1
|
Álvarez-Barrios A, Álvarez L, Sáenz de Santa María P, García M, Álvarez-Buylla JR, Pereiro R, González-Iglesias H. Dysregulated lipid metabolism in a retinal pigment epithelial cell model and serum of patients with age-related macular degeneration. BMC Biol 2025; 23:96. [PMID: 40221802 PMCID: PMC11993946 DOI: 10.1186/s12915-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a leading cause of blindness, characterized by retinal pigment epithelium (RPE) dysfunction, extracellular deposit formation, and disrupted lipid metabolism. Understanding the molecular changes underlying AMD is essential for identifying diagnostic markers and therapeutic targets. RESULTS This multiomic study employed a primary RPE culture model to investigate age-related changes associated with AMD. Over 25 weeks, RPE cells exhibited phenotypic deterioration, including depigmentation, cell shape deformation, and barrier integrity loss, accompanied by extracellular deposit formation. Transcriptomic analysis revealed dysregulation of genes involved in lipid metabolism, including pathways for cholesterol transport, glycerophospholipids, and ceramide biosynthesis. Metabolomic profiling further identified significant changes in glycerophospholipid and sphingolipid metabolism, highlighting a decline in phospholipid species and ceramide accumulation. Serum analysis of AMD patients revealed altered levels of 18 lipids identified in RPE cultures. Four lipids showed significant differences compared to controls: GlcCer(d16:1/18:0) (1.23-fold increase, adj. p value < 0.001), PE(19:1(9Z)/22:2(13Z,16Z)) (0.34-fold decrease, adj. p value < 0.001), PE(15:0/20:3(5Z,8Z,11Z)) (0.66-fold decrease, adj. p value < 0.05), and PC(22:2(13Z,16Z)/13:0) (0.71-fold decrease, adj. p value < 0.05). These findings underscore the systemic nature of lipid dysregulation in AMD and the translational relevance of the RPE model. CONCLUSIONS This study highlights the significant role of lipid metabolism dysregulation in AMD pathogenesis. The consistent lipidomic alterations observed in RPE cultures and AMD patient serum reinforce their potential as biomarkers for disease progression and therapeutic targets. These findings provide a robust framework for understanding AMD-associated lipid metabolism changes and their systemic impact.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Oviedo, Spain.
| | - Pilar Sáenz de Santa María
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
| | | | - Jorge R Álvarez-Buylla
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Oviedo, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Oviedo, Spain.
| |
Collapse
|
2
|
Wang Y, Becker S, Finkelstein S, Dyka FM, Liu H, Eminhizer M, Hao Y, Brush RS, Spencer WJ, Arshavsky VY, Ash JD, Du J, Agbaga MP, Vinberg F, Ellis JM, Lobanova ES. Acyl-CoA synthetase 6 controls rod photoreceptor function and survival by shaping the phospholipid composition of retinal membranes. Commun Biol 2024; 7:1027. [PMID: 39169121 PMCID: PMC11339274 DOI: 10.1038/s42003-024-06691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Silke Becker
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | - Frank M Dyka
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Eminhizer
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Ying Hao
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - William J Spencer
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - John D Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Frans Vinberg
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
3
|
Li Y, Xu S, Luo L, Yang J. Role of Enzymes Capable of Transporting Phosphatidylserine in Brain Development and Brain Diseases. ACS OMEGA 2024; 9:34243-34249. [PMID: 39157110 PMCID: PMC11325426 DOI: 10.1021/acsomega.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Phosphatidylserine (PS) is a common type of phospholipid, typically located in the inner leaflet of the cell membrane, especially abundant in the nervous system. It is an important component of the neuronal membrane and is considered to play a regulatory role in various brain functions, including memory and emotional stability, because its exposure to the outer leaflet of the neuronal membrane can result in abnormalities in various neurobiological processes such as synaptic transmission and neuronal apoptosis. Recently, research on two types of membrane proteins that synergistically mediate the transmembrane transport of phospholipid molecules in eukaryotic cells has become more in-depth and detailed. This review mainly explores the regulation of the expression of phosphatidylserine transporters and their impact on brain development and diseases.
Collapse
Affiliation(s)
- Yiying Li
- Class
3 Grade 2023, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Siqi Xu
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Li Luo
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Guangdong
Medical Association, Guangzhou, Guangdong 510180, China
| | - Junhua Yang
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Guangdong
Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Honzíková T, Agbaga MP, Anderson RE, Brush R, Ahmad M, Musílková L, Šejstalová K, Alishevich K, Beneš R, Šimicová P, Berčíková M, Filip V, Kyselka J. Novel Approaches for Elongation of Fish Oils into Very-Long-Chain Polyunsaturated Fatty Acids and Their Enzymatic Interesterification into Glycerolipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17909-17923. [PMID: 37947776 PMCID: PMC10682991 DOI: 10.1021/acs.jafc.3c05355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Elongation of the Very-Long-Chain Fatty Acids-4 (ELOVL4) enzyme that is expressed in neuronal tissues, sperm, and testes mediates biosynthesis of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) from dietary long chain PUFAs (LC-PUFAs). The VLC-PUFAs are critical for neuronal and reproductive function. Therefore, mutations in ELOVL4 that affect VLC-PUFA biosynthesis contribute to retinal degenerative diseases including Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3). Recent studies have also shown not only a depletion of retinal VLC-PUFAs with normal aging but also a more significant loss of VLC-PUFAs in donor eyes of patients with age-related macular degeneration (AMD). However, currently, there are no natural sources of VLC-PUFAs to be evaluated as dietary supplements for the attenuation of retinal degeneration in animal models of STGD3. Here, we report the development of a novel chemical approach for elongation of eicosapentaenoic (C20:5 n-3) and docosahexaenoic (C22:6 n-3) acids from fish oils by 6 carbon atoms to make a unique group of VLC-PUFAs, namely all-cis-hexacosa-11,14,17,20,23-pentaenoic acids (C26:5 n-3) and all-cis-octacosa-10,13,16,19,22,25-hexaenoic acids (C28:6 n-3). The three-step elongation approach that we report herein resulted in a good overall yield of up to 20.2%. This more sustainable approach also resulted in improved functional group compatibility and minimal impact on the geometrical integrity of the all-cis double bond system of the VLC-PUFAs. In addition, we also successfully used commercial deep-sea fish oil concentrate as an inexpensive material for the C6 elongation of fish oil LC-PUFAs into VLC-PUFAs, which resulted in the making of gram scales of VLC-PUFAs with an even higher isolation yield of 31.0%. The quality of fish oils and the content of oxidized lipids were key since both strongly affected the activity of the PEPPSI-IPr catalyst and ultimately the yield of coupling reactions. Downstream enzymatic interesterification was used for the first time to prepare structured glycerolipids enriched with VLC-PUFAs that could be evaluated in vivo to determine absorption and transport to target tissues relative to those of the free fatty acid forms. It turned out that in the synthesis of structured triacylglycerols and glycerophospholipids with VLC-PUFAs, the polarity of the immobilized lipase carrier and its humidity were essential.
