1
|
Zhang Z, Ji G, Li M. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Front Endocrinol (Lausanne) 2023; 14:1247611. [PMID: 37711901 PMCID: PMC10497960 DOI: 10.3389/fendo.2023.1247611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease worldwide, affected by both genetics and environment. Type 2 diabetes (T2D) stands as an independent environmental risk factor that precipitates the onset of hepatic steatosis and accelerates its progression to severe stages of liver damage. Furthermore, the coexistence of T2D and NAFLD magnifies the risk of cardiovascular disease synergistically. However, the association between genetic susceptibility and metabolic risk factors in NAFLD remains incompletely understood. The glucokinase regulator gene (GCKR), responsible for encoding the glucokinase regulatory protein (GKRP), acts as a regulator and protector of the glucose-metabolizing enzyme glucokinase (GK) in the liver. Two common variants (rs1260326 and rs780094) within the GCKR gene have been associated with a lower risk for T2D but a higher risk for NAFLD. Recent studies underscore that T2D presence significantly amplifies the effect of the GCKR gene, thereby increasing the risk of NASH and fibrosis in NAFLD patients. In this review, we focus on the critical roles of GKRP in T2D and NAFLD, drawing upon insights from genetic and biological studies. Notably, prior attempts at drug development targeting GK with glucokinase activators (GKAs) have shown potential risks of augmented plasma triglycerides or NAFLD. Conversely, overexpression of GKRP in diabetic rats improved glucose tolerance without causing NAFLD, suggesting the crucial regulatory role of GKRP in maintaining hepatic glucose and lipid metabolism balance. Collectively, this review sheds new light on the complex interaction between genes and environment in NAFLD, focusing on the GCKR gene. By integrating evidence from genetics, biology, and drug development, we reassess the therapeutic potential of targeting GK or GKRP for metabolic disease treatment. Emerging evidence suggests that selectively activating GK or enhancing GK-GKRP binding may represent a holistic strategy for restoring glucose and lipid metabolic balance.
Collapse
Affiliation(s)
| | | | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Ho LJ, Lu CH, Su RY, Lin FH, Su SC, Kuo FC, Chu NF, Hung YJ, Liu JS, Hsieh CH. Association between glucokinase regulator gene polymorphisms and serum uric acid levels in Taiwanese adolescents. Sci Rep 2022; 12:5519. [PMID: 35365700 PMCID: PMC8975867 DOI: 10.1038/s41598-022-09393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The glucokinase regulator gene (GCKR) is located on chromosome 2p23. It plays a crucial role in maintaining plasma glucose homeostasis and metabolic traits. Recently, genome-wide association studies have revealed a positive association between hyperuricemia and GCKR variants in adults. This study investigated this genetic association in Taiwanese adolescents. Data were collected from our previous cross-sectional study (Taipei Children Heart Study). The frequencies of various genotypes (CC, CT, and TT) or alleles (C and T) of the GCKR intronic single-nucleotide polymorphism (SNP) rs780094 and the coding SNP rs1260326 (Pro446Leu, a common 1403C-T transition) were compared between a total of 968 Taiwanese adolescents (473 boys, 495 girls) with hyperuricemia or normal uric acid levels on the basis of gender differences. Logistic and linear regression analyses explored the role of GCKR in abnormal uric acid (UA) levels. Boys had higher UA levels than girls (6.68 ± 1.29 and 5.23 ± 0.95 mg/dl, respectively, p < 0.001). The analysis of both SNPs in girls revealed that the T allele was more likely to appear in patients with hyperuricemia than the C allele. After adjusting for confounders, the odds ratio (OR) for hyperuricemia incidence in the TT genotype was 1.75 (95% confidence interval [CI] 1.02–3.00), which was higher than that in the C allele carriers in rs1260326 in the girl population. Similarly, the TT genotypes had a higher risk of hyperuricemia, with an OR of 2.29 (95% CI 1.11–4.73) for rs1260326 and 2.28 (95% CI 1.09–4.75) for rs780094, than the CC genotype in girl adolescents. The T (Leu446) allele of GCKR rs1260326 polymorphism is associated with higher UA levels in Taiwanese adolescent girls.
