1
|
Talebi G, Saffarian P, Hakemi-Vala M, Sadeghi A, Yadegar A. The effect of Helicobacter pylori-derived extracellular vesicles on glucose metabolism and induction of insulin resistance in HepG2 cells. Arch Physiol Biochem 2025; 131:316-327. [PMID: 39431628 DOI: 10.1080/13813455.2024.2418494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Helicobacter pylori infection has been associated with the development of insulin resistance (IR). This study aimed to examine the effect of H. pylori-derived extracellular vesicles (EVs) on IR induction. EVs were derived from two H. pylori strains, and characterised by transmission electron microscopy and dynamic light scattering. Different concentrations of insulin were added to HepG2 cells to induce IR model. HepG2 cells were exposed to various concentrations of H. pylori-derived EVs to assess IR development. The gene expression of IRS1, AKT2, GLUT2, IL-6, SOCS3, c-Jun and miR-140 was examined using RT-qPCR. Glucose uptake analysis revealed insulin at 5 × 10 -7 mol/l and EVs at 50 µg/ml induced IR model in HepG2 cells. H. pylori-derived EVs downregulated the expression level of IRS1, AKT2, and GLUT2, and upregulated IL-6, SOCS3, c-Jun, and miR-140 expression in HepG2 cells. In conclusion, our findings propose a novel mechanism by which H. pylori-derived EVs could potentially induce IR.
Collapse
Affiliation(s)
- Ghazaleh Talebi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Sun J, Mai K, Ai Q. Effects of GRP78 on Endoplasmic Reticulum Stress and Inflammatory Response in Macrophages of Large Yellow Croaker ( Larimichthys crocea). Int J Mol Sci 2023; 24:ijms24065855. [PMID: 36982929 PMCID: PMC10054070 DOI: 10.3390/ijms24065855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Endoplasmic reticulum (ER) homeostasis plays a vital role in cell physiological functions. Various factors can destroy the homeostasis of the ER and cause ER stress. Moreover, ER stress is often related to inflammation. Glucose-regulated protein 78 (GRP78) is an ER chaperone, which plays a vital role in maintaining cellular homeostasis. Nevertheless, the potential effects of GRP78 on ER stress and inflammation is still not fully elucidated in fish. In the present study, ER stress and inflammation was induced by tunicamycin (TM) or palmitic acid (PA) in the macrophages of large yellow croakers. GRP78 was treated with an agonist/inhibitor before or after the TM/PA treatment. The results showed that the TM/PA treatment could significantly induce ER stress and an inflammatory response in the macrophages of large yellow croakers whereas the incubation of the GRP78 agonist could reduce TM/PA-induced ER stress and an inflammatory response. Moreover, the incubation of the GRP78 inhibitor could further induce TM/PA-induced ER stress and an inflammatory response. These results provide an innovative idea to explain the relationship between GRP78 and TM/PA-induced ER stress or inflammation in large yellow croakers.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Cao Y, Han S, Lu H, Luo Y, Guo T, Wu Q, Luo F. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients 2022; 14:nu14235171. [PMID: 36501200 PMCID: PMC9735788 DOI: 10.3390/nu14235171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Dietary polyphenols can be utilized to treat obesity and chronic disorders linked to it. Dietary polyphenols can inhibit pre-adipocyte proliferation, adipocyte differentiation, and triglyceride accumulation; meanwhile, polyphenols can also stimulate lipolysis and fatty acid β-oxidation, but the molecular mechanisms of anti-obesity are still unclear. The mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cell growth, survival, metabolism, and immunity. mTOR signaling is also thought to play a key role in the development of metabolic diseases such as obesity. Recent studies showed that dietary polyphenols could target mTOR to reduce obesity. In this review, we systematically summarized the research progress of polyphenols in preventing obesity through the mTOR signaling pathway. Mechanistically, polyphenols can target multiple signaling pathways and gut microbiota to regulate the mTOR signaling pathway to exert anti-obesity effects. The main mechanisms include: modulating lipid metabolism, adipogenesis, inflammation, etc. Dietary polyphenols exerting an anti-obesity effect by targeting mTOR signaling will broaden our understanding of the anti-obesity mechanisms of polyphenols and provide valuable insights for researchers in this novel field.
Collapse
Affiliation(s)
- Yunyun Cao
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuai Han
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Han Lu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence:
| |
Collapse
|
5
|
Islam T, Albracht-Schulte K, Ramalingam L, Schlabritz-Lutsevich N, Park OH, Zabet-Moghaddam M, Kalupahana NS, Moustaid-Moussa N. Anti-inflammatory mechanisms of polyphenols in adipose tissue: role of gut microbiota, intestinal barrier integrity and zinc homeostasis. J Nutr Biochem 2022; 115:109242. [PMID: 36442715 DOI: 10.1016/j.jnutbio.2022.109242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
Obesity is associated with an imbalance of micro-and macro-nutrients, gut dysbiosis, and a "leaky" gut phenomenon. Polyphenols, such as curcumin, resveratrol, and anthocyanins may alleviate the systemic effects of obesity, potentially by improving gut microbiota, intestinal barrier integrity (IBI), and zinc homeostasis. The essential micronutrient zinc plays a crucial role in the regulation of enzymatic processes, including inflammation, maintenance of the microbial ecology, and intestinal barrier integrity. In this review, we focus on IBI- which prevents intestinal lipopolysaccharide (LPS) leakage - as a critical player in polyphenol-mediated protective effects against obesity-associated white adipose tissue (WAT) inflammation. This occurs through mechanisms that block the movement of the bacterial endotoxin LPS across the gut barrier. Available research suggests that polyphenols reduce WAT and systemic inflammation via crosstalk with inflammatory NF-κB, the mammalian target of rapamycin (mTOR) signaling and zinc homeostasis.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Natalia Schlabritz-Lutsevich
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Advanced Fertility Center, Odessa, Texas, USA
| | - Oak-Hee Park
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; College of Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Physiology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
6
|
Chen J, Lou R, Zhou F, Li D, Peng C, Lin L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front Immunol 2022; 13:1068986. [PMID: 36505468 PMCID: PMC9730827 DOI: 10.3389/fimmu.2022.1068986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity, a complex disease involving an excessive amount of body fat and a major threat to public health all over the world, is the determining factor of the onset and development of metabolic disorders, including type 2 diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease. Long-term overnutrition results in excessive expansion and dysfunction of adipose tissue, inflammatory responses and over-accumulation of extracellular matrix in adipose tissue, and ectopic lipid deposit in other organs, termed adipose tissue remodeling. The mammalian Sirtuins (SIRT1-7) are a family of conserved NAD+-dependent protein deacetylases. Mounting evidence has disclosed that Sirtuins and their prominent substrates participate in a variety of physiological and pathological processes, including cell cycle regulation, mitochondrial biogenesis and function, glucose and lipid metabolism, insulin action, inflammatory responses, and energy homeostasis. In this review, we provided up-to-date and comprehensive knowledge about the roles of Sirtuins in adipose tissue remodeling, focusing on the fate of adipocytes, lipid mobilization, adipose tissue inflammation and fibrosis, and browning of adipose tissue, and we summarized the clinical trials of Sirtuin activators and inhibitors in treating metabolic diseases, which might shed light on new therapeutic strategies for obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China,Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| |
Collapse
|
7
|
Woo J, Shin S, Ji H, Ryu D, Cho E, Kim Y, Kim J, Park D, Jung E. Isatis tinctoria L. Leaf Extract Inhibits Replicative Senescence in Dermal Fibroblasts by Regulating mTOR-NF-κB-SASP Signaling. Nutrients 2022; 14:nu14091979. [PMID: 35565945 PMCID: PMC9102489 DOI: 10.3390/nu14091979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics. We investigated whether Isatis tinctoria L. leaf extract (ITE) inhibited senescence biomarkers p53, p21CDKN1A, and p16INK4A gene expression, and SASP secretions by inhibiting cellular senescence in the replicative senescent human dermal fibroblast (RS-HDF). ITE has been demonstrated to inhibit the secretion of SASP factors in several senomorphic types by regulating the MAPK/NF-κB pathway via its inhibitory effect on mTOR. ITE suppressed the inflammatory response by inhibiting mTOR, MAPK, and IκBα phosphorylation, and blocking the nuclear translocation of NF-κB. In addition, we observed that autophagy pathway was related to inhibitory effect of ITE on cellular senescence. From these results, we concluded that ITE can prevent and restore senescence by blocking the activation and secretion of senescence-related factors generated from RS-HDFs through mTOR-NF-κB regulation.