Collapse
Affiliation(s)
- Tereza Honzíková
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Martin-Paul Agbaga
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Robert Eugene Anderson
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Richard Brush
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Mohiuddin Ahmad
- Departments of Cell Biology & Ophthalmology,
Dean McGee Eye Institute, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Lenka Musílková
- The
Department of Chemistry of Natural Compounds, Faculty of Food and
Biochemical Technology, University of Chemistry
and Technology, Technická
5, 166 28 Prague, Czechia
| | - Karolína Šejstalová
- The
Department of Chemistry of Natural Compounds, Faculty of Food and
Biochemical Technology, University of Chemistry
and Technology, Technická
5, 166 28 Prague, Czechia
| | - Katsiaryna Alishevich
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Radek Beneš
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Petra Šimicová
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Markéta Berčíková
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Vladimír Filip
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| | - Jan Kyselka
- Department
of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czechia
| |
Collapse
|
5
|
Wei P, He M, Wang Y, Han G. High-Fat Diet Alters Acylcarnitine Metabolism of the Retina and Retinal Pigment Epithelium/Choroidal Tissues in Laser-Induced Choroidal Neovascularization Rat Models. Mol Nutr Food Res 2023; 67:e2300080. [PMID: 37490551 DOI: 10.1002/mnfr.202300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/19/2023] [Indexed: 07/27/2023]
Abstract
SCOPE Choroidal neovascularization (CNV) is age-related macular degeneration's (AMD) main pathological change. High-fat diet (HFD) is associated with a form of CNV; however, the specific mechanism is unclear. Mitochondrial dysfunction, characterized by abnormal acylcarnitine, occurs during metabolic screening of serum or other body tissues in AMD. This study investigates HFD's role in retinal and retinal pigment epithelium (RPE)/choroidal acylcarnitine metabolism in CNV formation. METHODS AND RESULTS Chow diet and HFD-BN rats are laser-treated to induce CNV. Acylcarnitine species are quantitatively characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Optical coherence tomography and fundus fluorescein angiography evaluate CNV severity. HFD promotes weight gain, dyslipidemia, and CNV formation. In CNV rats, few medium-chain fatty acids (MCFAs) acylcarnitine in the RPE/choroid are initially affected. When an HFD is administered to these, even MCFA acylcarnitine in the RPE/choroid is found to decline. However, in the retina, odd acylcarnitines are increased, revealing "an opposite" change within the RPE/choroid, accompanied by influencing glycolytic key enzymes. The HFD+CNV group incorporated fewer long-chain acylcarnitines, like C18:2, into the retina than controls. CONCLUSIONS HFD hastens choroidal neovascularization. The study comprehensively documented acylcarnitine profiles in a CNV rat model. Acylcarnitine's odd-even and carbon-chain length properties may guide future therapeutics.
Collapse
Affiliation(s)
- Pinghui Wei
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Meiqin He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300020, P. R. China
| | - Ying Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| | - Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, P. R. China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300020, P. R. China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, P. R. China
| |
Collapse
|
6
|
Manaig YJY, Criado-Mesas L, Esteve-Codina A, Mármol-Sánchez E, Castelló A, Sánchez A, Folch JM. Identifying miRNA-mRNA regulatory networks on extreme n-6/n-3 polyunsaturated fatty acid ratio expression profiles in porcine skeletal muscle. PLoS One 2023; 18:e0283231. [PMID: 37141193 PMCID: PMC10159129 DOI: 10.1371/journal.pone.0283231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids with antagonistic inflammatory functions that play vital roles in metabolic health and immune response. Current commercial swine diets tend to over-supplement with n-6 PUFAs, which may increase the likelihood of developing inflammatory diseases and affect the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to identify differentially expressed mRNAs and miRNAs. The observed differentially expressed mRNAs were associated to biological pathways related to muscle growth and immunomodulation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degradation. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and enriched pathways involved in lipid metabolism, cell proliferation and inflammation.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emilio Mármol-Sánchez
- Department of Molecular Biosciences, Science for Life Laboratory, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Sinclair AJ, Wang Y, Li D. What Is the Evidence for Dietary-Induced DHA Deficiency in Human Brains? Nutrients 2022; 15:nu15010161. [PMID: 36615819 PMCID: PMC9824463 DOI: 10.3390/nu15010161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Docosahexaenoic acid (DHA) is a major constituent of neural and visual membranes and is required for optimal neural and visual function. DHA is derived from food or by endogenous synthesis from α-linolenic acid (ALA), an essential fatty acid. Low blood levels of DHA in some westernised populations have led to speculations that child development disorders and various neurological conditions are associated with sub-optimal neural DHA levels, a proposition which has been supported by the supplement industry. This review searched for evidence of deficiency of DHA in human populations, based on elevated levels of the biochemical marker of n-3 deficiency, docosapentaenoic acid (22:5n-6). Three scenarios/situations were identified for the insufficient supply of DHA, namely in the brain of new-born infants fed with high-linoleic acid (LA), low-ALA formulas, in cord blood of women at birth who were vegetarians and in the milk of women from North Sudan. Twenty post-mortem brain studies from the developed world from adults with various neurological disorders revealed no evidence of raised levels of 22:5n-6, even in the samples with reduced DHA levels compared with control subjects. Human populations most likely at risk of n-3 deficiency are new-born and weanling infants, children and adolescents in areas of dryland agriculture, in famines, or are refugees, however, these populations have rarely been studied. This is an important topic for future research.
