1
|
Eke C, Babcock S, Gaston G, Elizondo G, Chung H, Asal A, Chatfield KC, Sparagna GC, DeBarber AE, Packwood W, Lindner JR, Gillingham MB. Cardiomyopathy in a c.1528G>C Hadha mouse is associated with cardiac tissue lipotoxicity and altered cardiolipin species. J Lipid Res 2025; 66:100792. [PMID: 40164334 DOI: 10.1016/j.jlr.2025.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a metabolic disorder caused by the loss of LCHAD enzymatic activity in the α-subunit of the trifunctional protein (TFPα), leading to impaired fatty acid oxidation (FAO). Patients with LCHADD often develop dilated cardiomyopathy. A previously unrecognized enzymatic function of TFPα as monolysocardiolipin acyltransferase (MLCL-AT) has been implicated in cardiolipin remodeling, crucial for mitochondrial cristae integrity. However, it remains unclear whether the common pathogenic variant c.1528G>C in HADHA impairs MLCL-AT activity in TFPα. In this study, we investigated whether cardiac cardiolipin profiles are altered in LCHADD and explored potential pathophysiological mechanisms, including heart lipid accumulation, changes in the cardiolipin synthesis pathway, and mitochondrial dynamics, utilizing a murine model of LCHADD carrying c.1528G>C variant that mimics the cardiomyopathy observed in humans. LCHADD mice developed eccentric hypertrophic cardiomyopathy from 3- to 12 months of age. 12-month-old LCHADD hearts exhibited altered cardiolipin profiles and increased oxidized cardiolipin. LCHADD hearts had higher lipid content, and the shift in fatty acid profile mirrored the shift in cardiolipin profile compared to wild-type controls, suggesting altered cardiolipin composition in LCHADD may be a reflection of accumulated lipids caused by lower FAO. No differential expression of cardiolipin synthesis and remodeling pathway enzymes was observed, suggesting minimal impact of the c.1528G>C variant on cardiolipin remodeling pathway. LCHADD hearts showed an altered ratio of OPA1 isoforms, and mitochondria with swelling and disorganized cristae were present. These findings suggest that altered fatty acid, cardiolipin profiles, and mitochondrial dynamics may contribute to LCHADD cardiomyopathy, warranting further studies.
Collapse
Affiliation(s)
- Chibuike Eke
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Shannon Babcock
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Garen Gaston
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Gabriela Elizondo
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Hak Chung
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Ayah Asal
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrea E DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - William Packwood
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA; Cardiovascular Division, The University of Virginia Medical Center, Charlottesville, Virginia, USA
| | - Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
2
|
Patt M, Karkossa I, Krieg L, Massier L, Makki K, Tabei S, Karlas T, Dietrich A, Gericke M, Stumvoll M, Blüher M, von Bergen M, Schubert K, Kovacs P, Chakaroun RM. FGF21 and its underlying adipose tissue-liver axis inform cardiometabolic burden and improvement in obesity after metabolic surgery. EBioMedicine 2024; 110:105458. [PMID: 39608059 PMCID: PMC11638646 DOI: 10.1016/j.ebiom.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND This research investigates the determinants of circulating FGF21 levels in a cohort reflecting metabolic disease progression, examining the associations of circulating FGF21 with morphology and function of adipose tissue (AT), and with metabolic adjustments following metabolic surgery. METHODS We measured serum FGF21 in 678 individuals cross-sectionally and in 189 undergoing metabolic surgery longitudinally. Relationships between FGF21 levels, AT histology, transcriptomes and proteomes, cardiometabolic risk factors, and post-surgery metabolic adjustments were assessed using univariate and multivariate analyses, causal mediation analysis, and network integration of AT transcriptomes and proteomes. FINDINGS FGF21 levels were linked to central adiposity, subclinical inflammation, insulin resistance, and cardiometabolic risk, and were driven by circulating leptin and liver enzymes. Higher FGF21 were linked with AT dysfunction reflected in fibro-inflammatory and lipid dysmetabolism pathways. Specifically, visceral AT inflammation was tied to both FGF21 elevation and liver dysfunction. Post-surgery, FGF21 peaked transitorily at three months. Mediation analysis highlighted an underlying increased AT catabolic state with elevated free fatty acids (FFA), contributing to higher liver stress and FGF21 levels (total effect of free fatty acids on FGF21 levels: 0.38, p < 0.01; proportion mediation via liver 32%, p < 0.01). In line with this, histological AT fibrosis linked with less pronounced FGF21 responses and reduced fat loss post-surgery (FFA and visceral AT fibrosis: rho = -0.31, p = 0.030; FFA and fat-mass loss: rho = 0.17, p = 0.020). INTERPRETATION FGF21 reflects the liver's disproportionate metabolic stress response in both central adiposity and after metabolic surgery, with its dynamics reflecting an AT-liver crosstalk. FUNDING This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, CRC1382 and a Walther-Benjamin Fellowship and by a junior research grant by the Medical Faculty, University of Leipzig, and by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1501. Part of this work was supported by the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement HEALTH-F4-2012-305312 and by the CRC1382 and the Novo Nordisk Foundation and by the Deutsche Forschungsgemeinschaft (DFG, German Research foundation) project number 530364326.
Collapse
Affiliation(s)
- Marie Patt
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lucas Massier
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kassem Makki
- INSERM U1060, INRAE UMR1397, Université de Lyon, France
| | - Shirin Tabei
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany; Centre of Brain, Behaviour, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Medical Department II, University of Leipzig Medical Centre, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Centre, Leipzig, Germany
| | - Martin Gericke
- Leipzig University, Institute of Anatomy, Leipzig, Germany
| | - Michael Stumvoll
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima M Chakaroun
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Centre for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Collins DM, Janardan V, Barneda D, Anderson KE, Niewczas I, Taylor D, Qiu D, Jessen HJ, Lopez-Clavijo AF, Walker S, Raghu P, Clark J, Stephens LR, Hawkins PT. CDS2 expression regulates de novo phosphatidic acid synthesis. Biochem J 2024; 481:1449-1473. [PMID: 39312194 PMCID: PMC11555650 DOI: 10.1042/bcj20240456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
CDS enzymes (CDS1 and 2 in mammals) convert phosphatidic acid (PA) to CDP-DG, an essential intermediate in the de novo synthesis of PI. Genetic deletion of CDS2 in primary mouse macrophages resulted in only modest changes in the steady-state levels of major phospholipid species, including PI, but substantial increases in several species of PA, CDP-DG, DG and TG. Stable isotope labelling experiments employing both 13C6- and 13C6D7-glucose revealed loss of CDS2 resulted in a minimal reduction in the rate of de novo PI synthesis but a substantial increase in the rate of de novo PA synthesis from G3P, derived from DHAP via glycolysis. This increased synthesis of PA provides a potential explanation for normal basal PI synthesis in the face of reduced CDS capacity (via increased provision of substrate to CDS1) and increased synthesis of DG and TG (via increased provision of substrate to LIPINs). However, under conditions of sustained GPCR-stimulation of PLC, CDS2-deficient macrophages were unable to maintain enhanced rates of PI synthesis via the 'PI cycle', leading to a substantial loss of PI. CDS2-deficient macrophages also exhibited significant defects in calcium homeostasis which were unrelated to the activation of PLC and thus probably an indirect effect of increased basal PA. These experiments reveal that an important homeostatic response in mammalian cells to a reduction in CDS capacity is increased de novo synthesis of PA, likely related to maintaining normal levels of PI, and provides a new interpretation of previous work describing pleiotropic effects of CDS2 deletion on lipid metabolism/signalling.