Collapse
Affiliation(s)
- Jieun Woo
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Seoungwoo Shin
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Hyanggi Ji
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Dehun Ryu
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Eunae Cho
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Youngseok Kim
- Shinsegae International Technology Innovation Center, 449, Dosan-daero, Seoul 06015, Korea; (Y.K.); (J.K.)
| | - Junoh Kim
- Shinsegae International Technology Innovation Center, 449, Dosan-daero, Seoul 06015, Korea; (Y.K.); (J.K.)
| | - Deokhoon Park
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
| | - Eunsun Jung
- BioSpectrum Life Science Institute, 767, Sinsu-ro, Yongin-si 16827, Korea; (J.W.); (S.S.); (H.J.); (D.R.); (E.C.); (D.P.)
- Correspondence:
| |
Collapse
|
8
|
Sun J, Li J, Li Y, Du J, Zhao N, Mai K, Ai Q. Regulation of Δ6Fads2 Gene Involved in LC-PUFA Biosynthesis Subjected to Fatty Acid in Large Yellow Croaker ( Larimichthys crocea) and Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2022; 12:biom12050659. [PMID: 35625587 PMCID: PMC9139026 DOI: 10.3390/biom12050659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
Δ6 fatty acyl desaturase (Δ6Fads2) is regarded as the first rate-limiting desaturase that catalyzes the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from 18-carbon fatty acid in vertebrates, but the underlying regulatory mechanism of fads2 has not been comprehensively understood. This study aimed to investigate the regulation role of fads2 subjected to fatty acid in large yellow croaker and rainbow trout. In vivo, large yellow croaker and rainbow trout were fed a fish oil (FO) diet, a soybean oil (SO) diet or a linseed oil (LO) diet for 10 weeks. The results show that LO and SO can significantly increase fads2 expression (p < 0.05). In vitro experiments were conducted in HEK293T cells or primary hepatocytes to determine the transcriptional regulation of fads2. The results show that CCAAT/enhancer-binding protein α (C/EBPα) can up-regulate fads2 expression. GATA binding protein 3 (GATA3) can up-regulate fads2 expression in rainbow trout but showed opposite effect in large yellow croaker. Furthermore, C/EBPα protein levels were significantly increased by LO and SO (p < 0.05), gata3 expression was increased in rainbow trout by LO but decreased in large yellow croaker by LO and SO. In conclusion, we revealed that FO replaced by LO and SO increased fads2 expression through a C/EBPα and GATA3 dependent mechanism in large yellow croaker and rainbow trout. This study might provide critical insights into the regulatory mechanisms of fads2 expression and LC-PUFA biosynthesis.
Collapse
Affiliation(s)
- Jie Sun
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Jingqi Li
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Yongnan Li
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Jianlong Du
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Nannan Zhao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82031943
| |
Collapse
|
9
|
Protective Features of Calorie Restriction on Cuprizone-induced Demyelination via Modulating Microglial Phenotype. J Chem Neuroanat 2021; 116:102013. [PMID: 34391881 DOI: 10.1016/j.jchemneu.2021.102013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 01/21/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder in the central nervous system (CNS) with no definitive treatment, but it can be alleviated by changing life habits. Calorie restriction (CR) is effective in preventing or treating metabolic and autoimmune disorders. CR is one of the helpful approaches to control the progression of MS. In the present study, we investigated the preventive effect of caloric restriction on cuprizone induced-demyelination, a model of multiple sclerosis. To induce acute demyelination in C57/BL6 mice, we added 0.2% Cuprizone (CPZ) to their diet for 6 weeks. To induce calorie restriction, 10% Carboxymethyl cellulose (CMC) was added to the diet as a dietary cellulose fiber for 6 weeks. Remyelination was studied by luxol fast blue (LFB) staining. Microglia activity, M1 and M2 microglial/macrophage phenotypes were assessed by immunohistochemistry of Iba-1, iNOS and Arg-1, respectively. The expression of targeted genes was assessed by the real-time polymerase chain reaction. Luxol fast blue (LFB) staining showed that the CR regimen could decrease the cuprizone-induced demyelination process (p < 0.01). Moreover, the CR application could improve balance and motor performance in cuprizone-intoxicated mice by significantly enhancing protein and gene expression of Sirt1, M2 microglial phenotype marker (Arg-1) and Akt1 gene expression, also decreased M1 microglial phenotype marker (iNOS), Akt2 and P53 gene expressions (p < 0.05). Cumulatively, it can be concluded that caloric restriction was able to counteract MS symptoms through alleviating inflammatory responses.
Collapse
|
10
|
Hu S, Luo J, Fu M, Luo L, Cai Y, Li W, Li Y, Dong R, Yang Y, Tu L, Xu X. Soluble epoxide hydrolase deletion attenuated nicotine-induced arterial stiffness via limiting the loss of SIRT1. Am J Physiol Heart Circ Physiol 2021; 321:H353-H368. [PMID: 34142887 DOI: 10.1152/ajpheart.00979.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide [NAM, sirtuin-1 (SIRT1) inhibitor] simultaneously for 4 wk. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2 knockout mice (Ephx2-/- mice) without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced matrix metalloproteinase 2 (MMP2) upregulation via SIRT1-mediated yes-associated protein (YAP) deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.NEW & NOTEWORTHY We presently show that sEH knockout repressed nicotine-induced arterial stiffness and extracellular matrix remodeling via SIRT1-induced YAP deacetylation, which highlights that sEH is a potential therapeutic target in smoking-induced arterial stiffness and vascular remodeling.