Collapse
Affiliation(s)
- Andrew J. Sinclair
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Faculty of Health, Deakin University, Burwood, VIC 3152, Australia
- Correspondence: ; Tel.: +61-(0)414-906-341
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Duo Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
10
|
Jiang X, Xu Z, Yao D, Liu X, Liu W, Wang N, Li X, Diao Y, Zhang Y, Zhao Q. An integrated multi-omics approach revealed the regulation of melatonin on age-dependent mitochondrial function impair and lipid dyshomeostasis in mice hippocampus. Pharmacol Res 2022; 179:106210. [DOI: 10.1016/j.phrs.2022.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 01/01/2023]
|
11
|
Furber KL, Lacombe RJS, Caine S, Thangaraj MP, Read S, Rosendahl SM, Bazinet RP, Popescu BF, Nazarali AJ. Biochemical Alterations in White Matter Tracts of the Aging Mouse Brain Revealed by FTIR Spectroscopy Imaging. Neurochem Res 2022; 47:795-810. [PMID: 34820737 DOI: 10.1007/s11064-021-03491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
White matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the aging human brain shows a loss of myelin, yet little is known about molecular and biochemical changes that lead to myelin degeneration. In this study, we investigate myelination across the lifespan in C57BL/6 mice using electron microscopy and Fourier transform infrared (FTIR) spectroscopic imaging to better understand the relationship between structural and biochemical changes in CNS white matter tracts. A decrease in the number of myelinated axons was associated with altered lipid profiles in the corpus callosum of aged mice. FTIR spectroscopic imaging revealed alterations in functional groups associated with phospholipids, including the lipid acyl, lipid ester and phosphate vibrations. Biochemical changes in white matter were observed prior to structural changes and most predominant in the anterior regions of the corpus callosum. This was supported by biochemical analysis of fatty acid composition that demonstrated an overall trend towards increased monounsaturated fatty acids and decreased polyunsaturated fatty acids with age. To further explore the molecular mechanisms underlying these biochemical alterations, gene expression profiles of lipid metabolism and oxidative stress pathways were investigated. A decrease in the expression of several genes involved in glutathione metabolism suggests that oxidative damage to lipids may contribute to age-related white matter degeneration.
Collapse
Affiliation(s)
- Kendra L Furber
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - R J Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sally Caine
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Merlin P Thangaraj
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, SK, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Zhou Y, Zhou G. Alterations of Lipidomes in Rat Photoreceptor Degeneration Induced by N-Methyl-N-nitrosourea. Lipids 2021; 56:437-448. [PMID: 34058794 DOI: 10.1002/lipd.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
To investigate alterations of lipidomes in the progress of photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU) in a rat model, retinal lipid molecular species in adult Sprague-Dawley (SD) rats at 1, 3, and 7 days after MNU administration and age-matched controls were analyzed by the shotgun lipidomics technology. Moreover, total fatty acid levels in retinal, liver, and plasma samples of different groups were determined with gas chromatography. Generally, at day 1, the levels of ethanolamine plasmalogen species in retinas were markedly elevated after treatment with MNU, while the contents of other phospholipids and sphingolipids in the retina were not significantly changed than those of the control group. The compositions of almost all of unsaturated fatty acids in the retina increased significantly at day 1 after MNU administration. At day 7, the MNU treatment group has significant increases in lipid species in the retina. However, the majority of lipids containing docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (22:5n-6) declined, especially di-DHA phospholipids were dramatically reduced in the retina. In contrast, similar alterations did not occur in plasma or the liver after MNU treatment. These results suggested that at the early stage of photoreceptor degeneration, lipidome remodeling in the retina might involve protection of photoreceptor from apoptosis and continue their transduction of light. However, at the late stage of photoreceptor apoptosis, increases in comprehensive lipid species occurred, likely due to the myelination of the retina. Finally, the deficiency of DHA in photoreceptor degeneration could exacerbate the influence of myelination on retinal function. We further investigated the effects of unsaturated fatty acids on neuronal apoptosis. The preliminary experiments confirmed our observation from lipidomics analysis that unsaturated fatty acids can protect neurons from apoptosis. Collectively, our study suggests that increased levels of DHA should be protective from photoreceptor degeneration.