Collapse
Affiliation(s)
| | - Vishnu Janardan
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - David Barneda
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | | | | | - Diane Taylor
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | | | - Simon Walker
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Jonathan Clark
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | | |
Collapse
|
4
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Liu XT, Huang Y, Liu D, Jiang YC, Zhao M, Chung LH, Han XD, Zhao Y, Chen J, Coleman P, Ting KK, Tran C, Su Y, Dennis CV, Bhatnagar A, Liu K, Don AS, Vadas MA, Gorrell MD, Zhang S, Murray M, Kavurma MM, McCaughan GW, Gamble JR, Qi Y. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis. J Transl Med 2024; 22:43. [PMID: 38200582 PMCID: PMC10782643 DOI: 10.1186/s12967-023-04830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xin Tracy Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yu Huang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Da Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yingxin Celia Jiang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Xingxing Daisy Han
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Jinbiao Chen
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Paul Coleman
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Ka Ka Ting
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Collin Tran
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yingying Su
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claude Vincent Dennis
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Atul Bhatnagar
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Anthony Simon Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mathew Alexander Vadas
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Mark Douglas Gorrell
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Geoffrey William McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Jennifer Ruth Gamble
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia.
| |
Collapse
|
6
|
Ho NI, Huis In 't Veld LGM, van Eck van der Sluijs J, Heuts BMH, Looman MWG, Kers-Rebel ED, van den Dries K, Dolstra H, Martens JHA, Hobo W, Adema GJ. Saponin-based adjuvants enhance antigen cross-presentation in human CD11c + CD1c + CD5 - CD163 + conventional type 2 dendritic cells. J Immunother Cancer 2023; 11:e007082. [PMID: 37612044 PMCID: PMC10450066 DOI: 10.1136/jitc-2023-007082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Adjuvants are key for effective vaccination against cancer and chronic infectious diseases. Saponin-based adjuvants (SBAs) are unique among adjuvants in their ability to induce robust cell-mediated immune responses in addition to antibody responses. Recent preclinical studies revealed that SBAs induced cross-presentation and lipid bodies in otherwise poorly cross-presenting CD11b+ murine dendritic cells (DCs). METHOD Here, we investigated the response of human DC subsets to SBAs with RNA sequencing and pathway analyses, lipid body induction visualized by laser scanning microscopy, antigen translocation to the cytosol, and antigen cross-presentation to CD8+ T cells. RESULTS RNA sequencing of SBA-treated conventional type 1 DC (cDC1) and type 2 DC (cDC2) subsets uncovered that SBAs upregulated lipid-related pathways in CD11c+ CD1c+ cDC2s, especially in the CD5- CD163+ CD14+ cDC2 subset. Moreover, SBAs induced lipid bodies and enhanced endosomal antigen translocation into the cytosol in this particular cDC2 subset. Finally, SBAs enhanced cross-presentation only in cDC2s, which requires the CD163+ CD14+ cDC2 subset. CONCLUSIONS These data thus identify the CD163+ CD14+ cDC2 subset as the main SBA-responsive DC subset in humans and imply new strategies to optimize the application of saponin-based adjuvants in a potent cancer vaccine.
Collapse
Affiliation(s)
- Nataschja I Ho
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lisa G M Huis In 't Veld
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jesper van Eck van der Sluijs
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Maaike W G Looman
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Koen van den Dries
- Radboud Technology Center Microscopy, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Nijmegen Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Chen C, Chen W, Ding H, Zhang G, Xie K, Zhang T. Integrated Metabolomic and Transcriptomic Analysis Reveals Potential Gut-Liver Crosstalks in the Lipogenesis of Chicken. Animals (Basel) 2023; 13:ani13101659. [PMID: 37238090 DOI: 10.3390/ani13101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence has shown the involvement of the gut-liver axis in lipogenesis and fat deposition. However, how the gut crosstalk with the liver and the potential role of gut-liver crosstalk in the lipogenesis of chicken remains largely unknown. In this study, to identify gut-liver crosstalks involved in regulating the lipogenesis of chicken, we first established an HFD-induced obese chicken model. Using this model, we detected the changes in the metabolic profiles of the cecum and liver in response to the HFD-induced excessive lipogenesis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The changes in the gene expression profiles of the liver were examined by RNA sequencing. The potential gut-liver crosstalks were identified by the correlation analysis of key metabolites and genes. The results showed that a total of 113 and 73 differentially abundant metabolites (DAMs) between NFD and HFD groups were identified in the chicken cecum and liver, respectively. Eleven DAMs overlayed between the two comparisons, in which ten DAMs showed consistent abundance trends in the cecum and liver after HFD feeding, suggesting their potential as signaling molecules between the gut and liver. RNA sequencing identified 271 differentially expressed genes (DEGs) in the liver of chickens fed with NFD vs. HFD. Thirty-five DEGs were involved in the lipid metabolic process, which might be candidate genes regulating the lipogenesis of chicken. Correlation analysis indicated that 5-hydroxyisourate, alpha-linolenic acid, bovinic acid, linoleic acid, and trans-2-octenoic acid might be transported from gut to liver, and thereby up-regulate the expression of ACSS2, PCSK9, and CYP2C18 and down-regulate one or more genes of CDS1, ST8SIA6, LOC415787, MOGAT1, PLIN1, LOC423719, and EDN2 in the liver to enhance the lipogenesis of chicken. Moreover, taurocholic acid might be transported from the gut to the liver and contribute to HFD-induced lipogenesis by regulating the expression of ACACA, FASN, AACS, and LPL in the liver. Our findings contribute to a better understanding of gut-liver crosstalks and their potential roles in regulating chicken lipogenesis.