Collapse
Affiliation(s)
- Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yueting Cai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanyuan Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China.,Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Kong L, Xu X, Zhang H, Zhou Y, Huang H, Chen B, Zhou Z. Human umbilical cord-derived mesenchymal stem cells improve chronic pancreatitis in rats via the AKT-mTOR-S6K1 signaling pathway. Bioengineered 2021; 12:1986-1996. [PMID: 34047671 PMCID: PMC8806739 DOI: 10.1080/21655979.2021.1928441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disease. In clinical treatment, many patients cannot get a timely diagnosis and effective treatment due to the lack of early diagnosis indicators. Mesenchymal stem cells have immunomodulatory and anti-inflammatory effects, and have broad application prospects in treating auto-immune diseases and inflammatory diseases. This study aimed to clarify the mechanisms of human umbilical cord mesenchymal stem cells (HUCMSCs) in the treatment of CP. The rats were randomly divided into four groups, with six rats in each group: control group, CP group, CP + HUCMSCs-treated group I, and CP + HUCMSCs-treated group II. We evaluated the levels of inflammatory factors, fibrosis and apoptosis markers, detected the protein expression levels of AKT-mTOR-S6K1 and assessed histological changes of the pancreas. The results showed that HUCMSCs not only inhibited the secretion of inflammatory cytokines and activation of pancreatic stellate cells but also suppressed the apoptosis of acinar cells. Further investigation revealed that HUCMSCs noticeably suppressed the AKT-mTOR-S6K1 pathway in the pancreatic tissue of DBTC-induced CP. In addition, the therapeutic effect of HUCMSCs injected into the inferior vena cava and left gastric artery in the CP model was also observed, thus providing the basis for the clinical application of intervention measures.
Collapse
Affiliation(s)
- Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangxiang Xu
- Ophthalmology Department, The Yiling Hospital of Yichang, Yichang, Hubei, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Packer M. Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: implications for understanding the effects of current and future treatments for heart failure. Eur Heart J 2021; 41:3856-3861. [PMID: 32460327 PMCID: PMC7599035 DOI: 10.1093/eurheartj/ehaa360] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
The two primary molecular regulators of lifespan are sirtuin-1 (SIRT1) and mammalian target of rapamycin complex 1 (mTORC1). Each plays a central role in two highly interconnected pathways that modulate the balance between cellular growth and survival. The activation of SIRT1 [along with peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and adenosine monophosphate-activated protein kinase (AMPK)] and the suppression of mTORC1 (along with its upstream regulator, Akt) act to prolong organismal longevity and retard cardiac ageing. Both activation of SIRT1/PGC-1α and inhibition of mTORC1 shifts the balance of cellular priorities so as to promote cardiomyocyte survival over growth, leading to cardioprotective effects in experimental models. These benefits may be related to direct actions to modulate oxidative stress, organellar function, proinflammatory pathways, and maladaptive hypertrophy. In addition, a primary shared benefit of both SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 inhibition is the enhancement of autophagy, a lysosome-dependent degradative pathway, which clears the cytosol of dysfunctional organelles and misfolded proteins that drive the ageing process by increasing oxidative and endoplasmic reticulum stress. Autophagy underlies the ability of SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 suppression to extend lifespan, mitigate cardiac ageing, alleviate cellular stress, and ameliorate the development and progression of cardiomyopathy; silencing of autophagy genes abolishes these benefits. Loss of SIRT1/PGC-1α/AMPK function or hyperactivation of Akt/mTORC1 is a consistent feature of experimental cardiomyopathy, and reversal of these abnormalities mitigates the development of heart failure. Interestingly, most treatments that have been shown to be clinically effective in the treatment of chronic heart failure with a reduced ejection fraction have been reported experimentally to exert favourable effects to activate SIRT1/PGC-1α/AMPK and/or suppress Akt/mTORC1, and thereby, to promote autophagic flux. Therefore, the impairment of autophagy resulting from derangements in longevity gene signalling is likely to represent a seminal event in the evolution and progression of cardiomyopathy. ![]()
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
13
|
Li X, Yu P, Yu Y, Xu T, Liu J, Cheng Y, Yang X, Cui X, Yin C, Liu Y. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int Immunopharmacol 2021; 95:107545. [PMID: 33765609 DOI: 10.1016/j.intimp.2021.107545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Hyperglycemia-induced neuroinflammation promotes the progression of diabetic encephalopathy. Hydrogen sulfide (H2S) exerts anti-inflammatory and neuroprotective activities against neurodegenerative diseases. However, the effects of H2S on hyperglycemia-induced neuroinflammation has not been investigated in neurons. Herein, by using HT-22 neuronal cells, we found that high glucose decreased the levels of endogenous H2S and its catalytic enzyme, cystathionine-β-synthase (CBS). The administration of sodium hydrosulfide (NaHS, a H2S donor) or S-adenosylmethionine (SAMe, an allosteric activator of CBS) restored high glucose-induced downregulation of CBS and H2S levels. Importantly, H2S ameliorated high glucose-induced inflammation in HT-22 cells, evidenced by NaHS or SAMe inhibited the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) expression in HT-22 cells exposed to high glucose. Furthermore, NaHS or SAMe restored the SIRT1 level and the phosphorylation of mTOR and NF-κB p65 disturbed by high glucose in HT-22 cells, suggesting H2S reversed high glucose-induced alteration of SIRT1-mTOR/NF-κB signaling pathway. Our results demonstrated that exogenous H2S treatment or enhancing endogenous H2S synthesis prevents the inflammatory processes in the neurons with the exposure of high glucose. Therefore, increasing the H2S level using NaHS or SAMe might shed light on the prophylactic treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Xinrui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Peiquan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
14
|
Pardo R, Velilla M, Herrero L, Cervela L, Ribeiro ML, Simó R, Villena JA. Calorie Restriction and SIRT1 Overexpression Induce Different Gene Expression Profiles in White Adipose Tissue in Association with Metabolic Improvement. Mol Nutr Food Res 2021; 65:e2000672. [PMID: 33686759 DOI: 10.1002/mnfr.202000672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/23/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Calorie restriction (CR) exerts multiple effects on health, including the amelioration of systemic insulin resistance. Although the precise mechanisms by which CR improves glucose homeostasis remain poorly defined, SIRT1 has been suggested to act as a central mediator of the cellular responses to CR. Here, we aim at identifying the mechanisms by which CR and SIRT1 modulate white adipose tissue (WAT) function, a key tissue in the control of glucose homeostasis. MATERIAL AND METHODS A gene expression profiling study using DNA microarrays is conducted in WAT of control and SIRT1 transgenic mice fed ad libitum (AL) and mice subjected to 40% CR. RESULTS Gene expression profiling reveals a relatively low degree of overlap between the transcriptional programs regulated by SIRT1 and CR. Gene networks related to extracellular matrix appear commonly downregulated by SIRT1/CR, whereas mitochondrial biogenesis is enhanced exclusively by CR. Moreover, WAT inflammation is reduced by CR and SIRT1, although their anti-inflammatory effects appeared to be achieved by regulating different gene networks related to the immune system. CONCLUDING REMARKS In WAT, SIRT1 does not mediate most of the effects of CR on gene expression. Still, gene networks differentially regulated by SIRT1 and CR converge to reduce WAT inflammation.