Collapse
Affiliation(s)
- Yunhua Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| |
Collapse
|
13
|
Fernandez RF, Pereyra AS, Diaz V, Wilson ES, Litwa KA, Martínez-Gardeazabal J, Jackson SN, Brenna JT, Hermann BP, Eells JB, Ellis JM. Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging. JCI Insight 2021; 6:e144351. [PMID: 34100386 PMCID: PMC8262339 DOI: 10.1172/jci.insight.144351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
The omega-3 fatty acid docosahexaenoic acid (DHA) inversely relates to neurological impairments with aging; however, limited nondietary models manipulating brain DHA have hindered a direct linkage. We discovered that loss of long-chain acyl-CoA synthetase 6 in mice (Acsl6–/–) depletes brain membrane phospholipid DHA levels, independent of diet. Here, Acsl6–/– brains contained lower DHA compared with controls across the life span. The loss of DHA- and increased arachidonate-enriched phospholipids were visualized by MALDI imaging predominantly in neuron-rich regions where single-molecule RNA in situ hybridization localized Acsl6 to neurons. ACSL6 is also astrocytic; however, we found that astrocyte-specific ACSL6 depletion did not alter membrane DHA because astrocytes express a non–DHA-preferring ACSL6 variant. Across the life span, Acsl6–/– mice exhibited hyperlocomotion, impairments in working spatial memory, and increased cholesterol biosynthesis genes. Aging caused Acsl6–/– brains to decrease the expression of membrane, bioenergetic, ribosomal, and synaptic genes and increase the expression of immune response genes. With age, the Acsl6–/– cerebellum became inflamed and gliotic. Together, our findings suggest that ACSL6 promotes membrane DHA enrichment in neurons, but not in astrocytes, and is important for neuronal DHA levels across the life span. The loss of ACSL6 impacts motor function, memory, and age-related neuroinflammation, reflecting the importance of neuronal ACSL6-mediated lipid metabolism across the life span.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology, Brody School of Medicine, and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Andrea S Pereyra
- Department of Physiology, Brody School of Medicine, and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Victoria Diaz
- Department of Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Emily S Wilson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Karen A Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | - Shelley N Jackson
- Structural Biology Core, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, Maryland, USA
| | - J Thomas Brenna
- Departments of Pediatrics, Chemistry, and Nutrition and.,Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Brian P Hermann
- Department of Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Jeffrey B Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jessica M Ellis
- Department of Physiology, Brody School of Medicine, and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
14
|
Shen Y, Hu H, Fan C, Wang Q, Zou T, Ye B, Xiang M. Sensorineural hearing loss may lead to dementia-related pathological changes in hippocampal neurons. Neurobiol Dis 2021; 156:105408. [PMID: 34082124 DOI: 10.1016/j.nbd.2021.105408] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
15
|
Genomic-Metabolomic Associations Support the Role of LIPC and Glycerophospholipids in Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2021; 1. [PMID: 34382031 PMCID: PMC8353724 DOI: 10.1016/j.xops.2021.100017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Purpose Large-scale genome-wide association studies (GWAS) have reported important single nucleotide polymorphisms (SNPs) with significant associations with age-related macular degeneration (AMD). However, their role in disease development remains elusive. This study aimed to assess SNP–metabolite associations (i.e., metabolite quantitative trait loci [met-QTL]) and to provide insights into the biological mechanisms of AMD risk SNPs. Design Cross-sectional multicenter study (Boston, Massachusetts, and Coimbra, Portugal). Participants Patients with AMD (n = 388) and control participants (n = 98) without any vitreoretinal disease (> 50 years). Methods Age-related macular degeneration grading was performed using color fundus photographs according to the Age-Related Eye Disease Study classification scheme. Fasting blood samples were collected and evaluated with mass spectrometry for metabolomic profiling and Illumina OmniExpress for SNPs profiling. Analyses of met-QTL of endogenous metabolites were conducted using linear regression models adjusted for age, gender, smoking, 10 metabolite principal components (PCs), and 10 SNP PCs. Additionally, we analyzed the cumulative effect of AMD risk SNPs on plasma metabolites by generating genetic risk scores and assessing their associations with metabolites using linear regression models, accounting for the same covariates. Modeling was performed first for each cohort, and then combined by meta-analysis. Multiple comparisons were accounted for using the false discovery rate (FDR). Main Outcome Measures Plasma metabolite levels associated with AMD risk SNPs. Results After quality control, data for 544 plasma metabolites were included. Meta-analysis of data from all individuals (AMD patients and control participants) identified 28 significant met-QTL (β = 0.016–0.083; FDR q-value < 1.14 × 10–2), which corresponded to 5 metabolites and 2 genes: ASPM and LIPC. Polymorphisms in the LIPC gene were associated with phosphatidylethanolamine metabolites, which are glycerophospholipids, and polymorphisms in the ASPM gene with branched-chain amino acids. Similar results were observed when considering only patients with AMD. Genetic risk score–metabolite associations further supported a global impact of AMD risk SNPs on the plasma metabolome. Conclusions This study demonstrated that genomic–metabolomic associations can provide insights into the biological relevance of AMD risk SNPs. In particular, our results support that the LIPC gene and the glycerophospholipid metabolic pathway may play an important role in AMD, thus offering new potential therapeutic targets for this disease.
Collapse
|
16
|
Hamano F, Kuribayashi H, Iwagawa T, Tsuhako A, Nagata K, Sagara H, Shimizu T, Shindou H, Watanabe S. Mapping membrane lipids in the developing and adult mouse retina under physiological and pathological conditions using mass spectrometry. J Biol Chem 2021; 296:100303. [PMID: 33465374 PMCID: PMC7949107 DOI: 10.1016/j.jbc.2021.100303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Membrane phospholipids play pivotal roles in various cellular processes, and their levels are tightly regulated. In the retina, phospholipids had been scrutinized because of their distinct composition and requirement in visual transduction. However, how lipid composition changes during retinal development remains unclear. Here, we used liquid chromatography–mass spectrometry (LC-MS) to assess the dynamic changes in the levels of two main glycerophospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), in the developing mouse retina under physiological and pathological conditions. The total levels of PC and PE increased during retinal development, and individual lipid species exhibited distinct level changes. The amount of very-long-chain PC and PE increased dramatically in the late stages of retinal development. The mRNA levels of Elovl2 and Elovl4, genes encoding enzymes essential for the synthesis of very-long-chain polyunsaturated fatty acids, increased in developing photoreceptors. Cell sorting based on CD73 expression followed by LC-MS revealed distinct changes in PC and PE levels in CD73-positive rod photoreceptors and CD73-negative retinal cells. Finally, using the NaIO3-induced photoreceptor degeneration model, we identified photoreceptor-specific changes in PC and PE levels from 1 day after NaIO3 administration, before the outer segment of photoreceptors displayed morphological impairment. In conclusion, our findings provide insight into the dynamic changes in PC and PE levels in the developing and adult mouse retina under physiological and pathological conditions. Furthermore, we provide evidence that cell sorting followed by LC-MS is a promising approach for investigating the relevance of lipid homeostasis in the function of different retinal cell types.