Collapse
Affiliation(s)
- Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Weilin Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Morita SY, Ikeda Y. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem Pharmacol 2022; 206:115296. [DOI: 10.1016/j.bcp.2022.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
|
9
|
Wang X, Liang C, Li A, Cheng G, Long F, Khan R, Wang J, Zhang Y, Wu S, Wang Y, Qiu J, Mei C, Yang W, Zan L. RNA-Seq and lipidomics reveal different adipogenic processes between bovine perirenal and intramuscular adipocytes. Adipocyte 2022; 11:448-462. [PMID: 35941812 PMCID: PMC9367662 DOI: 10.1080/21623945.2022.2106051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipogenesis involves complex interactions between transcription and metabolic signalling. Exploration of the developmental characteristics of intramuscular adipocyte will provide targets for enhancing beef cattle marbling without increasing obesity. Few reports have compared bovine perirenal and intramuscular adipocyte transcriptomes using the combined analysis of transcriptomes and lipid metabolism to explore differences in adipogenic characteristics. We identified perirenal preadipocytes (PRA) and intramuscular preadipocytes (IMA) in Qinchuan cattle. We found that IMA were highly prolific in the early stages of adipogenesis, while PRA shows a stronger adipogenic ability in the terminal differentiation. Bovine perirenal and intramuscular adipocytes were detected through the combined analysis of the transcriptome and metabolome. More triglyceride was found to be upregulated in perirenal adipocytes; however, more types and amounts of unsaturated fatty acids were detected in intramuscular adipocytes, including eicosapentaenoic acid (20:5 n-3; EPA) and docosahexaenoic acid (22:6 n-3; DHA). Furthermore, differentially expressed genes in perirenal and intramuscular adipocytes were positively correlated with the eicosanoid, phosphatidylcholine (PC), phosphatidyl ethanolamine (PE), and sphingomyelin contents. Associated differential metabolic pathways included the glycerolipid and glycerophospholipid metabolisms. Our research findings provide a basis for the screening of key metabolic pathways or genes and metabolites involved in intramuscular fat production in cattle.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rajwali Khan
- Department of Livestock Management, the University of Agriculture, Peshawar, Pakistan
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- Longri Breeding Farm of Sichuan Province, Sichuan, Chengdu, China
| | - Sen Wu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Qinghai, Xining, China
| | - Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Liu XT, Chung LH, Liu D, Chen J, Huang Y, Teo JD, Han XD, Zhao Y, Guan FHX, Tran C, Lee JY, Couttas TA, Liu K, McCaughan GW, Gorrell MD, Don AS, Zhang S, Qi Y. Ablation of sphingosine kinase 2 suppresses fatty liver-associated hepatocellular carcinoma via downregulation of ceramide transfer protein. Oncogenesis 2022; 11:67. [PMID: 36333295 PMCID: PMC9636415 DOI: 10.1038/s41389-022-00444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer, the third leading cause of cancer-associated death worldwide. With the increasing prevalence of metabolic conditions, non-alcoholic fatty liver disease (NAFLD) is emerging as the fastest-growing HCC risk factor, and it imposes an additional layer of difficulty in HCC management. Dysregulated hepatic lipids are generally believed to constitute a deleterious environment cultivating the development of NAFLD-associated HCC. However, exactly which lipids or lipid regulators drive this process remains elusive. We report herein that sphingosine kinase 2 (SphK2), a key sphingolipid metabolic enzyme, plays a critical role in NAFLD-associated HCC. Ablation of Sphk2 suppressed HCC development in NAFLD livers via inhibition of hepatocyte proliferation both in vivo and in vitro. Mechanistically, SphK2 deficiency led to downregulation of ceramide transfer protein (CERT) that, in turn, decreased the ratio of pro-cancer sphingomyelin (SM) to anti-cancer ceramide. Overexpression of CERT restored hepatocyte proliferation, colony growth and cell cycle progression. In conclusion, the current study demonstrates that SphK2 is an essential lipid regulator in NAFLD-associated HCC, providing experimental evidence to support clinical trials of SphK2 inhibitors as systemic therapies against HCC.
Collapse
Affiliation(s)
- Xin Tracy Liu
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Long Hoa Chung
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Da Liu
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yu Huang
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan D Teo
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China
| | - Fiona H X Guan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Collin Tran
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jun Yup Lee
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Timothy A Couttas
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Geoffery W McCaughan
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Anthony S Don
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning, China.
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Vomhof-DeKrey EE, Singhal S, Singhal SK, Stover AD, Rajpathy O, Preszler E, Garcia L, Basson MD. RNA Sequencing of Intestinal Enterocytes Pre- and Post-Roux-en-Y Gastric Bypass Reveals Alteration in Gene Expression Related to Enterocyte Differentiation, Restitution, and Obesity with Regulation by Schlafen 12. Cells 2022; 11:3283. [PMID: 36291149 PMCID: PMC9601224 DOI: 10.3390/cells11203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The intestinal lining renews itself in a programmed fashion that can be affected by adaptation to surgical procedures such as gastric bypass. METHODS To assess adaptive mechanisms in the human intestine after Roux-en-Y gastric bypass (RYGB), we biopsied proximal jejunum at the anastomotic site during surgery to establish a baseline and endoscopically re-biopsied the same area 6-9 months after bypass for comparison. Laser microdissection was performed on pre- and post-RYGB biopsies to isolate enterocytes for RNA sequencing. RESULTS RNA sequencing suggested significant decreases in gene expression associated with G2/M DNA damage checkpoint regulation of the cell cycle pathway, and significant increases in gene expression associated with the CDP-diacylglycerol biosynthesis pathway TCA cycle II pathway, and pyrimidine ribonucleotide salvage pathway after RYGB. Since Schlafen 12 (SLFN12) is reported to influence enterocytic differentiation, we stained mucosa for SLFN12 and observed increased SLFN12 immunoreactivity. We investigated SLFN12 overexpression in HIEC-6 and FHs 74 Int intestinal epithelial cells and observed similar increased expression of the following genes that were also increased after RYGB: HES2, CARD9, SLC19A2, FBXW7, STXBP4, SPARCL1, and UTS. CONCLUSIONS Our data suggest that RYGB promotes SLFN12 protein expression, cellular mechanism and replication pathways, and genes associated with differentiation and restitution (HES2, CARD9, SLC19A2), as well as obesity-related genes (FBXW7, STXBP4, SPARCL1, UTS).
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Allie D. Stover
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Odele Rajpathy
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Elizabeth Preszler
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Luis Garcia
- Sanford Health Clinic, Sioux Falls, ND 57117, USA
| | - Marc D. Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
12
|
Ubaida-Mohien C, Spendiff S, Lyashkov A, Moaddel R, MacMillan NJ, Filion ME, Morais JA, Taivassalo T, Ferrucci L, Hepple RT. Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians. eLife 2022; 11:e74335. [PMID: 35404238 PMCID: PMC9090325 DOI: 10.7554/elife.74335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Master athletes (MAs) prove that preserving a high level of physical function up to very late in life is possible, but the mechanisms responsible for their high function remain unclear. Methods We performed muscle biopsies in 15 octogenarian world-class track and field MAs and 14 non-athlete age/sex-matched controls (NA) to provide insights into mechanisms for preserving function in advanced age. Muscle samples were assessed for respiratory compromised fibers, mitochondrial DNA (mtDNA) copy number, and proteomics by liquid-chromatography mass spectrometry. Results MA exhibited markedly better performance on clinical function tests and greater cross-sectional area of the vastus lateralis muscle. Proteomics analysis revealed marked differences, where most of the ~800 differentially represented proteins in MA versus NA pertained to mitochondria structure/function such as electron transport capacity (ETC), cristae formation, mitochondrial biogenesis, and mtDNA-encoded proteins. In contrast, proteins from the spliceosome complex and nuclear pore were downregulated in MA. Consistent with proteomics data, MA had fewer respiratory compromised fibers, higher mtDNA copy number, and an increased protein ratio of the cristae-bound ETC subunits relative to the outer mitochondrial membrane protein voltage-dependent anion channel. There was a substantial overlap of proteins overrepresented in MA versus NA with proteins that decline with aging and that are higher in physically active than sedentary individuals. However, we also found 176 proteins related to mitochondria that are uniquely differentially expressed in MA. Conclusions We conclude that high function in advanced age is associated with preserving mitochondrial structure/function proteins, with underrepresentation of proteins involved in the spliceosome and nuclear pore complex. Whereas many of these differences in MA appear related to their physical activity habits, others may reflect unique biological (e.g., gene, environment) mechanisms that preserve muscle integrity and function with aging. Funding Funding for this study was provided by operating grants from the Canadian Institutes of Health Research (MOP 84408 to TT and MOP 125986 to RTH). This work was supported in part by the Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Sally Spendiff
- Research Institute, Children's Hospital of Eastern OntarioOttawaCanada
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Norah J MacMillan
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Marie-Eve Filion
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Jose A Morais
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Tanja Taivassalo
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Russell T Hepple
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- Department of Physiology and Functional Genomics, University of FloridaGainesvilleUnited States
| |
Collapse
|
13
|
Xu Y, Zhang S, Guo Y, Gao L, zhang H, Chen W, Huang Y. Chicken CDS2 isoforms presented distinct spatio-temporal expression pattern and regulated by insulin in a breed-specific manner. Poult Sci 2022; 101:101893. [PMID: 35504066 PMCID: PMC9079004 DOI: 10.1016/j.psj.2022.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
The cytidine diphosphate diacylglycerol synthases (CDSs) gene encodes the cytidine diphosphate-diacylglycerol (CDP-DAG) synthase enzyme that catalyzes the formation of CDP-diacylglycerol from phosphatidic acid. At present, there are no reports of CDS2 in birds. Here, we identified chicken CDS2 transcripts by combining conventional RT-PCR amplification, 5′ rapid amplification of cDNA ends (RACE), and 3′ RACE, explored the spatio-temporal expression profiles of total CDS2 and the longest transcript variant CDS2-4, and investigated the effect of exogenous insulin on the mRNA level of total CDS2 via quantitative RT-PCR. Four transcripts of chicken CDS2 (CDS2-1, -2, -3, and -4) were identified, which were alternatively spliced at the 3′-untranslated region (UTR). Both total CDS2 and CDS2-4 were prominently expressed in adipose tissue, and exhibited low expression in liver and pectoralis of 49-day-old chickens. Regarding the spatio-temporal expression patterns of CDS2 in chicken, total CDS2 exhibited a similar temporal expression tendency with a high level in the later period of incubation (embryonic day 19 [E19] or 1-day-old) in the brain, liver, and pectoralis. While CDS2-4 presented a distinct temporal expression pattern in these tissues, CDS2-4 levels peaked at 21 d in the brain and pectoralis, while liver CDS2-4 mRNA levels were highest at the early stage of hatching (E10). Total CDS2 (P < 0.001) and CDS2-4 (P = 0.0090) mRNA levels in the liver were differentially regulated throughout the development of the chicken. Total CDS2 levels in the liver of Silky chickens were higher than that of the broiler in the basal state and after insulin stimulation. Exogenous insulin significantly down-regulated the level of total CDS2 at 240 min in the pectoralis of Silky chickens (P < 0.01). In conclusion, chicken CDS2 isoforms with variation at the 3′-UTR were identified, which was prominently expressed in adipose tissue. Total CDS2 and CDS2-4 presented distinct spatio-temporal expression patterns, that is they were differentially regulated with age in brain, liver, and pectoralis. Insulin could regulate chicken CDS2 levels in a breed- and tissue-specific manner.
