1
|
Sun H, Du B, Fu H, Yue Z, Wang X, Yu S, Zhang Z. Canagliflozin combined with aerobic exercise protects against chronic heart failure in rats. iScience 2024; 27:109014. [PMID: 38439968 PMCID: PMC10910240 DOI: 10.1016/j.isci.2024.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
To determine the efficacy and potential protective mechanism of canagliflozin combined with aerobic exercise in treating chronic heart failure (CHF). Isoproterenol was injected into rats to create CHF models. The rats were then subsequently divided into saline, canagliflozin (3 mg/kg/d), aerobic exercise training, and canagliflozin combined with aerobic exercise training. Compared to the CHF group, the canagliflozin combined with the aerobic exercise group had superior ventricular remodeling and cardiac function. In rats treated with canagliflozin combined with aerobic exercise, the expression of cytochrome P450 (CYP) 4A3, CYP4A8, COL1A1, COL3A1, and FN1 was reduced, while the expression of CYP26B1, ALDH1A2, and CYP1A1 increased significantly. Additionally, canagliflozin combined with aerobic exercise decreased the phosphorylation of AKT and ERK1/2. Canagliflozin combined with aerobic exercise has a positive effect on the development of CHF via the regulation of retinol metabolism and the AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Helin Sun
- Department of Endocrinology and Metabology, Shenzhen Research Institute of Shandong University, Shenzhen, China, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingyu Du
- Department of Endocrinology and Metabology, Shenzhen Research Institute of Shandong University, Shenzhen, China, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Fu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaodi Yue
- Teaching and Research Section of Internal Medicine, College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of rehabilitation medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueyin Wang
- Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shaohong Yu
- Teaching and Research Section of Internal Medicine, College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of rehabilitation medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabology, Shenzhen Research Institute of Shandong University, Shenzhen, China, Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Yao M, Lian D, Wu M, Zhou Y, Fang Y, Zhang S, Zhang W, Yang Y, Li R, Chen H, Chen Y, Shen A, Peng J. Isoliensinine Attenuates Renal Fibrosis and Inhibits TGF-β1/Smad2/3 Signaling Pathway in Spontaneously Hypertensive Rats. Drug Des Devel Ther 2023; 17:2749-2762. [PMID: 37701045 PMCID: PMC10494865 DOI: 10.2147/dddt.s414179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose This study aimed to investigate the molecular mechanisms of isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), in treating renal interstitial fibrosis (RIF) by using RNA sequencing, KEGG analysis and in vivo experimental approaches. Methods Spontaneous hypertension rats (SHRs) were randomly assigned into five groups, consisting of SHR, SHR+Isoliensinine-L (2.5 mg/kg/day), SHR+Isoliensinine-M (5 mg/kg/day), SHR+Isoliensinine-H (10 mg/kg/day), and SHR+Valsartan (10 mg/kg/day) groups (n = 6 for each group). A control group of Wistar Kyoto rats (n = 6) was also included. Rats were treated intragastrically with isoliensinine, valsartan, or double-distilled water of equal volume for 10 weeks. To examine the therapeutic impact on hypertensive renal injury, fibrosis, and its underlying mechanisms, multiple techniques were employed, including hematoxylin and eosin staining, Masson trichrome staining, RNA sequencing, gene ontology (GO) function and pathway enrichment analysis and immunohistochemistry. Results Resultantly, the use of isoliensinine at different concentrations or valsartan showed significant improvement in renal pathological injury in SHRs. RNA sequencing and KEGG analysis uncovered 583 differentially expressed transcripts and pathways enriched in collagen formation and ECM-receptor interaction after treatment with isoliensinine. There was also a reduction in the increase of collagen and upregulation of collagen I & III, TGF-β1, p-Smad2, and p-Smad3 in the renal tissue of SHRs. Thus, isoliensinine ameliorated renal injury and collagen deposition in hypertensive rats, and inhibiting the activation of the TGF-β1/Smad2/3 pathway might be one of the underlying mechanisms. Conclusion This study showed that treatment with isoliensinine effectively reduced the renal injury and fibrosis in SHRs. In addition, isoliensinine inhibited the TGF-β1/Smad2/3 signaling in-vivo. These findings provided strong evidence for the therapeutic benefits of isoliensinine in combating renal injury and fibrosis.