Collapse
Affiliation(s)
- Fumie Hamano
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Life Sciences Core Facility, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kuribayashi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Asano Tsuhako
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Katsuyuki Nagata
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Department of Lipid Science, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| |
Collapse
|
17
|
The Elovl4 Spinocerebellar Ataxia-34 Mutation 736T>G (p.W246G) Impairs Retinal Function in the Absence of Photoreceptor Degeneration. Mol Neurobiol 2020; 57:4735-4753. [PMID: 32780351 PMCID: PMC7515967 DOI: 10.1007/s12035-020-02052-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
Abstract
Elongation of very long chain fatty acids-4 (ELOVL4) is essential for synthesis of very long chain polyunsaturated and saturated fatty acids (VLC-PUFA and VLC-SFA, respectively) of chain length greater than 26 carbons. Mutations in the ELOVL4 gene cause several distinct neurodegenerative diseases including Stargardt-like macular dystrophy (STGD3), spinocerebellar ataxia 34 (SCA34), and a neuro-ichthyotic syndrome with severe seizures and spasticity, as well as erythrokeratitis variabilis (EKV), a skin disorder. However, the relationship between ELOVL4 mutations, its VLC-PUFA and VLC-SFA products, and specific neurological symptoms remains unclear. We generated a knock-in rat line (SCA34-KI) that expresses the 736T>G (p.W246G) form of ELOVL4 that causes human SCA34. Lipids were analyzed by gas chromatography and mass spectrometry. Retinal function was assessed using electroretinography. Retinal integrity was assessed by histology, optical coherence tomography, and immunolabeling. Analysis of retina and skin lipids showed that the W246G mutation selectively impaired synthesis of VLC-SFA, but not VLC-PUFA. Homozygous SCA34-KI rats showed reduced ERG a- and b-wave amplitudes by 90 days of age, particularly for scotopic responses. Anatomical analyses revealed no indication of neurodegeneration in heterozygote or homozygote SCA34-KI rats out to 6-7 months of age. These studies reveal a previously unrecognized role for VLC-SFA in regulating retinal function, particularly transmission from photoreceptors to the inner retina, in the absence of neurodegeneration. Furthermore, these findings suggest that the tissue specificity and symptoms associated with disease-causing ELOVL4 mutations likely arise from selective differences in the ability of the mutant ELOVL4 enzymes to support synthesis of VLC-PUFA and/or VLC-SFA.
Collapse
|
18
|
Wackerlig J, Köfeler HC, Korz V, Hussein AM, Feyissa DD, Höger H, Urban E, Langer T, Lubec G, Lubec J. Differences in Hypothalamic Lipid Profiles of Young and Aged Male Rats With Impaired and Unimpaired Spatial Cognitive Abilities and Memory. Front Aging Neurosci 2020; 12:204. [PMID: 32719597 PMCID: PMC7349000 DOI: 10.3389/fnagi.2020.00204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids play a major role for several brain functions, including cognition and memory. There is a series of work on individual lipids showing involvement in memory mechanisms, a concise lipidome was not reported so far. Moreover, there is no evidence for age-related memory decline and there is only work on brain of young vs. aging animals. Aging animals, however, are not a homogeneous group with respect to memory impairments, thus animals with impaired and unimpaired memory can be discriminated. Following recent studies of hippocampal lipid profiles and hypothalamus controlled hormone profiles, the aim of this study was to compare hypothalamic, lipidomic changes in male Sprague-Dawley rats between young (YM), old impaired (OMI) and old unimpaired (OMU) males. Grouping criterions for aged rats were evaluated by testing them in a spatial memory task, the hole-board. YMs were also tested. Subsequently brains were removed, dissected and hypothalami were kept at −80°C until sample preparation and analysis on liquid chromatography / mass spectrometry (LC-MS). Significant differences in the amounts of a series of lipids from several classes could be detected between young and aged and between OMI and OMU. A large number of lipids were increased in OMI and a smaller number in OMU as compared to young rats. Differences of lipid ratios (log2 of ratio) between OMI and OMU consisted of glycerophosphocholines (aPC 36:2 and 36:3; PC 34:0, 36:1, 36:3 and 40:2); Glycerophosphoethanolamines (aPE 34:2, 38:5 and 40:5; LPE 18:1, 20:1, 20:4, 22:4 and 22:6; PE36:1 and 38:4); glycerophosphoserines (PS 36:1, 40:4, and 40:6); triacylglycerol TG 52:4; ceramide Cer 17:2 and sphingomyelin SM 20:0. Thus, hypothalamic lipid profiles across different lipid classes discriminate aged male animals into OMU and OMI. The underlying mechanisms may be related to different functional networks of lipids in memory mechanisms and differences in metabolic processes. The study underlines the importance of lipidomics in the pathophysiology of age-related cognitive decline. The necessity of evaluating the cognitive status of aged subjects by behavioral tests results in more specific detection of critical lipids in memory decline, on which now can be focused in subsequent memory studies in animals and humans.
Collapse
Affiliation(s)
- Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald C Köfeler
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Volker Korz
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Daniel D Feyissa
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Neuroscience Laboratory, Paracelsus Medical University, Salzburg, Austria
| | - Jana Lubec
- Neuroscience Laboratory, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
19
|
Deák F, Anderson RE, Fessler JL, Sherry DM. Novel Cellular Functions of Very Long Chain-Fatty Acids: Insight From ELOVL4 Mutations. Front Cell Neurosci 2019; 13:428. [PMID: 31616255 PMCID: PMC6763723 DOI: 10.3389/fncel.2019.00428] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ferenc Deák
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Robert E Anderson
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David M Sherry
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
20
|
Hirahara Y, Wakabayashi T, Koike T, Gamo K, Yamada H. Change in phospholipid species of retinal layer in traumatic optic neuropathy model. J Neurosci Res 2019; 98:325-337. [PMID: 31385342 DOI: 10.1002/jnr.24500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
Injured optic nerves induce death in almost all retinal ganglion cells (RGC) and cause a loss of axons. To date, we have studied injured RGC axon regeneration by using a traumatic optic nerve injury (TONI) rodent model, and we revealed that axonal regeneration is induced by the graft of an autologous peripheral nerve. The efficient approach to the regeneration of axons thus needs an environmental adjustment of RGC. However, the RGC environment induced by TONI remains unknown. Here, we analyzed female and male C57BL/6 mouse retinal tissue alterations in detail after TONI and focused on the major phospholipid species that are enriched in the whole retina. Reactive astrocyte accumulation, glia scar formation, and demyelination were observed in the injured optic nerve area, while RGC cell death, astrocyte accumulation, and Glial fibrillary acidic protein (GFAP) positive Müller cell increases were detected in the retinal layer. Furthermore, phosphatidylinositol (PI) 18:0/20:4 was localized to three nuclear layer structures: the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL) in control retina; however, the localization of 18:0/20:4 PI in TONI was disturbed. Meanwhile, phosphatidylserine (PS) 18:0/22:6 showed that the expression was specifically in the inner plexiform layer (IPL) with similar signal intensity in both cases. Other PS species and phosphatidylethanolamine (PE) were differentially localized in the retinal layer; however, the expressions of PE including docosahexaenoic acid (DHA) were affected by TONI. These results suggest that not only GCL but also other retinal layers were influenced by TONI.