Collapse
Affiliation(s)
- Li-Ju Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Ruei-Yu Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, ROC
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sheng-Chiang Su
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Nain-Feng Chu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.,School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, ROC.
| |
Collapse
|
3
|
Yeh KH, Hsu LA, Teng MS, Wu S, Chou HH, Ko YL. Pleiotropic Effects of Common and Rare GCKR Exonic Mutations on Cardiometabolic Traits. Genes (Basel) 2022; 13:genes13030491. [PMID: 35328045 PMCID: PMC8951277 DOI: 10.3390/genes13030491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The common non-synonymous mutation of the glucokinase regulator (GCKR) gene, namely rs1260326, is widely reported to have pleiotropic effects on cardio-metabolic traits and hematological parameters. Objective: This study aimed to identify whether other GCKR variants may have pleiotropic effects independent of the rs1260326 genotypes. Methods: In total, 81,097 Taiwan Biobank participants were enrolled for the regional plot association studies and candidate variant analysis of the region around the GCKR gene. Results: The initial candidate variant approach showed the significant association of the rs1260326 genotypes with multiple phenotypes. Regional plot association analysis of the GCKR gene region further revealed genome-wide significant associations between GCKR variants and serum total and low-density lipoprotein cholesterol; triglyceride, uric acid, creatinine, aspartate aminotransferase, γ-Glutamyl transferase, albumin, and fasting plasma glucose levels; estimated glomerular filtration rate; leukocyte and platelet counts; microalbuminuria, and metabolic syndrome, with rs1260326 being the most common lead polymorphism. Serial conditional analysis identified genome-wide significant associations of two low-frequency exonic mutations, rs143881585 and rs8179206, with high serum triglyceride and albumin levels. In five rare GCKR exonic non-synonymous or nonsense mutations available for analysis, GCKR rs146175795 showed an independent association with serum triglyceride and albumin levels and rs150673460 showed an independent association with serum triglyceride levels. Weighted genetic risk scores from the combination of GCKR rs143881585 and rs146175795 revealed a significant association with metabolic syndrome. Conclusion: In addition to the rs1260326 variant, low-frequency and rare GCKR exonic mutations exhibit pleiotropic effects on serum triglyceride and albumin levels and the risk of metabolic syndrome. These results provide evidence that both common and rare GCKR variants may play a critical role in predicting the risk of cardiometabolic disorders.
Collapse
Affiliation(s)
- Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Hsin-Hua Chou
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Lin Ko
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
4
|
Asymptomatic Carotid Atherosclerosis Cardiovascular Risk Factors and Common Hypertriglyceridemia Genetic Variants in Patients with Systemic Erythematosus Lupus. J Clin Med 2021; 10:jcm10102218. [PMID: 34065555 PMCID: PMC8160900 DOI: 10.3390/jcm10102218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 01/06/2023] Open
Abstract
SLE is associated with increased cardiovascular risk. The objective of this study was to determine the prevalence of asymptomatic carotid atherosclerosis to analyze its relationship with dyslipidemia and related genetic factors in a population of patients with SLE. Seventy-one SLE female patients were recruited. Carotid ultrasound, laboratory profiles, and genetic analysis of the ZPR1, APOA5, and GCKR genes were performed. SLE patients were divided into two groups according to the presence or absence of carotid plaques. Patients with carotid plaque had higher plasma TG (1.5 vs. 0.9 mmol/L, p = 0.001), Non-HDL-C (3.5 vs. 3.1 mmol/L, p = 0.025), and apoB concentrations (1.0 vs. 0.9 g/L, p = 0.010) and a higher prevalence of hypertension (80 vs. 37.5%, p = 0.003) than patients without carotid plaque. The GCKR C-allele was present in 83.3% and 16.7% (p = 0.047) of patients with and without carotid plaque, respectively. The GCKR CC genotype (OR = 0.026; 95% CI: 0.001 to 0.473, p = 0.014), an increase of 1 mmol/L in TG concentrations (OR = 12.550; 95% CI: 1.703 to 92.475, p = 0.013) and to be hypertensive (OR = 9.691; 95% CI: 1.703 to 84.874, p = 0.040) were independently associated with carotid atherosclerosis. In summary, plasma TG concentrations, CGKR CC homozygosity, and hypertension are independent predictors of carotid atherosclerosis in women with SLE.
