlines the situation with the current clinical azole-based drugs, describes the attempts of their repurposing for treatment of human infections with the protozoan parasites that, similar to fungi, also produce endogenous sterols, and discusses the most recently acquired knowledge on the CYP51 structure/function and inhibition. It is our belief that this information should be helpful in shifting from the traditional phenotypic screening to the actual target-driven drug discovery paradigm, which will rationalize and substantially accelerate the development of new, more efficient and pathogen-oriented CYP51 inhibitors.
Collapse
Affiliation(s)
- Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
8
|
Haubrich BA. Microbial Sterolomics as a Chemical Biology Tool. Molecules 2018; 23:E2768. [PMID: 30366429 PMCID: PMC6278499 DOI: 10.3390/molecules23112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has become a powerful tool in chemical biology. Profiling the human sterolome has resulted in the discovery of noncanonical sterols, including oxysterols and meiosis-activating sterols. They are important to immune responses and development, and have been reviewed extensively. The triterpenoid metabolite fusidic acid has developed clinical relevance, and many steroidal metabolites from microbial sources possess varying bioactivities. Beyond the prospect of pharmacognostical agents, the profiling of minor metabolites can provide insight into an organism's biosynthesis and phylogeny, as well as inform drug discovery about infectious diseases. This review aims to highlight recent discoveries from detailed sterolomic profiling in microorganisms and their phylogenic and pharmacological implications.
Collapse
Affiliation(s)
- Brad A Haubrich
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
9
|
Zhou W, Warrilow AGS, Thomas CD, Ramos E, Parker JE, Price CL, Vanderloop BH, Fisher PM, Loftis MD, Kelly DE, Kelly SL, Nes WD. Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1164-1178. [PMID: 30044954 PMCID: PMC6180906 DOI: 10.1016/j.bbalip.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
The sterol metabolome of Acanthamoeba castellanii (Ac) yielded 25 sterols. Substrate screening of cloned AcCYP51 revealed obtusifoliol as the natural substrate which converts to ∆8,14-sterol (<95%). The combination of [2H3-methyl]methionine incubation to intact cultures showing C28-ergosterol incorporates 2-2H atoms and C29-7-dehydroporiferasterol incorporates 5 2H-atoms, the natural distribution of sterols, CYP51 and previously published sterol methyltransferase (SMT) data indicate separate ∆24(28)- and ∆25(27)-olefin pathways to C28- and C29-sterol products from the protosterol cycloartenol. In cell-based culture, we observed a marked change in sterol compositions during the growth and encystment phases monitored microscopically and by trypan blue staining; trophozoites possess C28/C29-∆5,7-sterols, viable encysted cells (mature cyst) possess mostly C29-∆5-sterol and non-viable encysted cells possess C28/C29-∆5,7-sterols that turnover variably from stress to 6-methyl aromatic sterols associated with changed membrane fluidity affording lysis. An incompatible fit of steroidal aromatics in membranes was confirmed using the yeast sterol auxotroph GL7. Only viable cysts, including those treated with inhibitor, can excyst into trophozoites. 25-Azacycloartanol or voriconazole that target SMT and CYP51, respectively, are potent enzyme inhibitors in the nanomolar range against the cloned enzymes and amoeba cells. At minimum amoebicidal concentration of inhibitor amoeboid cells rapidly convert to encysted cells unable to excyst. The correlation between stage-specific sterol compositions and the physiological effects of ergosterol biosynthesis inhibitors suggests that amoeba fitness is controlled mainly by developmentally-regulated changes in the phytosterol B-ring; paired interference in the ∆5,7-sterol biosynthesis (to ∆5,7) - metabolism (to ∆5 or 6-methyl aromatic) congruence during cell proliferation and encystment could be a source of therapeutic intervention for Acanthamoeba infections.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Andrew G S Warrilow
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Crista D Thomas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Emilio Ramos
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Josie E Parker
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Claire L Price
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Paxtyn M Fisher
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Michael D Loftis
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Diane E Kelly
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Steven L Kelly
- Center for Cytochrome P450 Biodiversity, Institute of Life Science, School of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America.
| |
Collapse
|
10
|
Cockram PE, Smith TK. Active Natural Product Scaffolds against Trypanosomatid Parasites: A Review. JOURNAL OF NATURAL PRODUCTS 2018; 81:2138-2154. [PMID: 30234295 DOI: 10.1021/acs.jnatprod.8b00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neglected tropical diseases caused by trypanosomatid parasites are a continuing and escalating problem, which devastate the less economically developed cultures in countries in which they are endemic by impairing both human and animal health. Current drugs for these diseases are regarded as out-of-date and expensive, with unacceptable side-effects and mounting parasite resistance, meaning there is an urgent need for new therapeutics. Natural products have long been a source of potent, structurally diverse bioactive molecules. Herein are reviewed natural products with reported trypanocidal activity, which have been clustered based on core structural similarities, to aid the future discovery of new trypanocidal core motifs with potential routes to synthetically accessible natural product cores suggested.