Collapse
Affiliation(s)
- Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Yuting Zhou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Siyu Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Wenqiang Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Yanyan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Renfeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
3
|
Hanyuda A, Rosner BA, Wiggs JL, Negishi K, Pasquale LR, Kang JH. Long-term Alcohol Consumption and Risk of Exfoliation Glaucoma or Glaucoma Suspect Status among United States Health Professionals. Ophthalmology 2023; 130:187-197. [PMID: 36041586 DOI: 10.1016/j.ophtha.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To assess the association between intakes of total alcohol and individual alcoholic beverages and the incidence of exfoliation glaucoma/glaucoma suspect (XFG/XFGS) status. DESIGN Prospective cohort study. PARTICIPANTS A total of 195 408 participants in the Nurses' Health Study (1980-2018), the Health Professionals Follow-up Study (1986-2018), and the Nurses' Health Study II (1991-2019) were followed biennially. Eligible participants at each 2-year risk period were ≧ 40 years and free of XFG/XFGS status with available data on diet and ophthalmic examination findings. METHODS Cumulatively averaged total (primary exposure) and individual alcoholic beverage (beer, wine, and liquor) intakes from validated dietary information every 2-4 years. MAIN OUTCOME MEASURES Confirmed incident XFG/XFGS status using medical records. We used per-eye Cox proportional hazards models, accounting for intereye correlations, to estimate multivariate-adjusted relative risks (MVRRs) and 95% confidence intervals (CIs). RESULTS During 6 877 823 eye-years of follow-up, 705 eyes with XFG/XFGS status were documented. Greater total alcohol consumption was associated significantly with higher XFG/XFGS status risk: the MVRR for XFG/XFGS status for cumulatively averaged alcohol consumption of ≧15 g/day or more versus nondrinking was 1.55 (95% CI, 1.17-2.07; P = 0.02 for trend). Long- and short-term alcohol intake was associated significantly with XFG/XFGS status risk, with the strongest associations with cumulatively averaged alcohol intake as of 4 years before diagnosis (MVRR ≥ 15 g/day vs. nondrinking, 1.65; 95% CI, 1.25-2.18; P = 0.002 for trend). Compared with nondrinkers, consuming ≧ 3.6 drinks of beer, wine, or liquor per week was associated with the following MVRRs for XFG/XFGS status: 1.26 (95% CI, 0.89-1.77; P = 0.40 for trend), 1.30 (95% CI, 1.00-1.68; P = 0.15 for trend), and 1.46 (95% CI, 1.15-1.85; P = 0.01 for trend), respectively. We did not observe interactions by age, latitude, residential tier, or intakes of folate or vitamin A (P > 0.40 for interaction); however, the association between alcohol and XFG/XFGS status was suggestively stronger for those without a family history of glaucoma (P = 0.10 for interaction). CONCLUSIONS Long-term alcohol consumption was associated with a higher risk of XFG/XFGS status. Our findings provide further clues regarding the XFG/XFGS etiology.