Collapse
|
5
|
Chan CK, Mukhtarova K, Kanderzhanova A, Issanov A. Genetic Variations Influencing Glucose Homeostasis and Insulin Secretion and their Associations with Autism Spectrum Disorder in Kazakhstan. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/9677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Liu Y, Kuang A, Talbot O, Bain JR, Muehlbauer MJ, Hayes MG, Ilkayeva OR, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL. Metabolomic and genetic associations with insulin resistance in pregnancy. Diabetologia 2020; 63:1783-1795. [PMID: 32556615 PMCID: PMC7416451 DOI: 10.1007/s00125-020-05198-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Our study aimed to integrate maternal metabolic and genetic data related to insulin sensitivity during pregnancy to provide novel insights into mechanisms underlying pregnancy-induced insulin resistance. METHODS Fasting and 1 h serum samples were collected from women in the Hyperglycemia and Adverse Pregnancy Outcome study who underwent an OGTT at ∼28 weeks' gestation. We obtained targeted and non-targeted metabolomics and genome-wide association data from 1600 and 4528 mothers, respectively, in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai); 1412 of the women had both metabolomics and genome-wide association data. Insulin sensitivity was calculated using a modified insulin sensitivity index that included fasting and 1 h glucose and C-peptide levels after a 75 g glucose load. RESULTS Per-metabolite and network analyses across the four ancestries identified numerous metabolites associated with maternal insulin sensitivity before and 1 h after a glucose load, ranging from amino acids and carbohydrates to fatty acids and lipids. Genome-wide association analyses identified 12 genetic variants in the glucokinase regulatory protein gene locus that were significantly associated with maternal insulin sensitivity, including a common functional missense mutation, rs1260326 (β = -0.2004, p = 4.67 × 10-12 in a meta-analysis across the four ancestries). This SNP was also significantly associated with multiple fasting and 1 h metabolites during pregnancy, including fasting and 1 h triacylglycerols and 2-hydroxybutyrate and 1 h lactate, 2-ketoleucine/ketoisoleucine and palmitoleic acid. Mediation analysis suggested that 1 h palmitoleic acid contributes, in part, to the association of rs1260326 with maternal insulin sensitivity, explaining 13.7% (95% CI 4.0%, 23.3%) of the total effect. CONCLUSIONS/INTERPRETATION The present study demonstrates commonalities between metabolites and genetic variants associated with insulin sensitivity in the gravid and non-gravid states and provides insights into mechanisms underlying pregnancy-induced insulin resistance. Graphical abstract.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA
- Department of Endocrinology, South Campus, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alan Kuang
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Octavious Talbot
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - M Geoffrey Hayes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Lynn P Lowe
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA
| | - Boyd E Metzger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Denise M Scholtens
- Department of Preventive Medicine (Biostatistics), Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| | - William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior St, Chicago, IL, 60611, USA.
| | | |
Collapse
|
7
|
Hannon BA, Edwards CG, Thompson SV, Reeser GE, Burd NA, Holscher HD, Teran-Garcia M, Khan NA. Single Nucleotide Polymorphisms Related to Lipoprotein Metabolism Are Associated with Blood Lipid Changes following Regular Avocado Intake in a Randomized Control Trial among Adults with Overweight and Obesity. J Nutr 2020; 150:1379-1387. [PMID: 32195538 DOI: 10.1093/jn/nxaa054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/05/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Avocados are rich in unsaturated fat and fiber; clinical trials have investigated their effects on metabolic disease. There is high variability in individual changes following avocado consumption, which may be in part due to individual genetic differences. OBJECTIVE Secondary analyses of the Persea americana for Total Health (PATH) Study were used to examine how single nucleotide polymorphisms (SNPs) impact blood lipid changes following a daily meal containing avocado compared with control. METHODS Adults (n = 115, 37% male) aged 25-45 y with overweight and obesity were randomly assigned to receive a daily isocaloric meal with (intervention) or without (control) a standardized amount (males: 175 g; females: 140 g) of avocado for 12 wk. Control meals were higher in saturated fat (17% of energy compared with 7%) and lower in fiber (4 g compared with 16 g) than intervention meals. Whole venous blood was taken at baseline and 12 wk to determine total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, and triglyceride (TG) concentrations. Seventeen SNPs in 10 genes related to lipoprotein metabolism were genotyped. Effects of SNP, diet, and SNP-diet interactions were determined using general linear models. RESULTS No group-by-time effects were detected for changes in TC (P = 0.96), HDL cholesterol (P = 0.28), or TG (P = 0.06) over 12 wk. Three SNP-diet interactions were associated with final TC concentrations: ANGPTL3-rs10889337 (P = 0.01), ANGPTL4-rs2278236 (P = 0.02), and CD36-rs10499859 (P = 0.01). SNPs in GCKR and LPL were associated with TC changes (P = 0.01). The interaction between GCKR-rs1260326 and diet was such that C-homozygotes receiving avocado (n = 23) had final TC concentrations that were significantly lower than the C-homozygotes in the control group (n = 20) (P = 0.02). CONCLUSIONS Results from these exploratory analyses indicate that avocado consumption may help manage dyslipidemia in adults with overweight and obesity; however, effectiveness may differ by genetic profile. Understanding the role of genetic variation in variability following dietary intervention can potentially inform personalized nutrition recommendations.