Collapse
Affiliation(s)
- Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Marc Velilla
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, 08028, Spain.,CIBEROBN, CIBER on Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Luis Cervela
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Marcelo L Ribeiro
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.,Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Rafael Simó
- Group of Diabetes and Metabolism, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.,CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.,CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
15
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
16
|
Zhang Q, Cai R, Tang G, Zhang W, Pang W. MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes. J Anim Sci Biotechnol 2021; 12:12. [PMID: 33531066 PMCID: PMC7856799 DOI: 10.1186/s40104-020-00525-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs (miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation. RESULTS By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4 (SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6 (TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway. CONCLUSIONS MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.
Collapse
Affiliation(s)
- Que Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guorong Tang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanrong Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Asif S, Morrow NM, Mulvihill EE, Kim KH. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front Genet 2020; 11:590369. [PMID: 33193730 PMCID: PMC7593700 DOI: 10.3389/fgene.2020.590369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of metabolic disorders, such as obesity, diabetes and fatty liver disease, is dramatically increasing. Both genetic and environmental factors are well-known contributors to the development of these diseases and therefore, the study of epigenetics can provide additional mechanistic insight. Dietary interventions, including caloric restriction, intermittent fasting or time-restricted feeding, have shown promising improvements in patients' overall metabolic profiles (i.e., reduced body weight, improved glucose homeostasis), and an increasing number of studies have associated these beneficial effects with epigenetic alterations. In this article, we review epigenetic changes involved in both metabolic diseases and dietary interventions in primary metabolic tissues (i.e., adipose, liver, and pancreas) in hopes of elucidating potential biomarkers and therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nadya M. Morrow
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Sirt1-PPARS Cross-Talk in Complex Metabolic Diseases and Inherited Disorders of the One Carbon Metabolism. Cells 2020; 9:cells9081882. [PMID: 32796716 PMCID: PMC7465293 DOI: 10.3390/cells9081882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (Sirt1) has a NAD (+) binding domain and modulates the acetylation status of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and Fork Head Box O1 transcription factor (Foxo1) according to the nutritional status. Sirt1 is decreased in obese patients and increased in weight loss. Its decreased expression explains part of the pathomechanisms of the metabolic syndrome, diabetes mellitus type 2 (DT2), cardiovascular diseases and nonalcoholic liver disease. Sirt1 plays an important role in the differentiation of adipocytes and in insulin signaling regulated by Foxo1 and phosphatidylinositol 3′-kinase (PI3K) signaling. Its overexpression attenuates inflammation and macrophage infiltration induced by a high fat diet. Its decreased expression plays a prominent role in the heart, liver and brain of rat as manifestations of fetal programming produced by deficit in vitamin B12 and folate during pregnancy and lactation through imbalanced methylation/acetylation of PGC1α and altered expression and methylation of nuclear receptors. The decreased expression of Sirt1 produced by impaired cellular availability of vitamin B12 results from endoplasmic reticulum stress through subcellular mislocalization of ELAVL1/HuR protein that shuttles Sirt1 mRNA between the nucleus and cytoplasm. Preclinical and clinical studies of Sirt1 agonists have produced contrasted results in the treatment of the metabolic syndrome. A preclinical study has produced promising results in the treatment of inherited disorders of vitamin B12 metabolism.
Collapse
|
19
|
Role of the Nox4/AMPK/mTOR signaling axe in adipose inflammation-induced kidney injury. Clin Sci (Lond) 2020; 134:403-417. [PMID: 32095833 DOI: 10.1042/cs20190584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022]
Abstract
Diabetic kidney disease is one of the most serious complications of diabetes worldwide and is the leading cause of end-stage renal disease. While research has primarily focused on hyperglycemia as a key player in the pathophysiology of diabetic complications, recently, increasing evidence have underlined the role of adipose inflammation in modulating the development and/or progression of diabetic kidney disease. This review focuses on how adipose inflammation contribute to diabetic kidney disease. Furthermore, it discusses in detail the underlying mechanisms of adipose inflammation, including pro-inflammatory cytokines, oxidative stress, and AMPK/mTOR signaling pathway and critically describes their role in diabetic kidney disease. This in-depth understanding of adipose inflammation and its impact on diabetic kidney disease highlights the need for novel interventions in the treatment of diabetic complications.
Collapse
|
20
|
Dierssen M, Fructuoso M, Martínez de Lagrán M, Perluigi M, Barone E. Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Front Neurosci 2020; 14:670. [PMID: 32733190 PMCID: PMC7360727 DOI: 10.3389/fnins.2020.00670] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (DS) is the most frequent chromosomal abnormality that causes intellectual disability, resulting from the presence of an extra complete or segment of chromosome 21 (HSA21). In addition, trisomy of HSA21 contributes to altered energy metabolism that appears to be a strong determinant in the development of pathological phenotypes associated with DS. Alterations include, among others, mitochondrial defects, increased oxidative stress levels, impaired glucose, and lipid metabolism, finally resulting in reduced energy production and cellular dysfunctions. These molecular defects seem to account for a high incidence of metabolic disorders, i.e., diabetes and/or obesity, as well as a higher risk of developing Alzheimer’s disease (AD) in DS. A dysregulation of the insulin signaling with reduced downstream pathways represents a common pathophysiological aspect in the development of both peripheral and central alterations leading to diabetes/obesity and AD. This is further strengthened by evidence showing that the molecular mechanisms responsible for such alterations appear to be similar between peripheral organs and brain. Considering that DS subjects are at high risk to develop either peripheral or brain metabolic defects, this review will discuss current knowledge about the link between trisomy of HSA21 and defects of insulin and insulin-related pathways in DS. Drawing the molecular signature underlying these processes in DS is a key challenge to identify novel drug targets and set up new prevention strategies aimed to reduce the impact of metabolic disorders and cognitive decline.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marta Fructuoso
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Jin X, Kang X, Zhao L, Xu M, Xie T, Li H, Li F, Qian Z, Ma Z, Zhang Y, Yang W, Zhang Z, Gao X, Chen Q, Sun H, Wu S. Cartilage Ablation of Sirt1 Causes Inhibition of Growth Plate Chondrogenesis by Hyperactivation of mTORC1 Signaling. Endocrinology 2019; 160:3001-3017. [PMID: 31599935 DOI: 10.1210/en.2019-00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/04/2019] [Indexed: 01/04/2023]
Abstract
A growing body of evidence implies a pivotal role of sirtuin-1 (Sirt1) in chondrocyte function and homeostasis; however, its underlying mechanisms mediating chondrogenesis, which is an essential process for physiological skeletal growth, are still poorly understood. In the current study, we generated TamCartSirt1-/- [Sirt1 conditional knockout (cKO)] mice to explore the role of Sirt1 during postnatal endochondral ossification. Compared with control mice, cKO mice exhibited growth retardation associated with inhibited chondrocyte proliferation and hypertrophy, as well as activated apoptosis. These effects were regulated by hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) signaling, and thereby inhibition of autophagy and induction of endoplasmic reticulum stress in growth plate chondrocytes. IP injection of the mTORC1 inhibitor rapamycin to mice with Sirt1 deletion partially neutralized such inhibitory effects of Sirt1 ablation on longitudinal bone growth, indicating the causative link between SIRT1 and mTORC1 signaling in the growth plate. Mechanistically, SIRT1 interacted with tuberous sclerosis complex 2 (TSC2), a key upstream negative regulator of mTORC1 signaling, and loss of Sirt1 inhibited TSC2 expression, resulting in hyperactivated mTORC1 signaling in chondrocytes. In conclusion, our findings suggest that loss of Sirt1 may trigger mTORC1 signaling in growth plate chondrocytes and contributes to growth retardation, thus indicating that SIRT1 is an important regulator during chondrogenesis and providing new insights into the clinical potential of SIRT1 in bone development.