Collapse
Affiliation(s)
- Akiko Hanyuda
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Bernard A Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jae H Kang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
4
|
Zenkel M, Hoja U, Gießl A, Berner D, Hohberger B, Weller JM, König L, Hübner L, Ostermann TA, Gusek-Schneider GC, Kruse FE, Pasutto F, Schlötzer-Schrehardt U. Dysregulated Retinoic Acid Signaling in the Pathogenesis of Pseudoexfoliation Syndrome. Int J Mol Sci 2022; 23:ijms23115977. [PMID: 35682657 PMCID: PMC9180992 DOI: 10.3390/ijms23115977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Pseudoexfoliation (PEX) syndrome, a stress-induced fibrotic matrix process, is the most common recognizable cause of open-angle glaucoma worldwide. The recent identification of PEX-associated gene variants uncovered the vitamin A metabolic pathway as a factor influencing the risk of disease. In this study, we analyzed the role of the retinoic acid (RA) signaling pathway in the PEX-associated matrix metabolism and evaluated its targeting as a potential candidate for an anti-fibrotic intervention. We provided evidence that decreased expression levels of RA pathway components and diminished RA signaling activity occur in an antagonistic crosstalk with TGF-β1/Smad signaling in ocular tissues and cells from PEX patients when compared with age-matched controls. Genetic and pharmacologic modes of RA pathway inhibition induced the expression and production of PEX-associated matrix components by disease-relevant cell culture models in vitro. Conversely, RA signaling pathway activation by natural and synthetic retinoids was able to suppress PEX-associated matrix production and formation of microfibrillar networks via antagonization of Smad-dependent TGF-β1 signaling. The findings indicate that deficient RA signaling in conjunction with hyperactivated TGF-β1/Smad signaling is a driver of PEX-associated fibrosis, and that restoration of RA signaling may be a promising strategy for anti-fibrotic intervention in patients with PEX syndrome and glaucoma.
Collapse
Affiliation(s)
- Matthias Zenkel
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Ursula Hoja
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Daniel Berner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Genetikum, 89231 Neu-Ulm, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Julia M. Weller
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Loretta König
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Lisa Hübner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Thomas A. Ostermann
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Gabriele C. Gusek-Schneider
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Friedrich E. Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Correspondence: ; Tel.: +49-9131-8534433; Fax: +49-9131-8534631
| |
Collapse
|
5
|
Berner D, Hoja U, Zenkel M, Ross JJ, Uebe S, Paoli D, Frezzotti P, Rautenbach RM, Ziskind A, Williams SE, Carmichael TR, Ramsay M, Topouzis F, Chatzikyriakidou A, Lambropoulos A, Sundaresan P, Ayub H, Akhtar F, Qamar R, Zenteno JC, Cruz-Aguilar M, Astakhov YS, Dubina M, Wiggs J, Ozaki M, Kruse FE, Aung T, Reis A, Khor CC, Pasutto F, Schlötzer-Schrehardt U. The protective variant rs7173049 at LOXL1 locus impacts on retinoic acid signaling pathway in pseudoexfoliation syndrome. Hum Mol Genet 2021; 28:2531-2548. [PMID: 30986821 PMCID: PMC6644155 DOI: 10.1093/hmg/ddz075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
LOXL1 (lysyl oxidase-like 1) has been identified as the major effect locus in pseudoexfoliation (PEX) syndrome, a fibrotic disorder of the extracellular matrix and frequent cause of chronic open-angle glaucoma. However, all known PEX-associated common variants show allele effect reversal in populations of different ancestry, casting doubt on their biological significance. Based on extensive LOXL1 deep sequencing, we report here the identification of a common non-coding sequence variant, rs7173049A>G, located downstream of LOXL1, consistently associated with a decrease in PEX risk (odds ratio, OR = 0.63; P = 6.33 × 10−31) in nine different ethnic populations. We provide experimental evidence for a functional enhancer-like regulatory activity of the genomic region surrounding rs7173049 influencing expression levels of ISLR2 (immunoglobulin superfamily containing leucine-rich repeat protein 2) and STRA6 [stimulated by retinoic acid (RA) receptor 6], apparently mediated by allele-specific binding of the transcription factor thyroid hormone receptor beta. We further show that the protective rs7173049-G allele correlates with increased tissue expression levels of ISLR2 and STRA6 and that both genes are significantly downregulated in tissues of PEX patients together with other key components of the STRA6 receptor-driven RA signaling pathway. siRNA-mediated downregulation of RA signaling induces upregulation of LOXL1 and PEX-associated matrix genes in PEX-relevant cell types. These data indicate that dysregulation of STRA6 and impaired retinoid metabolism are involved in the pathophysiology of PEX syndrome and that the variant rs7173049-G, which represents the first common variant at the broad LOXL1 locus without allele effect reversal, mediates a protective effect through upregulation of STRA6 in ocular tissues.