Collapse
Affiliation(s)
- Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | | - Taro Koike
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | - Keizo Gamo
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | - Hisao Yamada
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| |
Collapse
|
21
|
Laíns I, Chung W, Kelly RS, Gil J, Marques M, Barreto P, Murta JN, Kim IK, Vavvas DG, Miller JB, Silva R, Lasky-Su J, Liang L, Miller JW, Husain D. Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites 2019; 9:E127. [PMID: 31269701 PMCID: PMC6680405 DOI: 10.3390/metabo9070127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness worldwide, remains only partially understood. This has led to the current lack of accessible and reliable biofluid biomarkers for diagnosis and prognosis, and absence of treatments for dry AMD. This study aimed to assess the plasma metabolomic profiles of AMD and its severity stages with the ultimate goal of contributing to addressing these needs. We recruited two cohorts: Boston, United States (n = 196) and Coimbra, Portugal (n = 295). Fasting blood samples were analyzed using ultra-high performance liquid chromatography mass spectrometry. For each cohort, we compared plasma metabolites of AMD patients versus controls (logistic regression), and across disease stages (permutation-based cumulative logistic regression considering both eyes). Meta-analyses were then used to combine results from the two cohorts. Our results revealed that 28 metabolites differed significantly between AMD patients versus controls (false discovery rate (FDR) q-value: 4.1 × 10-2-1.8 × 10-5), and 67 across disease stages (FDR q-value: 4.5 × 10-2-1.7 × 10-4). Pathway analysis showed significant enrichment of glycerophospholipid, purine, taurine and hypotaurine, and nitrogen metabolism (p-value ≤ 0.04). In conclusion, our findings support that AMD patients present distinct plasma metabolomic profiles, which vary with disease severity. This work contributes to the understanding of AMD pathophysiology, and can be the basis of future biomarkers and precision medicine for this blinding condition.
Collapse
Affiliation(s)
- Inês Laíns
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rachel S Kelly
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - João Gil
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| | - Marco Marques
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
| | - Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Joaquim N Murta
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Ivana K Kim
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - John B Miller
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, 3000 Coimbra, Portugal
| | - Jessica Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joan W Miller
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Deeba Husain
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Laíns I, Gantner M, Murinello S, Lasky-Su JA, Miller JW, Friedlander M, Husain D. Metabolomics in the study of retinal health and disease. Prog Retin Eye Res 2018; 69:57-79. [PMID: 30423446 DOI: 10.1016/j.preteyeres.2018.11.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Metabolomics is the qualitative and quantitative assessment of the metabolites (small molecules < 1.5 kDa) in body fluids. The metabolites are the downstream of the genetic transcription and translation processes and also downstream of the interactions with environmental exposures; thus, they are thought to closely relate to the phenotype, especially for multifactorial diseases. In the last decade, metabolomics has been increasingly used to identify biomarkers in disease, and it is currently recognized as a very powerful tool with great potential for clinical translation. The metabolome and the associated pathways also help improve our understanding of the pathophysiology and mechanisms of disease. While there has been increasing interest and research in metabolomics of the eye, the application of metabolomics to retinal diseases has been limited, even though these are leading causes of blindness. In this manuscript, we perform a comprehensive summary of the tools and knowledge required to perform a metabolomics study, and we highlight essential statistical methods for rigorous study design and data analysis. We review available protocols, summarize the best approaches, and address the current unmet need for information on collection and processing of tissues and biofluids that can be used for metabolomics of retinal diseases. Additionally, we critically analyze recent work in this field, both in animal models and in human clinical disease, including diabetic retinopathy and age-related macular degeneration. Finally, we identify opportunities for future research applying metabolomics to improve our current assessment and understanding of mechanisms of vitreoretinal diseases, and to hence improve patient assessment and care.
Collapse
Affiliation(s)
- Inês Laíns
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, United States; Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal.
| | - Mari Gantner
- Lowy Medical Research Institute, La Jolla, CA, 92037, United States; Scripps Research Institute, La Jolla, CA, 92037, United States.
| | - Salome Murinello
- Lowy Medical Research Institute, La Jolla, CA, 92037, United States; Scripps Research Institute, La Jolla, CA, 92037, United States.
| | - Jessica A Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, United States.
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA, 92037, United States; Scripps Research Institute, La Jolla, CA, 92037, United States.