Collapse
Affiliation(s)
- Peter E Cockram
- Biomedical Sciences Research Complex , University of St Andrews , North Haugh , St Andrews , Scotland , KY16 9ST
| | - Terry K Smith
- Biomedical Sciences Research Complex , University of St Andrews , North Haugh , St Andrews , Scotland , KY16 9ST
| |
Collapse
|
11
|
Synthesis and Biological Activity of Sterol 14α-Demethylase and Sterol C24-Methyltransferase Inhibitors. Molecules 2018; 23:molecules23071753. [PMID: 30018257 PMCID: PMC6099924 DOI: 10.3390/molecules23071753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 11/17/2022] Open
Abstract
Sterol 14α-demethylase (SDM) is essential for sterol biosynthesis and is the primary molecular target for clinical and agricultural antifungals. SDM has been demonstrated to be a valid drug target for antiprotozoal therapies, and much research has been focused on using SDM inhibitors to treat neglected tropical diseases such as human African trypanosomiasis (HAT), Chagas disease, and leishmaniasis. Sterol C24-methyltransferase (24-SMT) introduces the C24-methyl group of ergosterol and is an enzyme found in pathogenic fungi and protozoa but is absent from animals. This difference in sterol metabolism has the potential to be exploited in the development of selective drugs that specifically target 24-SMT of invasive fungi or protozoa without adversely affecting the human or animal host. The synthesis and biological activity of SDM and 24-SMT inhibitors are reviewed herein.
Collapse
|
12
|
Najle SR, Molina MC, Ruiz-Trillo I, Uttaro AD. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals. Open Biol 2017; 6:rsob.160029. [PMID: 27383626 PMCID: PMC4967820 DOI: 10.1098/rsob.160029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion—via a novel pathway—of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages.
Collapse
Affiliation(s)
- Sebastián R Najle
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
| | - María Celeste Molina
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 645, Barcelona 08028, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08010, Catalonia, Spain
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| |
Collapse
|
13
|
Kidane ME, Vanderloop BH, Zhou W, Thomas CD, Ramos E, Singha U, Chaudhuri M, Nes WD. Sterol methyltransferase a target for anti-amoeba therapy: towards transition state analog and suicide substrate drug design. J Lipid Res 2017; 58:2310-2323. [PMID: 29042405 PMCID: PMC5711494 DOI: 10.1194/jlr.m079418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/17/2017] [Indexed: 01/18/2023] Open
Abstract
Ergosterol biosynthesis pathways essential to pathogenic protozoa growth and absent from the human host offer new chokepoint targets. Here, we present characterization and cell-based interference of Acanthamoeba spp sterol 24-/28-methylases (SMTs) that catalyze the committed step in C28- and C29-sterol synthesis. Intriguingly, our kinetic analyses suggest that 24-SMT prefers plant cycloartenol whereas 28-SMT prefers 24(28)-methylene lophenol in similar fashion to the substrate preferences of land plant SMT1 and SMT2. Transition state analog-24(R,S),25-epiminolanosterol (EL) and suicide substrate 26,27-dehydrolanosterol (DHL) differentially inhibited trophozoite growth with IC50 values of 7 nM and 6 µM, respectively, and EL yielded 20-fold higher activity than reference drug voriconazole. Against either SMT assayed with native substrate, EL exhibited tight binding ∼Ki 9 nM. Alternatively, DHL is methylated at C26 by 24-SMT that thereby, generates intermediates that complex and inactivate the enzyme, whereas DHL is not productively bound to 28-SMT. Steroidal inhibitors had no effect on human epithelial kidney cell growth or cholesterol biosynthesis at minimum amoebicidal concentrations. We hypothesize the selective inhibition of Acanthamoeba by steroidal inhibitors representing distinct chemotypes may be an efficient strategy for the development of promising compounds to combat amoeba diseases.