Collapse
Affiliation(s)
- Daniel Berner
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ursula Hoja
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - James Julian Ross
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Paoli
- Department of Ophthalmology, Monfalcone Hospital, Gorizia, Italy
| | - Paolo Frezzotti
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Robyn M Rautenbach
- Division of Ophthalmology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Ari Ziskind
- Division of Ophthalmology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Susan E Williams
- Division of Ophthalmology, University of the Witwatersrand, Johannesburg, South Africa
| | - Trevor R Carmichael
- Division of Ophthalmology, University of the Witwatersrand, Johannesburg, South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthi Chatzikyriakidou
- Department of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Lambropoulos
- Department of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Periasamy Sundaresan
- Dr. G.Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Humaira Ayub
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Farah Akhtar
- Pakistan Institute of Ophthalmology, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Juan C Zenteno
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico.,Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Marisa Cruz-Aguilar
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico
| | - Yury S Astakhov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia
| | - Michael Dubina
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia.,St Petersburg Academic University, St Petersburg, Russia
| | - Janey Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Mineo Ozaki
- Ozaki Eye Hospital, Hyuga, Miyazaki, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Friedrich E Kruse
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tin Aung
- Singapore Eye Research Institute, Singapore.,Singapore National Eye Center, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chiea Chuen Khor
- Singapore Eye Research Institute, Singapore.,Genome Institute of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Francesca Pasutto
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Zheng J, Zhu S, Xu H, Li J, Tang H, Zhou Y, Huang Z, Liu G. miR-363-3p inhibits rat lung alveolar type II cell proliferation by downregulating STRA6 expression and induces cell apoptosis via cellular oxidative stress and G1-phase cell cycle arrest. Transl Pediatr 2021; 10:2095-2105. [PMID: 34584880 PMCID: PMC8429880 DOI: 10.21037/tp-21-303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND miR-363-3p, the retinoid signaling pathway (RSP), and its associated membrane receptor, stimulated by retinoic acid 6 (STRA6), participate in lung development. We hypothesize that miR-363-3p is involved in lung cell proliferation and apoptosis by regulating the expression of STRA6, and this study was designed to investigate the effect of changes in the expressions of miR-363-3p and the STRA6 gene on the proliferation and apoptosis of rat alveolar type II cells. METHODS To confirm our hypothesis, we used: a dual-luciferase reporter assay; cell culture and transfection; real-time quantitative polymerase chain reaction (PCR); Western blotting; a cell proliferation assay and flow cytometry analysis of the cell cycle, cell apoptosis, oxidative stress level, and mitochondrial membrane potential. RESULTS Our results showed that STRA6 is a target gene for miR-363-3p, and when the expression of miR-363-3p increased, the relative messenger RNA (mRNA) expression of STRA6 decreased, which caused a decrease in STRA6 protein synthesis and subsequent inhibition of rat lung alveolar type II cell proliferation. In contrast, inhibiting the expression of miR-363-3p promoted the proliferation of these cells. This study also found that an increased expression of miR-363-3p induced rat lung alveolar type II cell apoptosis led to an increase in the oxidative stress level, decreased mitochondrial membrane potential, and an inducement of G1-phase cell cycle arrest. CONCLUSIONS In conclusion, miR-363-3p is associated with lung cell proliferation and apoptosis, while miR-363-3p inhibits rat lung alveolar type II cell proliferation by downregulating the expression of STRA6 and induces cell apoptosis by increasing cellular oxidative stress and G1-phase cell cycle arrest.