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, United States.
| |
Collapse
|
23
|
Hopiavuori BR, Anderson RE, Agbaga MP. ELOVL4: Very long-chain fatty acids serve an eclectic role in mammalian health and function. Prog Retin Eye Res 2018; 69:137-158. [PMID: 30982505 PMCID: PMC6688602 DOI: 10.1016/j.preteyeres.2018.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
ELOngation of Very Long chain fatty acids-4 (ELOVL4) is an elongase responsible for the biosynthesis of very long chain (VLC, ≥C28) saturated (VLC-SFA) and polyunsaturated (VLC-PUFA) fatty acids in brain, retina, skin, Meibomian glands, and testes. Fascinatingly, different mutations in this gene have been reported to cause vastly different phenotypes in humans. Heterozygous inheritance of seven different mutations in the coding sequence and 5' untranslated region of ELOVL4 causes autosomal dominant Stargardt-like macular dystrophy (STGD3), while homozygous inheritance of three more mutant variants causes severe seizures with ichthyosis, hypertonia, and even death. Some recent studies have described heterozygous inheritance in yet another three mutant ELOVL4 variants, two that cause spinocerebellar ataxia-34 (SCA34) with erythrokeratodermia (EKV) and one that causes SCA34 without EKV. We identified the specific enzymatic reactions catalyzed by ELOVL4 and, using a variety of genetically engineered mouse models, have actively searched for the mechanisms by which ELOVL4 impacts neural function and health. In this review, we critically compare and contrast the various animal model and case studies involving ELOVL4 deficiency via either mutation or deletion, and the resulting consequences on neuronal health and function in both the retina and central nervous system.
Collapse
Affiliation(s)
- Blake R Hopiavuori
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert E Anderson
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Martin-Paul Agbaga
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
24
|
Mizukami T, Ikeda K, Shimanaka Y, Korogi K, Zhou C, Takase H, Tsuiji H, Kono N, Kohno T, Arai H, Arita M, Hattori M. Reelin deficiency leads to aberrant lipid composition in mouse brain. Biochem Biophys Res Commun 2018; 505:81-86. [PMID: 30241938 DOI: 10.1016/j.bbrc.2018.09.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023]
Abstract
Reelin is a secreted protein essential for the development and function of the mammalian brain. The receptors for Reelin, apolipoprotein E receptor 2 and very low-density lipoprotein receptor, belong to the low-density lipoprotein receptor family, but it is not known whether Reelin is involved in the brain lipid metabolism. In the present study, we performed lipidomic analysis of the cerebral cortex of wild-type and Reelin-deficient (reeler) mice, and found that reeler mice exhibited several compositional changes in phospholipids. First, the ratio of phospholipids containing one saturated fatty acid (FA) and one docosahexaenoic acid (DHA) or arachidonic acid (ARA) decreased. Secondly, the ratio of phospholipids containing one monounsaturated FA (MUFA) and one DHA or ARA increased. Thirdly, the ratio of phospholipids containing 5,8,11-eicosatrienoic acid, or Mead acid (MA), increased. Finally, the expression of stearoyl-CoA desaturase-1 (SCD-1) increased. As the increase of MA is seen as an index of polyunsaturated FA (PUFA) deficiency, and the expression of SCD-1 is suppressed by PUFA, these results strongly suggest that the loss of Reelin leads to PUFA deficiency. Hence, MUFA and MA are synthesized in response to this deficiency, in part by inducing SCD-1 expression. This is the first report of changes of FA composition in the reeler mouse brain and provides a basis for further investigating the new role of Reelin in the development and function of the brain.
Collapse
Affiliation(s)
- Tomoharu Mizukami
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Kazutaka Ikeda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Yuta Shimanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsunari Korogi
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Chunyu Zhou
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, 467-8601, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, 180-8512, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
25
|
|
26
|
Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, Masson E, Acar N, Bretillon L, Grosmaitre X, Berdeaux O. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids 2018; 131:32-43. [PMID: 29628048 DOI: 10.1016/j.plefa.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.
Collapse
Affiliation(s)
- Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
| | - Nicolas Deprêtre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
27
|
Taylor C, Dewsbury BM. On the Problem and Promise of Metaphor Use in Science and Science Communication. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2018; 19:jmbe-19-46. [PMID: 29904542 PMCID: PMC5969428 DOI: 10.1128/jmbe.v19i1.1538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 05/30/2023]
Abstract
The language of science is largely metaphorical. Scientists rely on metaphor and analogy to make sense of scientific phenomena and communicate their findings to each other and to the public. Yet, despite their utility, metaphors can also constrain scientific reasoning, contribute to public misunderstandings, and, at times, inadvertently reinforce stereotypes and messages that undermine the goals of inclusive science. This paper 1) examines the generative potential of metaphors to the advancement of scientific knowledge and science communication, 2) highlights the ways in which outdated metaphors may limit scientific inquiry and contribute to public misunderstandings, and 3) critically analyzes the implications of cryptic social and political messages embedded in common metaphors in the life sciences.
Collapse
Affiliation(s)
- Cynthia Taylor
- Corresponding author. Mailing address: Department of Biological Sciences, University of Rhode Island, Woodward Hall, Room 136, Kingston, RI 02881. Phone: 401-874-2123. Fax: 401-874-2202. E-mail:
| | | |
Collapse
|
28
|
Pyruvate kinase M2 regulates photoreceptor structure, function, and viability. Cell Death Dis 2018; 9:240. [PMID: 29445082 PMCID: PMC5833680 DOI: 10.1038/s41419-018-0296-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/30/2023]
Abstract
Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6β. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6β promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.
Collapse
|
29
|
Laíns I, Kelly RS, Miller JB, Silva R, Vavvas DG, Kim IK, Murta JN, Lasky-Su J, Miller JW, Husain D. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers. Ophthalmology 2018; 125:245-254. [PMID: 28916333 PMCID: PMC8077680 DOI: 10.1016/j.ophtha.2017.08.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To characterize the plasma metabolomic profile of patients with age-related macular degeneration (AMD) using mass spectrometry (MS). DESIGN Cross-sectional observational study. PARTICIPANTS We prospectively recruited participants with a diagnosis of AMD and a control group (>50 years of age) without any vitreoretinal disease. METHODS All participants underwent color fundus photography, used for AMD diagnosis and staging, according to the Age-Related Eye Disease Study classification scheme. Fasting blood samples were collected and plasma was analyzed by Metabolon, Inc. (Durham, NC), using ultrahigh-performance liquid chromatography (UPLC) and high-resolution MS. Metabolon's hardware and software were used to identify peaks and control quality. Principal component analysis and multivariate regression were performed to assess differences in the metabolomic profiles of AMD patients versus controls, while controlling for potential confounders. For biological interpretation, pathway enrichment analysis of significant metabolites was performed using MetaboAnalyst. MAIN OUTCOME MEASURES The primary outcome measures were levels of plasma metabolites in participants with AMD compared with controls and among different AMD severity stages. RESULTS We included 90 participants with AMD (30 with early AMD, 30 with intermediate AMD, and 30 with late AMD) and 30 controls. Using UPLC and MS, 878 biochemicals were identified. Multivariate logistic regression identified 87 metabolites with levels that differed significantly between AMD patients and controls. Most of these metabolites (82.8%; n = 72), including the most significant metabolites, belonged to the lipid pathways. Analysis of variance revealed that of the 87 metabolites, 48 (55.2%) also were significantly different across the different stages of AMD. A significant enrichment of the glycerophospholipids pathway was identified (P = 4.7 × 10-9) among these metabolites. CONCLUSIONS Participants with AMD have altered plasma metabolomic profiles compared with controls. Our data suggest that the most significant metabolites map to the glycerophospholipid pathway. These findings have the potential to improve our understanding of AMD pathogenesis, to support the development of plasma-based metabolomics biomarkers of AMD, and to identify novel targets for treatment of this blinding disease.