Collapse
Affiliation(s)
- Medhanie E Kidane
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Crista D Thomas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Emilio Ramos
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Ujjal Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
14
|
Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts. Sci Rep 2017; 7:9105. [PMID: 28831063 PMCID: PMC5567337 DOI: 10.1038/s41598-017-08770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.
Collapse
|
15
|
de Lima Stein ML, Icimoto MY, de Castro Levatti EV, Oliveira V, Straus AH, Schenkman S. Characterization and role of the 3-methylglutaconyl coenzyme A hidratase in Trypanosoma brucei. Mol Biochem Parasitol 2017; 214:36-46. [PMID: 28366667 DOI: 10.1016/j.molbiopara.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
Abstract
Trypanosoma brucei, the agent of African Trypanosomiasis, is a flagellated protozoan parasite that develops in tsetse flies and in the blood of various mammals. The parasite acquires nutrients such as sugars, lipids and amino acids from their hosts. Amino acids are used to generate energy and for protein and lipid synthesis. However, it is still unknown how T. brucei catabolizes most of the acquired amino acids. Here we explored the role of an enzyme of the leucine catabolism, the 3-methylglutaconyl-Coenzyme A hydratase (3-MGCoA-H). It catalyzes the hydration of 3-methylglutaconyl-Coenzyme A (3-MGCoA) into 3-hydroxymethylglutaryl-Coenzyme A (3-HMGCoA). We found that 3-MGCoA-H localizes in the mitochondrial matrix and is expressed in both insect and mammalian bloodstream forms of the parasite. The depletion of 3-MGCoA-H by RNA interference affected minimally the proliferation of both forms. However, an excess of leucine in the culture medium caused growth defects in cells depleted of 3-MGCoA-H, which could be reestablished by mevalonate, a precursor of isoprenoids and steroids. Indeed, procyclics depleted of the 3-MGCoA-H presented reduced levels of synthesized steroids relative to cholesterol that is scavenged by the parasite, and these levels were also reestablished by mevalonate. These results suggest that accumulation of leucine catabolites could affect the level of mevalonate and consequently inhibit the sterol biosynthesis, required for T. brucei growth.
Collapse
Affiliation(s)
- Mariana Leão de Lima Stein
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anita Hilda Straus
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Miller MB, Patkar P, Singha UK, Chaudhuri M, David Nes W. 24-Methylenecyclopropane steroidal inhibitors: A Trojan horse in ergosterol biosynthesis that prevents growth of Trypanosoma brucei. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:305-313. [PMID: 27939999 DOI: 10.1016/j.bbalip.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
A new class of steroidal therapeutics based on phylogenetic-guided design of covalent inhibitors that target parasite-specific enzymes of ergosterol biosynthesis is shown to prevent growth of the protozoan-Trypanosoma brucei, responsible for sleeping sickness. In the presence of approximately 15±5μM 26,27-dehydrolanosterol, T. brucei procyclic or blood stream form growth is inhibited by 50%. This compound is actively converted by the parasite to an acceptable substrate of sterol C24-methyl transferase (SMT) that upon position-specific side chain methylation at C26 inactivates the enzyme. Treated cells show dose-dependent depletion of ergosterol and other 24β-methyl sterols with no accumulation of intermediates in contradistinction to profiles typical of tight binding inhibitor treatments to azoles showing loss of ergosterol accompanied by accumulation of toxic 14-methyl sterols. HEK cells accumulate 26,27-dehydrolanosterol without effect on cholesterol biosynthesis. During exposure of cloned TbSMT to 26,27-dehydrozymosterol, the enzyme is gradually inactivated (kcat/kinact=0.13min-1/0.08min-1; partition ratio of 1.6) while 26,27-dehydrolanosterol binds nonproductively. GC-MS analysis of the turnover product and bound intermediate released as a C26-methylated diol (C3-OH and C24-OH) confirmed substrate recognition and covalent binding to TbSMT. This study has potential implications for design of a novel class of chemotherapeutic leads functioning as mechanism-based inhibitors of ergosterol biosynthesis to treat neglected tropical diseases.
Collapse
Affiliation(s)
- Matthew B Miller
- Department of Chemistry and Biochemistry and Center for Chemical Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Presheet Patkar
- Department of Chemistry and Biochemistry and Center for Chemical Biology, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA
| | - W David Nes
- Department of Chemistry and Biochemistry and Center for Chemical Biology, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
17
|
Linscott KB, Niehaus TD, Zhuang X, Bell SA, Chappell J. Mapping a kingdom-specific functional domain of squalene synthase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1049-1057. [PMID: 27320012 DOI: 10.1016/j.bbalip.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.