Collapse
Affiliation(s)
- Jintao Zheng
- Department of Neonatal and Pediatric Surgery, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Shibo Zhu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiyu Xu
- Department of Neonatal and Pediatric Surgery, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Jiequan Li
- Department of Neonatal and Pediatric Surgery, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Huajian Tang
- Department of Neonatal and Pediatric Surgery, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Yanfen Zhou
- Department of Neonatal and Pediatric Surgery, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Zhaomei Huang
- Department of Neonatal and Pediatric Surgery, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Guoqing Liu
- Department of Neonatal and Pediatric Surgery, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China.,Women and Children Medical Research Center Affiliated to Foshan Institute of Fetal Medicine, Foshan, China
| |
Collapse
|
7
|
Variation of PPARG Expression in Chemotherapy-Sensitive Patients of Hypopharyngeal Squamous Cell Carcinoma. PPAR Res 2021; 2021:5525091. [PMID: 34054937 PMCID: PMC8149230 DOI: 10.1155/2021/5525091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 11/18/2022] Open
Abstract
Our previous study showed that the upregulation of peroxisome proliferator-activated receptor gamma (PPARG) could promote chemosensitivity of hypopharyngeal squamous cell carcinoma (HSCC) in chemotherapeutic treatments. Here, we acquired two more independent expression data of PPARG to validate the expression levels of PPARG in chemotherapy-sensitive patients (CSP) and its individualized variations compared to chemotherapy-non-sensitive patients (CNSP). Our results showed that overall PPARG expression was mildly downregulated (log fold change = −0.55; p value = 0.42; overexpression in three CSPs and reduced expression in four CSPs), which was not consistent with previous results (log fold change = 0.50; p = 0.22; overexpression in nine CSPs and reduced expression in three CSPs). Both studies indicated that PPARG expression variation was significantly associated with the Tumor-Node-Metastasis (TNM) stage (p = 7.45e − 7 and 6.50e − 4, for the first and second studies, respectively), which was used as one of the predictors of chemosensitivity. The new dataset analysis revealed 51 genes with significant gene expression changes in CSPs (LFC > 1 or <-1; p value < 0.01), and two of them (TMEM45A and RBP1) demonstrated strong coexpression with PPARG (Pearson correlation coefficient > 0.6 or <-0.6). There were 21 significant genes in the data from the first study, with no significant association with PPARG and no overlap with the 51 genes revealed in this study. Our results support the connection between PPARG and chemosensitivity in HSCC tumor cells. However, significant PPARG variation exists in CSPs, which may be influenced by multiple factors, including the TNM stage.
Collapse
|
8
|
Shin SJ, Chen CH, Kuo WC, Chan HC, Chan HC, Lin KD, Ke LY. Disruption of retinoid homeostasis induces RBP4 overproduction in diabetes: O-GlcNAcylation involved. Metabolism 2020; 113:154403. [PMID: 33065162 DOI: 10.1016/j.metabol.2020.154403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/10/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Retinol-binding protein 4 (RBP4) is elevated and associated with inflammation in metabolic diseases. Disruption of the retinol cascade and O-GlcNAcylation of the RBP4 receptor (STRA6) are found in diabetic kidneys. OBJECTIVES We investigated whether the disruption of the retinol cascade induces RBP4 overproduction and if O-linked GlcNAc modification targets RBPR2 and contributes to the disruption of retinol cascades in diabetic livers. METHODS Western blot or immunohistochemistry for RBPR2, CRBP1, LRAT, RALDH, RARα, RARγ, RXRα, RBP4, GFAT, OGT, OGA and inflammatory markers, as well as ELISA for RBP4, were performed in livers of db/db and ob/ob mice and high glucose-cultured hepatocytes. Immunoprecipitation and dual fluorescence staining were used to explore O-GlcNAc-modified RBPR2 and RBP4 binding activity on RBPR2. Transfection of the CRBP1 gene was done to verify whether a disrupted retinol cascade induces RBP4 overproduction. OGT silencing was done to investigate the association of O-GlcNAcylation with the disruption of retinol cascade. RESULTS Disruption of retinol cascade, RBP4 overproduction, O-GlcNAcylation of RBPR2, decreased RBP4 binding activity on RBPR2 and inflammation were found in livers of db/db and ob/ob mice and high glucose-cultured hepatocytes. CRBP1 gene transfection reversed the suppression of the cellular retinol cascade and simultaneously attenuated the RBP4 overproduction and inflammation in high glucose-treated hepatocytes. The silencing of OGT reversed the disruption of the cellular retinol cascade, RBP4 overproduction and inflammation induced by high glucose in hepatocytes. CONCLUSIONS This study indicates that the disruption of cellular retinol cascade is strongly associated with RBP4 overproduction and inflammation in diabetic livers. RBPR2 is one target for high glucose-mediated O-linked GlcNAc modification, which causes liver retinol dyshomeostasis.