Collapse
Affiliation(s)
- Xinxin Jin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Liting Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Tianping Xie
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Fang Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Zhengmin Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Wei Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Zhuanmin Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xin Gao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
- Bone and Joint Research Center, The First Affiliated Hospital of Medical School, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
22
|
Mahanna M, Millan-Linares MC, Grao-Cruces E, Claro C, Toscano R, Rodriguez-Martin NM, Naranjo MC, Montserrat-de la Paz S. Resveratrol-enriched grape seed oil (Vitis vinifera L.) protects from white fat dysfunction in obese mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Langkilde A, Tavenier J, Danielsen AV, Eugen-Olsen J, Therkildsen C, Jensen FK, Henriksen JH, Langberg H, Steiniche T, Petersen J, Holck S, Andersen O. Histological and Molecular Adipose Tissue Changes Are Related to Metabolic Syndrome Rather Than Lipodystrophy in Human Immunodeficiency Virus-Infected Patients: A Cross-Sectional Study. J Infect Dis 2019; 218:1090-1098. [PMID: 29788076 DOI: 10.1093/infdis/jiy284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/13/2018] [Indexed: 01/23/2023] Open
Abstract
Background In human immunodeficiency virus (HIV)-infected patients on combination antiretroviral therapy (cART), lipodystrophy shares many similarities with metabolic syndrome, but only metabolic syndrome has objective classification criteria. We examined adipose tissue changes related to lipodystrophy and metabolic syndrome to clarify whether it may be acceptable to focus diagnosis on metabolic syndrome rather than lipodystrophy. Methods This is a cross-sectional study of 60 HIV-infected men on cART and 15 healthy men. We evaluated lipodystrophy (clinical assessment) and metabolic syndrome (JIS-2009). We compared adipocyte size, leukocyte infiltration, and gene expression in abdominal subcutaneous adipose tissue biopsies of patients with and without lipodystrophy and with and without metabolic syndrome. Results Lipodystrophy was only associated with increased macrophage infiltration (P = .04) and adiponectin messenger ribonucleic acid ([mRNA] P = .008), whereas metabolic syndrome was associated with larger adipocytes (P < .0001), decreased expression of genes related to adipogenesis and adipocyte function (P values between <.0001 and .08), increased leptin mRNA (P = .04), and a trend towards increased expression of inflammatory genes (P values between .08 and .6). Conclusions Metabolic syndrome rather than lipodystrophy was associated with major unfavorable abdominal subcutaneous adipose tissue changes. In a clinical setting, it may be more relevant to focus on metabolic syndrome diagnosis in HIV-infected patients on cART with regards to adipose tissue dysfunction and risk of cardiometabolic complications.
Collapse
Affiliation(s)
- Anne Langkilde
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Juliette Tavenier
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Jesper Eugen-Olsen
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | - Jens Henrik Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Hvidovre, Denmark
| | - Henning Langberg
- CopenRehab, Department of Public Health, Section of Social Medicine, University of Copenhagen, Denmark
| | | | - Janne Petersen
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Biostatistics, University of Copenhagen, Denmark
| | - Susanne Holck
- Department of Pathology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ove Andersen
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
24
|
Lim JY, Liu C, Hu KQ, Smith DE, Wu D, Lamon-Fava S, Ausman LM, Wang XD. Dietary β-Cryptoxanthin Inhibits High-Refined Carbohydrate Diet-Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice. J Nutr 2019; 149:1553-1564. [PMID: 31212314 DOI: 10.1093/jn/nxz106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND β-Cryptoxanthin (BCX), a provitamin A carotenoid shown to protect against nonalcoholic fatty liver disease (NAFLD), can be cleaved by β-carotene-15,15'-oxygenase (BCO1) to generate vitamin A, and by β-carotene-9',10'-oxygenase (BCO2) to produce bioactive apo-carotenoids. BCO1/BCO2 polymorphisms have been associated with variations in plasma carotenoid amounts in both humans and animals. OBJECTIVES We investigated whether BCX feeding inhibits high refined-carbohydrate diet (HRCD)-induced NAFLD, dependent or independent of BCO1/BCO2. METHODS Six-week-old male wild-type (WT) and BCO1-/-/BCO2-/- double knockout (DKO) mice were randomly fed HRCD (66.5% of energy from carbohydrate) with or without BCX (10 mg/kg diet) for 24 wk. Pathological and biochemical variables were analyzed in the liver and mesenteric adipose tissues (MATs). Data were analyzed by 2-factor ANOVA. RESULTS Compared to their respective HRCD controls, BCX reduced hepatic steatosis severity by 33‒43% and hepatic total cholesterol by 43‒70% in both WT and DKO mice (P < 0.01). Hepatic concentrations of BCX, but not retinol and retinyl palmitate, were 33-fold higher in DKO mice than in WT mice (P < 0.001). BCX feeding increased the hepatic fatty acid oxidation protein peroxisome proliferator-activated receptor-α, and the cholesterol efflux gene ATP-binding cassette transporter5, and suppressed the lipogenesis gene acetyl-CoA carboxylase 1 (Acc1) in the MAT of WT mice but not DKO mice (P < 0.05). BCX feeding decreased the hepatic lipogenesis proteins ACC and stearoyl-CoA desaturase-1 (3-fold and 5-fold) and the cholesterol synthesis genes 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and HMG-CoA synthase 1 (2.7-fold and 1.8-fold) and increased the cholesterol catabolism gene cholesterol 7α-hydroxylase (1.9-fold) in the DKO but not WT mice (P < 0.05). BCX feeding increased hepatic protein sirtuin1 (2.5-fold) and AMP-activated protein kinase (9-fold) and decreased hepatic farnesoid X receptor protein (80%) and the inflammatory cytokine gene Il6 (6-fold) in the MAT of DKO mice but not WT mice (P < 0.05). CONCLUSION BCX feeding mitigates HRCD-induced NAFLD in both WT and DKO mice through different mechanisms in the liver-MAT axis, depending on the presence or absence of BCO1/BCO2.