Collapse
|
14
|
Xu J, Chen S, Wang W, Man Lam S, Xu Y, Zhang S, Pan H, Liang J, Huang X, Wang Y, Li T, Jiang Y, Wang Y, Ding M, Shui G, Yang H, Huang X. Hepatic CDP-diacylglycerol synthase 2 deficiency causes mitochondrial dysfunction and promotes rapid progression of NASH and fibrosis. Sci Bull (Beijing) 2022; 67:299-314. [PMID: 36546079 DOI: 10.1016/j.scib.2021.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 01/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis (NASH). The factors promoting the progression of steatosis to NASH are still unclear. Recent studies suggest that mitochondrial lipid composition is critical in NASH development. Here, we showed that CDP-DAG synthase 2 (Cds2) was downregulated in genetic or diet-induced NAFLD mouse models. Liver-specific deficiency of Cds2 provoked hepatic steatosis, inflammation and fibrosis in five-week-old mice. CDS2 is enriched in mitochondria-associated membranes (MAMs), and hepatic Cds2 deficiency impaired mitochondrial function and decreased mitochondrial PE levels. Overexpression of phosphatidylserine decarboxylase (PISD) alleviated the NASH-like phenotype in Cds2f/f;AlbCre mice and abnormal mitochondrial morphology and function caused by CDS2 deficiency in hepatocytes. Additionally, dietary supplementation with an agonist of peroxisome proliferator-activated receptor alpha (PPARα) attenuated mitochondrial defects and ameliorated the NASH-like phenotype in Cds2f/f;AlbCre mice. Finally, Cds2 overexpression protected against high-fat diet-induced hepatic steatosis and obesity. Thus, Cds2 modulates mitochondrial function and NASH development.
Collapse
Affiliation(s)
- Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shaohua Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Pan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Mak HY, Ouyang Q, Tumanov S, Xu J, Rong P, Dong F, Lam SM, Wang X, Lukmantara I, Du X, Gao M, Brown AJ, Gong X, Shui G, Stocker R, Huang X, Chen S, Yang H. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway. Nat Commun 2021; 12:6877. [PMID: 34824276 PMCID: PMC8616899 DOI: 10.1038/s41467-021-27279-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
AGPATs (1-acylglycerol-3-phosphate O-acyltransferases) catalyze the acylation of lysophosphatidic acid to form phosphatidic acid (PA), a key step in the glycerol-3-phosphate pathway for the synthesis of phospholipids and triacylglycerols. AGPAT2 is the only AGPAT isoform whose loss-of-function mutations cause a severe form of human congenital generalized lipodystrophy. Paradoxically, AGPAT2 deficiency is known to dramatically increase the level of its product, PA. Here, we find that AGPAT2 deficiency impairs the biogenesis and growth of lipid droplets. We show that AGPAT2 deficiency compromises the stability of CDP-diacylglycerol (DAG) synthases (CDSs) and decreases CDS activity in both cell lines and mouse liver. Moreover, AGPAT2 and CDS1/2 can directly interact and form functional complexes, which promote the metabolism of PA along the CDP-DAG pathway of phospholipid synthesis. Our results provide key insights into the regulation of metabolic flux during lipid synthesis and suggest substrate channelling at a major branch point of the glycerol-3-phosphate pathway.
Collapse
Affiliation(s)
- Hoi Yin Mak
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qian Ouyang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Sergey Tumanov
- Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Feitong Dong
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Lipidall Technologies Company Limited, 213022, Changzhou, Jiangsu Province, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China
| | - Ivan Lukmantara
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xin Gong
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Gao M, Liu L, Wang X, Mak HY, Liu G, Yang H. GPAT3 deficiency alleviates insulin resistance and hepatic steatosis in a mouse model of severe congenital generalized lipodystrophy. Hum Mol Genet 2021; 29:432-443. [PMID: 31873720 DOI: 10.1093/hmg/ddz300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is the most severe form of human lipodystrophy and is caused by loss-of-function mutations in the BSCL2/seipin gene. Exactly how seipin may regulate adipogenesis remains unclear. A recent study in vitro suggested that seipin may function to inhibit the activity of glycerol-3-phosphate acyltransferases (GPATs), and increased GPAT activity may be responsible for the defective adipogenesis under seipin deficiency. Here we generated Seipin-/-Gpat3-/- mice, which had mild but significant recovery of white adipose tissue mass over Seipin-/- mice. The mass of brown adipose tissue (BAT) of the Seipin-/-Gpat3-/- mice was almost completely restored to normal level. Importantly, the Seipin-/-Gpat3-/- mice showed significant improvement in liver steatosis and insulin sensitivity over Seipin-/- mice, which is attributable to the increased BAT mass and to the enhanced browning of the subcutaneous fat of the Seipin-/-Gpat3-/- mice. Together, our results establish a functional link between seipin and GPAT3 in vivo and suggest that GPAT inhibitors may have beneficial effects on BSCL2 patients.