Collapse
Affiliation(s)
- Shyi-Jang Shin
- Grander Clinic, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Chen
- The Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wen-Chen Kuo
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsiu-Chuan Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kun-Der Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Yin Ke
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
10
|
Schyman P, Printz RL, AbdulHameed MDM, Estes SK, Shiota C, Shiota M, Wallqvist A. A toxicogenomic approach to assess kidney injury induced by mercuric chloride in rats. Toxicology 2020; 442:152530. [PMID: 32599119 DOI: 10.1016/j.tox.2020.152530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Kidney injury caused by disease, trauma, environmental exposures, or drugs may result in decreased renal function, chronic kidney disease, or acute kidney failure. Diagnosis of kidney injury using serum creatinine levels, a common clinical test, only identifies renal dysfunction after the kidneys have undergone severe damage. Other indicators sensitive to kidney injury, such as the level of urine kidney injury molecule-1 (KIM-1), lack the ability to differentiate between injury phenotypes. To address early detection as well as detailed categorization of kidney-injury phenotypes in preclinical animal or cellular studies, we previously identified eight sets (modules) of co-expressed genes uniquely associated with kidney histopathology. Here, we used mercuric chloride (HgCl2)-a model nephrotoxicant-to chemically induce kidney injuries as monitored by KIM-1 levels in Sprague Dawley rats at two doses (0.25 or 0.50 mg/kg) and two exposure lengths (10 or 34 h). We collected whole transcriptome RNA-seq data derived from five animals at each dose and time point to perform a toxicogenomics analysis. Consistent with documented injury phenotypes for HgCl2 toxicity, our kidney-injury-module approach identified the onset of necrosis and dilation as early as 10 h after a dose of 0.50 mg/kg that produced only mild injury as judged by urinary KIM-1 excretion. The results of these animal studies highlight the potential of the kidney-injury-module approach to provide a sensitive and histopathology-specific readout of renal toxicity.