Collapse
Affiliation(s)
- Bridget A Hannon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caitlyn G Edwards
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sharon V Thompson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ginger E Reeser
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Margarita Teran-Garcia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Galmés S, Cifre M, Palou A, Oliver P, Serra F. A Genetic Score of Predisposition to Low-Grade Inflammation Associated with Obesity May Contribute to Discern Population at Risk for Metabolic Syndrome. Nutrients 2019; 11:E298. [PMID: 30704070 PMCID: PMC6412420 DOI: 10.3390/nu11020298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Omega-3 rich diets have been shown to improve inflammatory status. However, in an ex vivo system of human blood cells, the efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) modulating lipid metabolism and cytokine response is attenuated in overweight subjects and shows high inter-individual variability. This suggests that obesity may be exerting a synergistic effect with genetic background disturbing the anti-inflammatory potential of omega-3 long-chain polyunsaturated fatty acids (PUFA). In the present work, a genetic score aiming to explore the risk associated to low grade inflammation and obesity (LGI-Ob) has been elaborated and assessed as a tool to contribute to discern population at risk for metabolic syndrome. Pro-inflammatory gene expression and cytokine production as a response to omega-3 were associated with LGI-Ob score; and lower anti-inflammatory effect of PUFA was observed in subjects with a high genetic score. Furthermore, overweight/obese individuals showed positive correlation of both plasma C-Reactive Protein and triglyceride/HDLc-index with LGI-Ob; and high LGI-Ob score was associated with greater hypertension (p = 0.047), Type 2 diabetes (p = 0.026), and metabolic risk (p = 0.021). The study shows that genetic variation can influence inflammation and omega-3 response, and that the LGI-Ob score could be a useful tool to classify subjects at inflammatory risk and more prone to suffer metabolic syndrome and associated metabolic disturbances.
Collapse
Affiliation(s)
- Sebastià Galmés
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| | - Margalida Cifre
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
| | - Andreu Palou
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| | - Paula Oliver
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| | - Francisca Serra
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| |
Collapse
|
9
|
Association of common gene variants in glucokinase regulatory protein with cardiorenal disease: A systematic review and meta-analysis. PLoS One 2018; 13:e0206174. [PMID: 30352097 PMCID: PMC6198948 DOI: 10.1371/journal.pone.0206174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Background Small-molecules that disrupt the binding between glucokinase and glucokinase regulatory protein (GKRP) in the liver represent a potential new class of glucose-lowering drugs. It will, however, take years before their effects on clinically relevant cardiovascular endpoints are known. The purpose of this study was to estimate the effects of these drugs on cardiorenal outcomes by studying variants in the GKRP gene (GCKR) that mimic glucokinase-GKRP disruptors. Methods The MEDLINE and EMBASE databases were searched for studies reporting on the association between GCKR variants (rs1260326, rs780094, and rs780093) and coronary artery disease (CAD), estimated glomerular filtration rate (eGFR), and chronic kidney disease (CKD). Results In total 5 CAD studies (n = 274,625 individuals), 7 eGFR studies (n = 195,195 individuals), and 4 CKD studies (n = 31,642 cases and n = 408,432 controls) were included. Meta-analysis revealed a significant association between GCKR variants and CAD (OR:1.02 per risk allele, 95%CI:1.00–1.04, p = 0.01). Sensitivity analyses showed that replacement of one large, influential CAD study by two other, partly overlapping studies resulted in similar point estimates, albeit less precise (OR:1.02; 95%CI:0.98–1.06 and OR: 1.02; 95%CI: 0.99–1.04). GCKR was associated with an improved eGFR (+0.49 ml/min, 95%CI:0.10–0.89, p = 0.01) and a trend towards protection from CKD (OR:0.98, 95%CI:0.95–1.01, p = 0.13). Conclusion This study suggests that increased glucokinase-GKRP disruption has beneficial effects on eGFR, but these may be offset by a disadvantageous effect on coronary artery disease risk. Further studies are warranted to elucidate the mechanistic link between hepatic glucose metabolism and eGFR.