Collapse
Affiliation(s)
- Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Lin Liu
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hoi Yin Mak
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Wang T, Zhang T, Tang Y, Wang H, Wei Q, Lu Y, Yao J, Qu Y, Cao X. Oxysterol-binding protein-like 2 contributes to the developmental progression of preadipocytes by binding to β-catenin. Cell Death Discov 2021; 7:109. [PMID: 34001864 PMCID: PMC8129138 DOI: 10.1038/s41420-021-00503-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Oxysterol-binding protein-like 2 (OSBPL2), also known as oxysterol-binding protein-related protein (ORP) 2, is a member of lipid transfer protein well-known for its role in regulating cholesterol homeostasis. A recent study reported that OSBPL2/ORP2 localizes to lipid droplets (LDs) and is associated with energy metabolism and obesity. However, the function of OSBPL2/ORP2 in adipocyte differentiation is poorly understood. Here, we report that OSBPL2/ORP2 contributes to the developmental progression of preadipocytes. We found that OSBPL2/ORP2 binds to β-catenin, a key effector in the Wnt signaling pathway that inhibits adipogenesis. This complex plays a role in regulating the protein level of β-catenin only in preadipocytes, not in mature adipocytes. Our data further indicated that OSBPL2/ORP2 mediates the transport of β-catenin into the nucleus and thus regulates target genes related to adipocyte differentiation. Deletion of OSBPL2/ORP2 markedly reduces β-catenin both in the cytoplasm and in the nucleus, promotes preadipocytes maturation, and ultimately leads to obesity-related characteristics. Altogether, we provide novel insight into the function of OSBPL2/ORP2 in the developmental progression of preadipocytes and suggest OSBPL2/ORP2 may be a potential therapeutic target for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Tianyu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Youzhi Tang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Baazaoui I, Bedhiaf-Romdhani S, Mastrangelo S, Ciani E. Genome-wide analyses reveal population structure and identify candidate genes associated with tail fatness in local sheep from a semi-arid area. Animal 2021; 15:100193. [PMID: 33715983 DOI: 10.1016/j.animal.2021.100193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Under a climate change perspective, the genetic make-up of local livestock breeds showing adaptive traits should be explored and preserved as a priority. We used genotype data from the ovine 50 k Illumina BeadChip for assessing breed autozygosity based on runs of homozygosity (ROH) and fine-scale genetic structure and for detecting genomic regions under selection in 63 Tunisian sheep samples. The average genomic inbreeding coefficients based on ROH were estimated at 0.017, 0.021, and 0.024 for Barbarine (BAR, n = 26), Noire de Thibar (NDT, n = 23), and Queue fine de l'Ouest (QFO, n = 14) breeds, respectively. The genomic relationships among individuals based on identity by state (IBS) distance matrix highlighted a recent introgression of QFO into the BAR and a genetic differentiation of NDT samples, possibly explained by past introgression of European gene pools. Genome-wide scan for ROH across breeds and within the BAR sample set identified an outstanding signal on chromosome 13 (46.58-49.61 Mbp). These results were confirmed using FST index, differentiating fat vs. thin-tailed individuals. Candidate genes under selection pressure (CDS2, PROKR1, and BMP2) were associated to lipid storage and probably preferentially selected in fat-tailed BAR animals. Our findings suggest paying more attention to preserve the genetic integrity and adaptive alleles of local sheep breeds.
Collapse
Affiliation(s)
- I Baazaoui
- Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - S Bedhiaf-Romdhani
- Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourragères, Université de Carthage, 2049 Ariana, Tunisie..
| | - S Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - E Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70121 Bari, Italy
| |
Collapse
|
19
|
Regulation of hepatic insulin signaling and glucose homeostasis by sphingosine kinase 2. Proc Natl Acad Sci U S A 2020; 117:24434-24442. [PMID: 32917816 PMCID: PMC7533871 DOI: 10.1073/pnas.2007856117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic insulin resistance is a chief pathogenic determinant in the development of type 2 diabetes, which is often associated with abnormal hepatic lipid regulation. Sphingolipids are a class of essential lipids in the liver, where sphingosine kinase 2 (SphK2) is a key enzyme in their catabolic pathway. However, roles of SphK2 and its related sphingolipids in hepatic insulin resistance remain elusive. Here we generate liver-specific Sphk2 knockout mice, demonstrating that SphK2 in the liver is essential for insulin sensitivity and glucose homeostasis. We also identify sphingosine as a bona fide endogenous inhibitor of hepatic insulin signaling. These findings provide physiological insights into SphK2 and sphingosine, which could be therapeutic targets for the management of insulin resistance and diabetes. Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
Collapse
|
20
|
El-Darzi N, Mast N, Petrov AM, Pikuleva IA. 2-Hydroxypropyl-β-cyclodextrin reduces retinal cholesterol in wild-type and Cyp27a1 -/- Cyp46a1 -/- mice with deficiency in the oxysterol production. Br J Pharmacol 2020; 178:3220-3234. [PMID: 32698250 DOI: 10.1111/bph.15209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE 2-Hydroxypropyl-β-cyclodextrin (HPCD) is an FDA approved vehicle for drug delivery and an efficient cholesterol-lowering agent. HPCD was proposed to lower tissue cholesterol via multiple mechanisms including those mediated by oxysterols. CYP27A1 and CYP46A1 are the major oxysterol-producing enzymes in the retina that convert cholesterol to 27- and 24-hydroxycholesterol, respectively. We investigated whether HPCD treatments affected the retina of wild-type and Cyp27a1-/- Cyp46a1-/- mice that do not produce the major retinal oxysterols. EXPERIMENTAL APPROACH HPCD administration was either by i.p., p.o. or s.c. Delivery to the retina was confirmed by angiography using the fluorescently labelled HPCD. Effects on the levels of retinal sterols, mRNA and proteins were evaluated by GC-MS, qRT-PCR and label-free approach, respectively. KEY RESULTS In both wild-type and Cyp27a1-/- Cyp46a1-/- mice, HPCD crossed the blood-retinal barrier when delivered i.p. and lowered the retinal cholesterol content when administered p.o. and s.c. In both genotypes, oral HPCD treatment affected the expression of cholesterol-related genes as well as the proteins involved in endocytosis, lysosomal function and lipid homeostasis. Mechanistically, liver X receptors and the altered expression of Lipe (hormone-sensitive lipase), Nceh1 (neutral cholesterol ester hydrolase 1) and NLTP (non-specific lipid-transfer protein) could mediate some of the HPCD effects. CONCLUSIONS AND IMPLICATIONS HPCD treatment altered retinal cholesterol homeostasis and is a potential therapeutic approach for the reduction of drusen and subretinal drusenoid deposits, cholesterol-rich lesions and hallmarks of age-related macular degeneration. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Wang T, Wei Q, Liang L, Tang X, Yao J, Lu Y, Qu Y, Chen Z, Xing G, Cao X. OSBPL2 Is Required for the Binding of COPB1 to ATGL and the Regulation of Lipid Droplet Lipolysis. iScience 2020; 23:101252. [PMID: 32650117 PMCID: PMC7348002 DOI: 10.1016/j.isci.2020.101252] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
The accumulation of giant lipid droplets (LDs) increases the risk of metabolic disorders including obesity and insulin resistance. The lipolysis process involves the activation and transfer of lipase, but the molecular mechanism is not completely understood. The translocation of ATGL, a critical lipolysis lipase, from the ER to the LD surface is mediated by an energy catabolism complex. Oxysterol-binding protein-like 2 (OSBPL2/ORP2) is one of the lipid transfer proteins that regulates intracellular cholesterol homeostasis. A recent study has proven that Osbpl2−/− pigs exhibit hypercholesterolemia and obesity phenotypes with an increase in adipocytes. In this study, we identified that OSBPL2 links the endoplasmic reticulum (ER) with LDs, binds to COPB1, and mediates ATGL transport. We provide important insights into the function of OSBPL2, indicating that it is required for the regulation of lipid droplet lipolysis. LD lipolysis is impaired in OSBPL2/osbpl2b-mutant HepG2 cells and zebrafish OSBPL2 interacts with COPB1, a subunit of the COPI complex located on LDs Altered COPI complexes on LDs may perturb the trafficking of lipolysis lipase ATGL
Collapse
Affiliation(s)
- Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Lihong Liang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Xujun Tang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Zhibin Chen
- Department of Otolaryngology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guangqian Xing
- Department of Otolaryngology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
22
|
Jennings W, Epand RM. CDP-diacylglycerol, a critical intermediate in lipid metabolism. Chem Phys Lipids 2020; 230:104914. [PMID: 32360136 DOI: 10.1016/j.chemphyslip.2020.104914] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The roles of lipids expand beyond the basic building blocks of biological membranes. In addition to forming complex and dynamic barriers, the thousands of different lipid species in the cell contribute to essentially all the processes of life. Specific lipids are increasingly identified in cellular processes, including signal transduction, membrane trafficking, metabolic control and protein regulation. Tight control of their synthesis and degradation is essential for homeostasis. Most of the lipid molecules in the cell originate from a small number of critical intermediates. Thus, regulating the synthesis of intermediates is essential for lipid homeostasis and optimal biological functions. Cytidine diphosphate diacylglycerol (CDP-DAG) is an intermediate which occupies a branch point in lipid metabolism. CDP-DAG is incorporated into different synthetic pathways to form distinct phospholipid end-products depending on its location of synthesis. Identification and characterization of CDP-DAG synthases which catalyze the synthesis of CDP-DAG has been hampered by difficulties extracting these membrane-bound enzymes for purification. Recent developments have clarified the cellular localization of the CDP-DAG synthases and identified a new unrelated CDP-DAG synthase enzyme. These findings have contributed to a deeper understanding of the extensive synthetic and signaling networks stemming from this key lipid intermediate.