Collapse
Affiliation(s)
- Patric Schyman
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mohamed Diwan M AbdulHameed
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| |
Collapse
|
11
|
Chen C, Ke L, Chan H, Chu C, Lee A, Lin K, Lee M, Hsiao P, Chen C, Shin S. Electronegative low-density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade. J Diabetes Investig 2020; 11:535-544. [PMID: 31597015 PMCID: PMC7232312 DOI: 10.1111/jdi.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022] Open
Abstract
AIMS/INTRODUCTION Electronegative low-density lipoprotein (L5) is the most atherogenic fraction of low-density lipoprotein and is elevated in people with metabolic syndrome (MetS), whereas the retinol-binding protein 4 receptor (stimulated by retinoic acid 6 [STRA6]) cascade is disrupted in various organs of patients with obesity-related diseases. Our objective was to investigate whether L5 from MetS patients capably induces pathogenesis of aorta through disrupting the STRA6 cascade. MATERIAL AND METHODS We examined the in vivo and in vitro effects of L5 on the STRA6 cascade and aortic atherogenic markers. To investigate the role of this cascade on atherosclerotic formation, crbp1 transfection was carried out in vitro. RESULTS This study shows that L5 activates atherogenic markers (p38 mitogen-activated protein kinases, pSmad2 and matrix metallopeptidase 9) and simultaneously suppresses STRA6 signals (STRA6, cellular retinol-binding protein 1, lecithin-retinol acyltransferase, retinoic acid receptor-α and retinoid X receptor-α) in aortas of L5-injected mice and L5-treated human aortic endothelial cell lines and human aortic smooth muscle cell lines. These L5-induced changes of the STRA6 cascade and atherogenic markers were reversed in aortas of LOX1-/- mice and in LOX1 ribonucleic acid-silenced human aortic endothelial cell lines and human aortic smooth muscle cell lines. Furthermore, crbp1 gene transfection reversed the disruption of the STRA6 cascade, the phosphorylation of p38 mitogen-activated protein kinases and Smad2, and the elevation of matrix metallopeptidase 9 in L5-treated human aortic endothelial cell lines. CONCLUSIONS This study shows that L5 from MetS patients induces atherogenic markers by disrupting STRA6 signaling. Suppression of STRA6 might be one novel pathogenesis of aorta in patients with MetS.
Collapse
Affiliation(s)
- Chao‐Hung Chen
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Liang‐Yin Ke
- Lipid Science and Aging Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| | - Hua‐Chen Chan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chih‐Sheng Chu
- Division of CardiologyDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - An‐Sheng Lee
- Department of MedicineMackay Medical CollegeNew TaipeiTaiwan
| | - Kun‐Der Lin
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Vascular and Medical ResearchTexas Heart InstituteHoustonTexasUSA
| | - Mei‐Yueh Lee
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Pi‐Jung Hsiao
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Chu‐Huang Chen
- Lipid Science and Aging Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Vascular and Medical ResearchTexas Heart InstituteHoustonTexasUSA
- Department of Internal MedicineKaohsiung Ta‐Tung Municipal HospitalKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Shyi‐Jang Shin
- School of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Divison of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyCollege of Health SciencesKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
12
|
Mining TCGA Database for Tumor Microenvironment-Related Genes of Prognostic Value in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2408348. [PMID: 31828095 PMCID: PMC6885833 DOI: 10.1155/2019/2408348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Recent studies reveal that tumor microenvironment (TME) components significantly affect HCC growth and progression, particularly the infiltrating stromal and immune cells. Thus, mining of TME-related biomarkers is crucial to improve the survival of patients with HCC. Public access of The Cancer Genome Atlas (TCGA) database allows convenient performance of gene expression-based analysis of big data, which contributes to the exploration of potential association between genes and prognosis of a variety of malignancies, including HCC. The "Estimation of STromal and Immune cells in MAlignant Tumors using Expression data" algorithm renders the quantification of the stromal and immune components in TME possible by calculating the stromal and immune scores. Differentially expressed genes (DEGs) were screened by dividing the HCC cohort of TCGA database into high- and low-score groups according to stromal and immune scores. Further analyses of functional enrichment and protein-protein interaction networks show that the DEGs are mainly involved in immune response, cell adhesion, and extracellular matrix. Finally, seven DEGs have significant association with HCC poor outcomes. These genes contain FABP3, GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6 and may be candidate biomarkers for HCC prognosis.
Collapse
|
13
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
14
|
Chen CH, Lin KD, Ke LY, Liang CJ, Kuo WC, Lee MY, Lee YL, Hsiao PJ, Hsu CC, Shin SJ. O-GlcNAcylation disrupts STRA6-retinol signals in kidneys of diabetes. Biochim Biophys Acta Gen Subj 2019; 1863:1059-1069. [DOI: 10.1016/j.bbagen.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
|