Collapse
Affiliation(s)
- Ji Ye Lim
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chun Liu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Kang-Quan Hu
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Donald E Smith
- Comparative Biology Unit, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Lynne M Ausman
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
25
|
Montserrat-de la Paz S, Naranjo MC, Millan-Linares MC, Lopez S, Abia R, Biessen EAL, Muriana FJG, Bermudez B. Monounsaturated Fatty Acids in a High-Fat Diet and Niacin Protect from White Fat Dysfunction in the Metabolic Syndrome. Mol Nutr Food Res 2019; 63:e1900425. [PMID: 31343843 DOI: 10.1002/mnfr.201900425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Obesity is a principal causative factor of metabolic syndrome. Niacin potently regulates lipid metabolism. Replacement of saturated fatty acids by MUFAs or inclusion of omega-3 long-chain PUFAs in the diet improves plasma lipid levels. However, the potential benefits of niacin in combination with MUFAs or omega-3 long-chain PUFAs against white adipose tissue (WAT) dysfunction in the high fat diet (HFD)-induced metabolic syndrome are unknown. METHODS AND RESULTS Male Lepob/ob LDLR-/- mice are fed a chow diet or HFDs based on milk cream (21% kcal), olive oil (21% kcal), or olive oil (20% kcal) plus 1% kcal from eicosapentaenoic and docosahexaenoic acids, including immediate-release niacin (1% w/v) in drinking water, for 8 weeks. Mice are then phenotyped. Dietary MUFAs are identified as positive regulators of adipose NAD+ signaling pathways by triggering NAD+ biosynthesis via the salvage pathway. This coexists with overexpression of genes involved in recognition of NAD+ and fatty acids, a surrounding lipid environment dominated by exogenous oleic acid and an alternatively activated macrophage profile, which culminate in a healthy expansion of WAT and improvement of several hallmarks that typify the metabolic syndrome. CONCLUSION Niacin in combination with dietary MUFAs can favor WAT homeostasis in the development of HFD-induced obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009, Seville, Spain
| | - Maria C Naranjo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | | | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Cell Biology, School of Biology, University of Seville, 41012, Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Cardiovascular Research Institute of Maastricht (CARIM), University of Maastricht, 6200, Maastricht, The Netherlands
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41013, Seville, Spain.,Department of Cell Biology, School of Biology, University of Seville, 41012, Seville, Spain
| |
Collapse
|
26
|
Engin AB, Engin A, Gonul II. The effect of adipocyte-macrophage crosstalk in obesity-related breast cancer. J Mol Endocrinol 2019; 62:R201-R222. [PMID: 30620711 DOI: 10.1530/jme-18-0252] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Adipose tissue is the primary source of many pro-inflammatory cytokines in obesity. Macrophage numbers and pro-inflammatory gene expression are positively associated with adipocyte size. Free fatty acid and tumor necrosis factor-α involve in a vicious cycle between adipocytes and macrophages aggravating inflammatory changes. Thereby, M1 macrophages form a characteristic 'crown-like structure (CLS)' around necrotic adipocytes in obese adipose tissue. In obese women, CLSs of breast adipose tissue are responsible for both increase in local aromatase activity and aggressive behavior of breast cancer cells. Interlinked molecular mechanisms between adipocyte-macrophage-breast cancer cells in obesity involve seven consecutive processes: Excessive release of adipocyte- and macrophage-derived inflammatory cytokines, TSC1-TSC2 complex-mTOR crosstalk, insulin resistance, endoplasmic reticulum (ER) stress and excessive oxidative stress generation, uncoupled respiration and hypoxia, SIRT1 controversy, the increased levels of aromatase activity and estrogen production. Considering elevated risks of estrogen receptor (E2R)-positive postmenopausal breast cancer growth in obesity, adipocyte-macrophage crosstalk is important in the aforementioned issues. Increased mTORC1 signaling in obesity ensures the strong activation of oncogenic signaling in E2Rα-positive breast cancer cells. Since insulin and insulin-like growth factors have been identified as tumor promoters, hyperinsulinemia is an independent risk factor for poor prognosis in breast cancer despite peripheral insulin resistance. The unpredictable effects of adipocyte-derived leptin-estrogen-macrophage axis, and sirtuin 1 (SIRT1)-adipose-resident macrophage axis in obese postmenopausal patients with breast cancer are unresolved mechanistic gaps in the molecular links between the tumor growth and adipocytokines.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ipek Isik Gonul
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
27
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
28
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
29
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Liu G, Li M, Saeed M, Xu Y, Ren Q, Sun C. αMSH inhibits adipose inflammation via reducing FoxOs transcription and blocking Akt/JNK pathway in mice. Oncotarget 2018; 8:47642-47654. [PMID: 28514752 PMCID: PMC5564594 DOI: 10.18632/oncotarget.17465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha melanocyte stimulating hormone (αMSH) abates inflammation in multiple tissues, while Forkhead box proteins O (FoxOs) stimulate inflammatory cascade. However, the relationship between αMSH and FoxOs in adipose inflammation remains unclear. In this study, we used LPS-induced inflammation model, attempted to interpret the function of αMSH in inflammation and the interactions with FoxOs. Results indicated that upon inflammatory situation, the secretion of αMSH and the expression of its receptor MC5R were greatly decreased, but FoxOs expressions were elevated. After the treatment with αMSH, LPS-induced adipose inflammation together with FoxOs expressions was significantly reduced. Conversely, when Foxo1, Foxo3a or Foxo4 overexpressed in αMSH treated inflammatory mouse model, all the anti-inflammatory impacts of αMSH were found disappeared. We further studied the mechanisms by which αMSH exerts its anti-inflammatory impacts and how FoxOs reverse αMSH's function. Foxo4 was found as a negative regulator for MC5R transcription in αMSH inhibited inflammation. Moreover, a negative role was found of αMSH in regulating both Akt and JNK signal pathways by observing the enhanced the anti-inflammatory impacts of pathway-specific inhibitors with αMSH treatment. Our findings demonstrate αMSH plays a key role in the prevention of adipose inflammation and inflammatory diseases by down-regulating Akt/JNK signal pathway and negatively interacting with FoxOs, which brings up αMSH as a novel candidate factor in the adipose anti-inflammation process in obesity.