Collapse
Affiliation(s)
- William Jennings
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
23
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes. Biomolecules 2020; 10:biom10030493. [PMID: 32213983 PMCID: PMC7175212 DOI: 10.3390/biom10030493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism); CDS1, PCTP, and MAT1A (phospholipid metabolism); and FATP2, SLC6A12, and AQP3 (uptake of fatty acids, betaine, and glycerol, respectively). They were rapidly induced (4–6 h) upon VDR activation by 10 nM VitD or 100 µM lithocholic acid (LCA). Most of these genes were also upregulated by VDR/VitD in mouse livers in vivo. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) metabolomics demonstrated intracellular accumulation of triglycerides, with concomitant decreases in diglycerides and phosphatidates, at 8 and 24 h upon VDR activation. Significant alterations in phosphatidylcholines, increases in lyso-phosphatidylcholines and decreases in phosphatidylethanolamines and phosphatidylethanolamine plasmalogens were also observed. In conclusion, active VitD/VDR signaling in hepatocytes triggers an unanticipated coordinated gene response leading to triglyceride synthesis and to important perturbations in glycerolipids and phospholipids.
Collapse
|
25
|
Blunsom NJ, Cockcroft S. CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis. Front Cell Dev Biol 2020; 8:63. [PMID: 32117988 PMCID: PMC7018664 DOI: 10.3389/fcell.2020.00063] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.
Collapse
Affiliation(s)
| | - Shamshad Cockcroft
- Division of Biosciences, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Bogucka-Kocka A, Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Komsta Ł, Kołodziej P, Zubilewicz T, Feldo M, Kocki J. Dysregulation of MicroRNA Regulatory Network in Lower Extremities Arterial Disease. Front Genet 2019; 10:1200. [PMID: 31827490 PMCID: PMC6892359 DOI: 10.3389/fgene.2019.01200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/29/2019] [Indexed: 01/12/2023] Open
Abstract
Atherosclerosis and its comorbidities are the major contributors to the global burden of death worldwide. Lower extremities arterial disease (LEAD) is a common manifestation of atherosclerotic disease of arteries of lower extremities. MicroRNAs belong to epigenetic factors that regulate gene expression and have not yet been extensively studied in LEAD. We aimed to indicate the most promising microRNA and gene expression signatures of LEAD, to identify interactions between microRNA and genes and to describe potential effect of modulated gene expression. High-throughput sequencing was employed to examine microRNAome and transcriptome of peripheral blood mononuclear cells of patients with LEAD, in relation to controls. Statistical significance of microRNAs and genes analysis results was evaluated using DESeq2 and uninformative variable elimination by partial least squares methods. Altered expression of 26 microRNAs (hsa-let-7f-1-3p, hsa-miR-34a-5p, -122-5p, -3591-3p, -34a-3p, -1261, -21-5p, -15a-5p, -548d-5p, -34b-5p, -424-3p, -548aa, -548t-3p, -4423-3p, -196a-5p, -330-3p, -766-3p, -30e-3p, -125b-5p, -1301-3p, -3184-5p, -423-3p, -339-3p, -138-5p, -99a-3p, and -6087) and 14 genes (AK5, CD248, CDS2, FAM129A, FBLN2, GGT1, NOG, NRCAM, PDE7A, RP11-545E17.3, SLC12A2, SLC16A10, SLC4A10, and ZSCAN18) were the most significantly differentially expressed in LEAD group compared to controls. Discriminative value of revealed microRNAs and genes were confirmed by receiver operating characteristic analysis. Dysregulations of 26 microRNAs and 14 genes were used to propose novel biomarkers of LEAD. Regulatory interactions between biomarker microRNAs and genes were studied in silico using R multiMiR package. Functional analysis of genes modulated by proposed biomarker microRNAs was performed using DAVID 6.8 tools and revealed terms closely related to atherosclerosis and, interestingly, the processes involving nervous system. The study provides new insight into microRNA-dependent regulatory mechanisms involved in pathology of LEAD. Proposed microRNA and gene biomarkers of LEAD may provide new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Daniel P Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Karol P Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, Lublin, Poland
| | - Andrzej Stępniewski
- Ecotech Complex, Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, University of Marie Curie-Sklodowska, Lublin, Poland
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Jacek Bogucki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, Lublin, Poland
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Tomasz Zubilewicz
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Lublin, Poland
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
27
|
Xu Y, Mak HY, Lukmantara I, Li YE, Hoehn KL, Huang X, Du X, Yang H. CDP-DAG synthase 1 and 2 regulate lipid droplet growth through distinct mechanisms. J Biol Chem 2019; 294:16740-16755. [PMID: 31548309 DOI: 10.1074/jbc.ra119.009992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/17/2019] [Indexed: 12/25/2022] Open
Abstract
Lipid droplets (LDs) are evolutionarily conserved organelles that play critical roles in mammalian lipid storage and metabolism. However, the molecular mechanisms governing the biogenesis and growth of LDs remain poorly understood. Phosphatidic acid (PA) is a precursor of phospholipids and triacylglycerols and substrate of CDP-diacylglycerol (CDP-DAG) synthase 1 (CDS1) and CDS2, which catalyze the formation of CDP-DAG. Here, using siRNA-based gene knockdowns and CRISPR/Cas9-mediated gene knockouts, along with immunological, molecular, and fluorescence microscopy approaches, we examined the role of CDS1 and CDS2 in LD biogenesis and growth. Knockdown of either CDS1 or CDS2 expression resulted in the formation of giant or supersized LDs in cultured mammalian cells. Interestingly, down-regulation of cell death-inducing DFF45-like effector C (CIDEC), encoding a prominent regulator of LD growth in adipocytes, restored LD size in CDS1- but not in CDS2-deficient cells. On the other hand, reducing expression of two enzymes responsible for triacylglycerol synthesis, diacylglycerol O-acyltransferase 2 (DGAT2) and glycerol-3-phosphate acyltransferase 4 (GPAT4), rescued the LD phenotype in CDS2-deficient, but not CDS1-deficient, cells. Moreover, CDS2 deficiency, but not CDS1 deficiency, promoted the LD association of DGAT2 and GPAT4 and impaired initial LD maturation. Finally, although both CDS1 and CDS2 appeared to regulate PA levels on the LD surface, CDS2 had a stronger effect. We conclude that CDS1 and CDS2 regulate LD dynamics through distinct mechanisms.