Collapse
Affiliation(s)
- Inês Laíns
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light, Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rachel S Kelly
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John B Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light, Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Demetrios G Vavvas
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Joaquim N Murta
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light, Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Jessica Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Elovl4 5-bp deletion does not accelerate cone photoreceptor degeneration in an all-cone mouse. PLoS One 2018; 13:e0190514. [PMID: 29293603 PMCID: PMC5749830 DOI: 10.1371/journal.pone.0190514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
Mutations in the elongation of very long chain fatty acid 4 (ELOVL4) gene cause Stargardt macular dystrophy 3 (STGD3), a rare, juvenile-onset, autosomal dominant form of macular degeneration. Although several mouse models have already been generated to investigate the link between the three identified disease-causing mutations in the ELOVL4 gene, none of these models recapitulates the early-onset cone photoreceptor cell death observed in the macula of STGD3 patients. To address this specifically, we investigated the effect of mutant ELOVL4 in a mouse model with an all-cone retina. Hence, we bred mice carrying the heterozygously mutated Elovl4 gene on the R91W;Nrl-/- all-cone background and analyzed the retinal lipid composition, morphology, and function over the course of 1 year. We observed a reduction of total phosphatidylcholine-containing very long chain-polyunsaturated fatty acids (PC-VLC-PUFAs) by 39% in the R91W;Nrl-/-;Elovl4 mice already at 6 weeks of age with a pronounced decline of the longest forms of PC-VLC-PUFAs. Total levels of shorter-chain fatty acids (< C26) remained unaffected. However, this reduction in PC-VLC-PUFA content in the all-cone retina had no impact on morphology or function and did not accelerate retinal degeneration in the R91W;Nrl-/-;Elovl4 mice. Taken together, mutations in the ELOVL4 gene lead to cone degeneration in humans, whereas mouse models expressing the mutant Elovl4 show predominant rod degeneration. The lack of a phenotype in the all-cone retina expressing the mutant form of the protein supports the view that aberrant function of ELOVL4 is especially detrimental for rods in mice and suggests a more subtle role of VLC-PUFAs for cone maintenance and survival.
Collapse
|
31
|
Sherry DM, Hopiavuori BR, Stiles MA, Rahman NS, Ozan KG, Deak F, Agbaga MP, Anderson RE. Distribution of ELOVL4 in the Developing and Adult Mouse Brain. Front Neuroanat 2017; 11:38. [PMID: 28507511 PMCID: PMC5410580 DOI: 10.3389/fnana.2017.00038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
ELOngation of Very Long chain fatty acids (ELOVL)-4 is essential for the synthesis of very long chain-fatty acids (fatty acids with chain lengths ≥ 28 carbons). The functions of ELOVL4 and its very long-chain fatty acid products are poorly understood at present. However, mutations in ELOVL4 cause neurodevelopmental or neurodegenerative diseases that vary according to the mutation and inheritance pattern. Heterozygous inheritance of different ELOVL4 mutations causes Stargardt-like Macular Dystrophy or Spinocerebellar Ataxia type 34. Homozygous inheritance of ELOVL4 mutations causes more severe disease characterized by seizures, intellectual disability, ichthyosis, and premature death. To better understand ELOVL4 and very long chain fatty acid function in the brain, we examined ELOVL4 expression in the mouse brain between embryonic day 18 and postnatal day 60 by immunolabeling using ELOVL4 and other marker antibodies. ELOVL4 was widely expressed in a region- and cell type-specific manner, and was restricted to cell bodies, consistent with its known localization to endoplasmic reticulum. ELOVL4 labeling was most prominent in gray matter, although labeling also was present in some cells located in white matter. ELOVL4 was widely expressed in the developing brain by embryonic day 18 and was especially pronounced in regions underlying the lateral ventricles and other neurogenic regions. The basal ganglia in particular showed intense ELOVL4 labeling at this stage. In the postnatal brain, cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, midbrain, pons, and medulla all showed prominent ELOVL4 labeling, although ELOVL4 distribution was not uniform across all cells or subnuclei within these regions. In contrast, the basal ganglia showed little ELOVL4 labeling in the postnatal brain. Double labeling studies showed that ELOVL4 was primarily expressed by neurons, although presumptive oligodendrocytes located in white matter tracts also showed labeling. Little or no ELOVL4 labeling was present in astrocytes or radial glial cells. These findings suggest that ELOVL4 and its very long chain fatty acid products are important in many parts of the brain and that they are particularly associated with neuronal function. Specific roles for ELOVL4 and its products in oligodendrocytes and myelin and in cellular proliferation, especially during development, are possible.
Collapse
Affiliation(s)
- David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Blake R Hopiavuori
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Megan A Stiles
- Dean McGee Eye Institute, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Negar S Rahman
- Dean McGee Eye Institute, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Kathryn G Ozan
- Dean McGee Eye Institute, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Ferenc Deak
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Robert E Anderson
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA.,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| |
Collapse
|