Collapse
Affiliation(s)
- Kristin B Linscott
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506-9983, United States
| | - Thomas D Niehaus
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Xun Zhuang
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Stephen A Bell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Joe Chappell
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506-9983, United States; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| |
Collapse
|
18
|
Leaver DJ, Patkar P, Singha UK, Miller MB, Haubrich BA, Chaudhuri M, Nes WD. Fluorinated Sterols Are Suicide Inhibitors of Ergosterol Biosynthesis and Growth in Trypanosoma brucei. ACTA ACUST UNITED AC 2016; 22:1374-83. [PMID: 26496686 DOI: 10.1016/j.chembiol.2015.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei, the causal agent for sleeping sickness, depends on ergosterol for growth. Here, we describe the effects of a mechanism-based inhibitor, 26-fluorolanosterol (26FL), which converts in vivo to a fluorinated substrate of the sterol C24-methyltransferase essential for sterol methylation and function of ergosterol, and missing from the human host. 26FL showed potent inhibition of ergosterol biosynthesis and growth of procyclic and bloodstream forms while having no effect on cholesterol biosynthesis or growth of human epithelial kidney cells. During exposure of cloned TbSMT to 26-fluorocholesta-5,7,24-trienol, the enzyme is gradually killed as a consequence of the covalent binding of the intermediate C25 cation to the active site (kcat/kinact = 0.26 min(-1)/0.24 min(-1); partition ratio of 1.08), whereas 26FL is non-productively bound. These results demonstrate that poisoning of ergosterol biosynthesis by a 26-fluorinated Δ(24)-sterol is a promising strategy for developing a new treatment for trypanosomiasis.
Collapse
Affiliation(s)
- David J Leaver
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA; Institute of Chemistry and Biomedical Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Doctor D. B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Doctor D. B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA.
| |
Collapse
|
19
|
In Vitro and In Vivo Investigation of the Inhibition of Trypanosoma brucei Cell Growth by Lipophilic Bisphosphonates. Antimicrob Agents Chemother 2015; 59:7530-9. [PMID: 26392508 DOI: 10.1128/aac.01873-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
We report the results of a screen of a library of 925 potential prenyl synthase inhibitors against Trypanosoma brucei farnesyl diphosphate synthase (TbFPPS) and against T. brucei, the causative agent of human African trypanosomiasis. The most potent compounds were lipophilic analogs of the bone resorption drug zoledronate, some of which had submicromolar to low micromolar activity against bloodstream form T. brucei and selectivity indices of up to ∼ 300. We evaluated the effects of two such inhibitors on survival and parasitemia in a T. brucei mouse model of infection and found that survival increased by up to 16 days. We also investigated the binding of three lipophilic bisphosphonates to an expressed TbFPPS using crystallography and investigated the thermodynamics of binding using isothermal titration calorimetry.
Collapse
|
20
|
Gas-Pascual E, Simonovik B, Schaller H, Bach TJ. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cells. Lipids 2015; 50:761-72. [PMID: 26033687 DOI: 10.1007/s11745-015-4036-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/15/2015] [Indexed: 01/06/2023]
Abstract
Tobacco BY-2 cell suspensions are our preferred model for studying isoprenoid biosynthesis pathways, due to their easy genetic transformation and the efficient absorption of metabolic precursors, intermediates, and/or inhibitors. Using this model system, we have analyzed the effects of chemical and genetic blockage of cycloartenol synthase (CAS, EC 5.4.99.8), an oxidosqualene cyclase that catalyzes the first committed step in the sterol pathway of plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Short-term treatments (24 h) resulted in accumulation of oxidosqualene with no changes in the final sterol products. Interestingly, long-term treatments (6 days) induced down-regulation in gene expression not only of CAS but also of the SMT2 gene coding sterol methyltransferase 2 (EC 2.1.1.41). This explains some of the increase in 24-methyl sterols at the expense of the 24-ethyl sterols stigmasterol and sitosterol. In our alternative strategy, CAS gene expression was partially blocked by using an inducible artificial microRNA. The limited effectiveness of this approach might be explained by some dependence of the machinery for RNAi formation on an operating MVA/sterol pathway. For comparison we checked the effect of RO 48-8071 on a green cell suspension of Arabidopsis and on seedlings, containing a small spectrum of triterpenes besides phytosterols. Triterpenes remained essentially unaffected, but phytosterol accumulation was clearly diminished.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | | | | | | |
Collapse
|