Collapse
Affiliation(s)
- Yanqing Xu
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hoi Yin Mak
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ivan Lukmantara
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yang E Li
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
28
|
The biogenesis of lipid droplets: Lipids take center stage. Prog Lipid Res 2019; 75:100989. [PMID: 31351098 DOI: 10.1016/j.plipres.2019.100989] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
Lipid droplets (LDs) are multi-functional cellular organelles that store energy, and regulate many aspects of cell physiology. However, our understanding of the biogenesis of LDs remains very limited. Originating from the endoplasmic reticulum (ER), LDs are highly unique organelles in that each LD is bounded by a monolayer of amphipathic lipids. Recent progress has unveiled critical roles of non-bilayer lipids in LD formation. For instance, non-bilayer lipids such as lysophospholipids, diacylglycerol and phosphatidic acid (PA) can impact the curvature, surface and line tension of the ER, thereby impacting LD biogenesis. Two well-known regulators of LD formation, FIT2/FITM2 and seipin, have both been implicated in controlling the metabolism and/or distribution of non-bilayer lipids. We summarize and integrate these recent advances and propose that non-bilayer lipids may play a critical role in each step of LD biogenesis.
Collapse
|
29
|
Nishimura T, Stefan CJ. Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158492. [PMID: 31349025 DOI: 10.1016/j.bbalip.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/15/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.
Collapse
Affiliation(s)
- Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Blunsom NJ, Gomez-Espinosa E, Ashlin TG, Cockcroft S. Sustained phospholipase C stimulation of H9c2 cardiomyoblasts by vasopressin induces an increase in CDP-diacylglycerol synthase 1 (CDS1) through protein kinase C and cFos. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1072-1082. [PMID: 30862571 PMCID: PMC6495107 DOI: 10.1016/j.bbalip.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/18/2023]
Abstract
Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accompanied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate (PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2. The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is dependent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin stimulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Evelyn Gomez-Espinosa
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
31
|
dos Santos Silva DB, Fonseca LFS, Pinheiro DG, Muniz MMM, Magalhães AFB, Baldi F, Ferro JA, Chardulo LAL, de Albuquerque LG. Prediction of hub genes associated with intramuscular fat content in Nelore cattle. BMC Genomics 2019; 20:520. [PMID: 31238883 PMCID: PMC6591902 DOI: 10.1186/s12864-019-5904-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to use transcriptome RNA-Seq data from longissimus thoracis muscle of uncastrated Nelore males to identify hub genes based on co-expression network obtained from differentially expressed genes (DEGs) associated with intramuscular fat content. RESULTS A total of 30 transcriptomics datasets (RNA-Seq) obtained from longissimus thoracis muscle were selected based on the phenotypic value of divergent intramuscular fat content: 15 with the highest intramuscular fat content (HIF) and 15 with the lowest intramuscular fat content (LIF). The transcriptomics datasets were aligned with a reference genome and 65 differentially expressed genes (DEGs) were identified, including 21 upregulated and 44 downregulated genes in HIF animals. The normalized count data from DEGs was then used for co-expression network construction. From the co-expression network, four modules were identified. The topological properties of the network were analyzed; those genes engaging in the most interactions (maximal clique centrality method) with other DEGs were predicted to be hub genes (PDE4D, KLHL30 and IL1RAP), which consequently may play a role in cellular and/or systemic lipid biology in Nelore cattle. Top modules screened from the gene co-expression network were identify. The two candidate modules had clear associated biological pathways related to fat development, cell adhesion, and muscle differentiation, immune system, among others. The hub genes belonged in top modules and were downregulated in HIF animals. PDE4D and IL1RAP have known effects on lipid metabolism and the immune system through the regulation of cAMP signaling. Given that cAMP is known to play a role in lipid systems, PDE4D and IL1RAP downregulation may contribute to increased levels of intracellular cAMP and thus may have effects on IF content differences in Nelore cattle. KLHL30 may have effects on muscle metabolism. Klhl protein families play a role in protein degradation. However, the downregulation of this gene and its role in lipid metabolism has not yet been clarified. CONCLUSIONS The results reported in this study indicate candidate genes and molecular mechanisms involved in IF content difference in Nelore cattle.
Collapse
Affiliation(s)
- Danielly Beraldo dos Santos Silva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
- National Council for Scientific and Technological Development (CNPq), Brasilia, DF Brazil
| | - Larissa Fernanda Simielli Fonseca
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
- National Council for Scientific and Technological Development (CNPq), Brasilia, DF Brazil
| | - Daniel Guariz Pinheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | | | | | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
- National Council for Scientific and Technological Development (CNPq), Brasilia, DF Brazil
| | - Jesus Aparecido Ferro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
- National Council for Scientific and Technological Development (CNPq), Brasilia, DF Brazil
| | | | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
- National Council for Scientific and Technological Development (CNPq), Brasilia, DF Brazil
| |
Collapse
|
32
|
Blunsom NJ, Cockcroft S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158471. [PMID: 31173893 DOI: 10.1016/j.bbalip.2019.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
33
|
Lien YC, Condon DE, Georgieff MK, Simmons RA, Tran PV. Dysregulation of Neuronal Genes by Fetal-Neonatal Iron Deficiency Anemia Is Associated with Altered DNA Methylation in the Rat Hippocampus. Nutrients 2019; 11:nu11051191. [PMID: 31137889 PMCID: PMC6566599 DOI: 10.3390/nu11051191] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Early-life iron deficiency results in long-term abnormalities in cognitive function and affective behavior in adulthood. In preclinical models, these effects have been associated with long-term dysregulation of key neuronal genes. While limited evidence suggests histone methylation as an epigenetic mechanism underlying gene dysregulation, the role of DNA methylation remains unknown. To determine whether DNA methylation is a potential mechanism by which early-life iron deficiency induces gene dysregulation, we performed whole genome bisulfite sequencing to identify loci with altered DNA methylation in the postnatal day (P) 15 iron-deficient (ID) rat hippocampus, a time point at which the highest level of hippocampal iron deficiency is concurrent with peak iron demand for axonal and dendritic growth. We identified 229 differentially methylated loci and they were mapped within 108 genes. Among them, 63 and 45 genes showed significantly increased and decreased DNA methylation in the P15 ID hippocampus, respectively. To establish a correlation between differentially methylated loci and gene dysregulation, the methylome data were compared to our published P15 hippocampal transcriptome. Both datasets showed alteration of similar functional networks regulating nervous system development and cell-to-cell signaling that are critical for learning and behavior. Collectively, the present findings support a role for DNA methylation in neural gene dysregulation following early-life iron deficiency.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David E Condon
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
35
|
Ding L, Yang X, Tian H, Liang J, Zhang F, Wang G, Wang Y, Ding M, Shui G, Huang X. Seipin regulates lipid homeostasis by ensuring calcium-dependent mitochondrial metabolism. EMBO J 2018; 37:embj.201797572. [PMID: 30049710 DOI: 10.15252/embj.201797572] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023] Open
Abstract
Seipin, the gene that causes Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), is important for adipocyte differentiation and lipid homeostasis. Previous studies in Drosophila revealed that Seipin promotes ER calcium homeostasis through the Ca2+-ATPase SERCA, but little is known about the events downstream of perturbed ER calcium homeostasis that lead to decreased lipid storage in Drosophila dSeipin mutants. Here, we show that glycolytic metabolites accumulate and the downstream mitochondrial TCA cycle is impaired in dSeipin mutants. The impaired TCA cycle further leads to a decreased level of citrate, a critical component of lipogenesis. Mechanistically, Seipin/SERCA-mediated ER calcium homeostasis is important for maintaining mitochondrial calcium homeostasis. Reduced mitochondrial calcium in dSeipin mutants affects the TCA cycle and mitochondrial function. The lipid storage defects in dSeipin mutant fat cells can be rescued by replenishing mitochondrial calcium or by restoring the level of citrate through genetic manipulations or supplementation with exogenous metabolites. Together, our results reveal that Seipin promotes adipose tissue lipid storage via calcium-dependent mitochondrial metabolism.