Collapse
|
10
|
A modified response of NAFLD patients with non-significant fibrosis in nutritional counseling according to GCKR rs1260326. Eur J Nutr 2017; 57:2227-2235. [PMID: 28695325 DOI: 10.1007/s00394-017-1499-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
AIM To investigate the association between GCKR gene and nutritional treatment in NAFLD-related biomarkers. METHODS This was an open-label and single-arm clinical trial in 44 overweight or obese adults with NAFLD receiving nutritional counseling for 6 months. Nutritional data, MedDietScore, clinical, biochemical, inflammatory and oxidative stress biomarkers were evaluated before and after intervention. Further, we genotyped GCKR rs1260326 and in T-allele carriers and non-Τ-carriers we assessed associations between the GCKR variant and nutritional counseling related to change in all biomarkers evaluated. RESULTS Anthropometric measurements were significantly reduced after the end of the intervention in patients assigned to nutritional counseling. Liver imaging and fibrosis were significantly improved. GCKR rs1260326 T-allele frequency was 46.7%. T-carriers responded better to nutritional counseling regarding fasting blood glucose levels (mean6-0 change = -4.94 mg/dL (±9.33), p = 0.005), whereas non-T-carriers did not benefit from the intervention regarding glucose. On the other hand, levels of oxLDL decreased in the non-T-carriers group after the intervention, but not in T-carriers. CONCLUSIONS Our results show that GCKR rs1260326 T-allele is associated with better response of NAFLD patients to nutritional treatment regarding fasting blood glucose, but not oxLDL levels. Despite this important finding in the field of nutrigenetics, it is tricky to generalize this effect unless larger studies are conducted.
Collapse
|
11
|
Beghin L, Vanhelst J, Deplanque D, Gonzales-Gross M, De Henauw S, Moreno LA, Gottrand F. [From the influence of genes to the influence of family and urban environment on the nutritional status, activity, and physical condition of european urban adolescents]. Med Sci (Paris) 2016; 32:746-51. [PMID: 27615183 DOI: 10.1051/medsci/20163208023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HELENA was a cross-sectional study carried out from 2006 to 2007 in more than 3500 adolescents aged from 12.5 to 17.5 years old through 10 Europeans towns from 9 countries. Its objective was to assess adolescent nutritional status including: body composition, biological markers, physical activity and fitness. This study shown the high impact of socio-economic condition, life style and personal and collective environment, dietary pattern (including breastfeeding), some genetic mutations involved in adiposity and metabolism, physical activity level and fitness on adolescent nutritional status.
Collapse
Affiliation(s)
- Laurent Beghin
- Univ. Lille, Inserm, CHU Lille, CIC 1403 - Centre d'investigation clinique, F-59000 Lille, France - Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Jérémy Vanhelst
- Univ. Lille, Inserm, CHU Lille, CIC 1403 - Centre d'investigation clinique, F-59000 Lille, France - Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, Inserm, CHU Lille, CIC 1403 - Centre d'investigation clinique, F-59000 Lille, France
| | - Marcela Gonzales-Gross
- Department of Health and Human Performance, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, Madrid, Espagne
| | - Stefaan De Henauw
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgique
| | - Luis A Moreno
- Escuela universitaria de ciencas de la Salud, universidad de Zaragoza, Zaragoza, Espagne
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, CIC 1403 - Centre d'investigation clinique, F-59000 Lille, France - Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| |
Collapse
|