Collapse
Affiliation(s)
- Guannv Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
31
|
Liu Z, Gu H, Gan L, Xu Y, Feng F, Saeed M, Sun C. Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced apoptosis in mice brown adipose tissue. Oncotarget 2018; 8:9267-9279. [PMID: 28030827 PMCID: PMC5354730 DOI: 10.18632/oncotarget.14035] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Sirtuin 1 (Sirt1) promotes adaptive thermogenesis by controlling the acetylation status of enzymes and transcriptional factors in interscapular brown adipose tissue (iBAT). However, the effects of Sirt1 on endoplasmic reticulum (ER) stress and apoptosis of iBAT remain elusive. In this study, the mRNA levels of Sirt1 and thermogenesis genes were reduced but the genes related with ER stress were elevated in iBAT of high-fat diet (HFD)-induced obese mice. Moreover, ER stress further inhibited mRNA level of Sirt1 and triggered brown adipocyte apoptosis in vitro and in vivo. Further analysis revealed that Sirt1 overexpression alleviated ER stress-induced brown adipocyte apoptosis by inhibiting Smad3 and ATF4. In addition, Smad3 bound to ATF4 promoter region and positively transcriptional regulation of ATF4. Our data also confirmed that Sirt1 reduced early apoptotic cells and blocked the mitochondrial apoptosis pathway by directly interacting with ATF4. Furthermore, Sirt1 attenuated tunicamycin-induced cold intolerance and elevating thermogenesis by inhibiting ER stress and apoptosis in iBAT. In summary, our data collectively revealed Sirt1 reduced ER stress and apoptosis of brown adipocyte in vivo and in vitro by inhibiting Smad3/ATF4 signal. These data reveal a novel mechanism that links Sirt1 to brown adipocyte apoptosis.
Collapse
Affiliation(s)
- Zhenjiang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huihui Gu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
32
|
Tatone C, Di Emidio G, Barbonetti A, Carta G, Luciano AM, Falone S, Amicarelli F. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 2018; 24:267-289. [DOI: 10.1093/humupd/dmy003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Alberto M Luciano
- Department of Health, Animal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, 20133 Milan, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Institute of Translational Pharmacology (IFT), CNR, 67100 L’Aquila, Italy
| |
Collapse
|
33
|
Pan MH, Wu JC, Ho CT, Lai CS. Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. Biofactors 2018; 44:50-60. [PMID: 29315906 DOI: 10.1002/biof.1409] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Obesity is a current global epidemic that has led to a marked increase in metabolic diseases. However, its treatment remains a challenge. Obesity is a multifactorial disease, which involves the dysfunction of neuropeptides, hormones, and inflammatory adipokines from the brain, gut, and adipose tissue. An understanding of the mechanisms and signal interactions in the crosstalk between organs and tissue in the coordination of whole-body energy metabolism would be helpful to provide therapeutic and putative approaches to the treatment and prevention of obesity and related complications. Resveratrol and pterostilbene are well-known stilbenes that provide various potential benefits to human health. In particular, their potential anti-obesity effects have been proven in numerous cell culture and animal studies. Both compounds act to regulate energy intake, adipocyte life cycle and function, white adipose tissue (WAT) inflammation, energy expenditure, and gut microbiota by targeting multiple molecules and signaling pathways as an intervention for obesity. Although the efficacy of both compounds in humans requires further investigation with respect to their oral bioavailability, promising scientific findings have highlighted their potential as candidates for the treatment of obesity and the improvement of obesity-related metabolic diseases. © 2018 BioFactors, 44(1):50-60, 2018.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Abstract
The mammalian Sirtuins (SIRT1-7) are an evolutionarily conserved family of NAD+-dependent deacylase and mono-ADP-ribosyltransferase. Sirtuins display distinct subcellular localizations and functions and are involved in cell survival, senescence, metabolism and genome stability. Among the mammalian Sirtuins, SIRT1 and SIRT6 have been thoroughly investigated and have prominent metabolic regulatory roles. Moreover, SIRT1 and SIRT6 have been implicated in obesity, insulin resistance, type 2 diabetes mellitus (T2DM), fatty liver disease and cardiovascular diseases. However, the roles of other Sirtuins are not fully understood. Recent studies have shown that these Sirtuins also play important roles in inflammation, mitochondrial dysfunction, and energy metabolism. Insulin resistance is the critical pathological trait of obesity and metabolic syndrome as well as the core defect in T2DM. Accumulating clinical and experimental animal evidence suggests the potential roles of the remaining Sirtuins in the regulation of insulin resistance through diverse biological mechanisms. In this review, we summarize recent advances in the understanding of the functions of Sirtuins in various insulin resistance-associated physiological processes, including inflammation, mitochondrial dysfunction, the insulin signaling pathway, glucose, and lipid metabolism. In addition, we highlight the important gaps that must be addressed in this field.
Collapse
Affiliation(s)
- Shuang Zhou
- Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqiang Tang
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
35
|
Hoxa5 increases mitochondrial apoptosis by inhibiting Akt/mTORC1/S6K1 pathway in mice white adipocytes. Oncotarget 2017; 8:95332-95345. [PMID: 29221131 PMCID: PMC5707025 DOI: 10.18632/oncotarget.20521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Homeobox A5(Hoxa5), a member of the Hox family, plays a important role in the regulation of proliferation and apoptosis in cancer cells. The dysregulation of the adipocyte apoptosis in vivo leads to obesity and metabolic disorders. However, the effects of Hoxa5 on adipocyte apoptosis are still unknown. In this study, palmitic acid (PA) significantly increased the mRNA level of Hoxa5 and triggered white adipocyte apoptosis in vivo and in vitro. Further analysis revealed that Hoxa5 enhanced the early and late apoptotic cells and fragmentation of genomic DNA in adipocytes from inguinal white adipose tissue (iWAT) of mice. Moreover, Hoxa5 aggravated white adipocyte apoptosis through mitochondrial pathway rather than endoplasmic reticulum stress (ERS)-induced or death receptor (DR)-mediated pathway. Our data also confirmed that Hoxa5 promoted mitochondrial apoptosis pathway by elevating the transcription activity of Bax and inhibiting the protein kinase B (Akt)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In summary, these findings revealed a novel mechanism that linked Hoxa5 to white adipocyte apoptosis, which provided some potential possibilities to prevent and treat obesity and some metabolic diseases.