Collapse
Affiliation(s)
- Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
The utrophin-beta 2 syntrophin complex regulates adipocyte lipid droplet size independent of adipogenesis. Mol Cell Biochem 2018; 452:29-39. [PMID: 30014220 DOI: 10.1007/s11010-018-3409-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
Utrophin is a widely expressed cytoskeleton protein and is associated with lipid droplets (LDs) in adipocytes. The scaffold protein beta 2 syntrophin (SNTB2) controls signaling events by recruiting distinct membrane and cytoskeletal proteins, and binds to utrophin. Here we show that SNTB2 forms a complex with utrophin in adipocytes. SNTB2 protein is strongly diminished when utrophin is low. Of note, knock-down of utrophin or SNTB2 enhances LD growth during adipogenesis. SNTB2 reduction has no effect on basal and induced lipolysis, and insulin-stimulated phosphorylation of Akt is normal. The antilipolytic activity of insulin is enhanced in adipocytes with low SNTB2, while knock-down of utrophin has no effect. Uptake of exogenously supplied oleate and linoleate is comparable in scrambled and SNTB2 siRNA-treated cells. In the fibroblasts, diminished SNTB2 is associated with lower proliferation. CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding proteins which are critical transcription factors for adipogenesis are normally expressed. Consequently, maturation of cells with SNTB2 knock-down is not grossly impaired. In fibroblasts, SNTB2 is localized to filamentous and vesicular structures which are distinct from beta actin, alpha tubulin, endoplasmic reticulum, early endosomes, lysosomes and mitochondria. Collectively, our data provide evidence that the utrophin-SNTB2 complex regulates LD size without affecting adipogenesis.
Collapse
|
37
|
The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell 2018; 174:700-715.e18. [PMID: 29937227 PMCID: PMC6371920 DOI: 10.1016/j.cell.2018.05.047] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 11/24/2022]
Abstract
The inner nuclear membrane (INM) encases the genome and is fused with the outer nuclear membrane (ONM) to form the nuclear envelope. The ONM is contiguous with the endoplasmic reticulum (ER), the main site of phospholipid synthesis. In contrast to the ER and ONM, evidence for a metabolic activity of the INM has been lacking. Here, we show that the INM is an adaptable membrane territory capable of lipid metabolism. S. cerevisiae cells target enzymes to the INM that can promote lipid storage. Lipid storage involves the synthesis of nuclear lipid droplets from the INM and is characterized by lipid exchange through Seipin-dependent membrane bridges. We identify the genetic circuit for nuclear lipid droplet synthesis and a role of these organelles in regulating this circuit by sequestration of a transcription factor. Our findings suggest a link between INM metabolism and genome regulation and have potential relevance for human lipodystrophy. INM is metabolically active and stores lipids via nuclear lipid droplets (nLDs) Intranuclear lipid sensors detect DAG enrichment at INM and PA/DAG on nLDs Nutrients and Opi1 transcriptional circuit regulate nLD synthesis Lipodystrophy-related Seipin promotes formation of INM-nLD membrane bridges
Collapse
|
38
|
Pagac M, Cooper DE, Qi Y, Lukmantara IE, Mak HY, Wu Z, Tian Y, Liu Z, Lei M, Du X, Ferguson C, Kotevski D, Sadowski P, Chen W, Boroda S, Harris TE, Liu G, Parton RG, Huang X, Coleman RA, Yang H. SEIPIN Regulates Lipid Droplet Expansion and Adipocyte Development by Modulating the Activity of Glycerol-3-phosphate Acyltransferase. Cell Rep 2017; 17:1546-1559. [PMID: 27806294 PMCID: PMC5647143 DOI: 10.1016/j.celrep.2016.10.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/03/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022] Open
Abstract
Berardinelli-Seip congenital lipodystrophy 2 (BSCL2) is caused by loss-of-function mutations in SEIPIN, a protein implicated in both adipogenesis and lipid droplet expansion but whose molecular function remains obscure. Here, we identify physical and functional interactions between SEIPIN and microsomal isoforms of glycerol-3-phosphate acyltransferase (GPAT) in multiple organisms. Compared to controls, GPAT activity was elevated in SEIPIN-deficient cells and tissues and GPAT kinetic values were altered. Increased GPAT activity appears to underpin the block in adipogenesis and abnormal lipid droplet morphology associated with SEIPIN loss. Overexpression of Gpat3 blocked adipogenesis, and Gpat3 knockdown in SEIPIN-deficient preadipocytes partially restored differentiation. GPAT overexpression in yeast, preadipocytes, and fly salivary glands also formed supersized lipid droplets. Finally, pharmacological inhibition of GPAT in Seipin-/- mouse preadipocytes partially restored adipogenesis. These data identify SEIPIN as an evolutionarily conserved regulator of microsomal GPAT and suggest that GPAT inhibitors might be useful for the treatment of human BSCL2 patients.
Collapse
Affiliation(s)
- Martin Pagac
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanfei Qi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ivan E Lukmantara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hoi Yin Mak
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zengying Wu
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuan Tian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mona Lei
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD 4072, Australia
| | - Damian Kotevski
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pawel Sadowski
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia Regents University, Augusta, GA 30912, USA
| | - Salome Boroda
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD 4072, Australia
| | - Xun Huang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
39
|
Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1273-1283. [PMID: 28668300 DOI: 10.1016/j.bbalip.2017.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
The differentiation of preadipocytes into mature adipocytes is accompanied by the growth and formation of a giant, unilocular lipid droplet (LD). Mechanistically however, LD growth and adipogenesis are two different processes. Recent studies have uncovered a number of proteins that are able to regulate both LD dynamics and adipogenesis, such as SEIPIN, LIPIN and CDP-Diacylglycerol Synthases. It appears that phospholipids, phosphatidic acid in particular, play a critical role in both LD budding/growth and adipocyte development. This review summarizes recent advances, and aims to provide a better understanding of LD growth as well as adipogenesis, two critical aspects in mammalian fat storage. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
40
|
Barneda D, Christian M. Lipid droplet growth: regulation of a dynamic organelle. Curr Opin Cell Biol 2017; 47:9-15. [PMID: 28231490 DOI: 10.1016/j.ceb.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/31/2022]
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. Although small LDs are observed in all types of eukaryotic cells, it is adipocytes that present the widest range of sizes up to the massive unilocular droplet of a white adipocyte. Our knowledge of the proteins and associated processes that control LD dynamics is improving. The dynamic expression of LD-associated proteins is vital for controlling LD biology and is most apparent during adipocyte differentiation. Recent findings on the molecular mechanisms of lipid droplet enlargement reveal the importance of distinct functional groups of proteins and phospholipids.
Collapse
Affiliation(s)
| | - Mark Christian
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|