Collapse
|
36
|
Fernández-Quintela A, Milton-Laskibar I, González M, Portillo MP. Antiobesity effects of resveratrol: which tissues are involved? Ann N Y Acad Sci 2017; 1403:118-131. [PMID: 28796895 DOI: 10.1111/nyas.13413] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
Abstract
The prevalence of obesity has been increasing in recent decades and is reaching epidemic proportions. The current options for overweight and obesity management are energy restriction and physical activity. However, compliance with these treatments is frequently poor and less successful than expected. Therefore, the scientific community is interested in active biomolecules, which may be useful in body weight management. Among them, resveratrol (3,5,4'-trihydroxy-trans-stilbene) has generated great interest as an antiobesity agent. The focus of this report is the mechanisms of action of resveratrol on several tissues (i.e., white and brown adipose tissues, liver, and skeletal muscle). Resveratrol blunts fat accumulation through decreasing adipogenesis and/or de novo lipogenesis in white adipose tissue. The effects on lipolysis are controversial. Regarding brown adipose tissue, resveratrol increases the capacity for adaptive thermogenesis. As far as liver and skeletal muscle is concerned, resveratrol increases lipid oxidation in both tissues. Therefore, in rodents, there is a general consensus concerning the effect of resveratrol on reducing body fat accumulation. By contrast, in humans, the studies are scarce, and no clear antiobesity action has been revealed so far.
Collapse
Affiliation(s)
- Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III (ISCIII), Spain
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III (ISCIII), Spain
| | - Marcela González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Maria P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III (ISCIII), Spain
| |
Collapse
|
37
|
Liu G, Li M, Xu Y, Wu S, Saeed M, Sun C. ColXV promotes adipocyte differentiation via inhibiting DNA methylation and cAMP/PKA pathway in mice. Oncotarget 2017; 8:60135-60148. [PMID: 28947959 PMCID: PMC5601127 DOI: 10.18632/oncotarget.18550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/04/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM), as an essential component of adipose tissue, not only provides mechanical support for adipocyte growth, but also participates in ECM-adipocyte communication via various secreted proteins, including highly enriched collagens. Collagen XV (ColXV) is a secreted non-fibrillar collagen within ECM Basement Membrane (BM) zones and well recognized as a tumor suppressor. However, the role of ColXV in adipose tissue is still unknown. In this study, high fat diet (HFD) fed mice were used as obese model, in which we deeply investigated the interaction between ColXV and adipocyte differentiation or adipose metabolism. We found great elevated ColXV expression and positive effect of ColXV on lipid deposition during adipocyte differentiation or obesity both in vitro and in vivo. cAMP response element binding protein (CREB) is a cellular transcription factor that can inhibit adipogenesis and promote lipolysis. Here we proposed ColXV as a newly discovered downstream gene of CREB. We further proved that CREB can repress adipocyte differentiation and enhance lipolysis by negatively regulating ColXV transcription. Mechanistic studies showed ColXV enhanced adipocyte differentiation and lipid deposition through reducing its DNA methylation and repressing the cAMP/PKA signaling pathway. Collectively, our study identified ColXV as a novel downstream gene for CREB and could promote adipocyte differentiation, inhibit lipolysis through repressing cAMP/PKA signaling pathway and positively regulating adipogenic markers expressions by repressing the activity of maintenance methyltransferase Dnmt1. Our data discovered a novel role of ColXV in adipocyte differentiation and provide insight into obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Guannv Liu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Yatao Xu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Song Wu
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Saeed
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
38
|
Kim EJ, Yang SJ. Nicotinamide Reduces Amyloid Precursor Protein and Presenilin 1 in Brain Tissues of Amyloid Beta-Tail Vein Injected Mice. Clin Nutr Res 2017; 6:130-135. [PMID: 28503509 PMCID: PMC5426212 DOI: 10.7762/cnr.2017.6.2.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to investigate whether nicotinic acid (NA) and nicotinamide (NAM) reduce the Alzheimer disease (AD)-related gene expression in brain tissues of amyloid beta (Aβ)-injected mice. Male Crj:CD1 (ICR) mice were divided into 6 treatment groups; 1) control, 2) Aβ control, 3) Aβ + NA 20 mg/kg/day (NA20), 4) Aβ + NA40, 5) Aβ + NAM 200 mg/kg/day (NAM200), and 6) Aβ + NAM400. After 1-week acclimation period, the mice orally received NA or NAM once a day for a total of 7 successive days. On day 7, biotinylated Aβ42 was injected into mouse tail vein. At 5 hours after the injection, blood and tissues were collected. Aβ42 injection was confirmed by Western blot analysis of Aβ42 protein in brain tissue. NAM400 pre-treatment significantly reduced the gene expression of amyloid precursor protein and presenilin 1 in brain tissues. And, NAM200 and NAM400 pre-treatments significantly increased sirtuin 1 expression in brain tissues, which is accompanied by the decreased brain expression of nuclear factor kappa B by 2 doses of NAM. Increased expression of AD-related genes was attenuated by the NAM treatment, which suggests that NAM supplementation may be a potential preventive strategy against AD-related deleterious changes.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
39
|
Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 2017; 18:447-476. [PMID: 28258519 PMCID: PMC5514220 DOI: 10.1007/s10522-017-9685-9] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Ageing is a plastic process and can be successfully modulated by some biomedical approaches or pharmaceutics. In this manner it is possible to delay or even prevent some age-related pathologies. There are some defined interventions, which give promising results in animal models or even in human studies, resulting in lifespan elongation or healthspan improvement. One of the most promising targets for anti-ageing approaches are proteins belonging to the sirtuin family. Sirtuins were originally discovered as transcription repressors in yeast, however, nowadays they are known to occur in bacteria and eukaryotes (including mammals). In humans the family consists of seven members (SIRT1-7) that possess either mono-ADP ribosyltransferase or deacetylase activity. It is believed that sirtuins play key role during cell response to a variety of stresses, such as oxidative or genotoxic stress and are crucial for cell metabolism. Although some data put in question direct involvement of sirtuins in extending human lifespan, it was documented that proper lifestyle including physical activity and diet can influence healthspan via increasing the level of sirtuins. The search for an activator of sirtuins is one of the most extensive and robust topic of research. Some hopes are put on natural compounds, including curcumin. In this review we summarize the involvement and usefulness of sirtuins in anti-ageing interventions and discuss the potential role of curcumin in sirtuins regulation.
Collapse
Affiliation(s)
- Wioleta Grabowska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland.
| |
Collapse
|
40
|
Jokinen R, Pirnes-Karhu S, Pietiläinen KH, Pirinen E. Adipose tissue NAD +-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health. Redox Biol 2017; 12:246-263. [PMID: 28279944 PMCID: PMC5343002 DOI: 10.1016/j.redox.2017.02.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD+/NADH redox balance and NAD+ is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD+ homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD+ pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications.
Collapse
Affiliation(s)
- Riikka Jokinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, Biomedicum Helsinki, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Sini Pirnes-Karhu
- Molecular Neurology, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, Biomedicum Helsinki, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland; Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; FIMM, Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Pirinen
- Molecular Neurology, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|