1
|
Baumgart A, Le DT, Cranfield CG, Bridge S, Zerlotti R, Palchetti I, Tadini-Buoninsegni F, Clarke RJ. Membrane Binding of Hydrophobic Ions: Application of New Kinetic Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8081-8091. [PMID: 40102050 DOI: 10.1021/acs.langmuir.4c04779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Understanding membrane transport processes such as ion occlusion reactions of ion pumps and transporters and the ion gating of channels requires knowledge of lipid bilayer electrostatics. A simple example of the effect of membrane electrostatics on ion transport is the much higher permeability of the membrane to hydrophobic anions, such as tetraphenylborate (TPB-), compared to hydrophobic cations, such as tetraphenylphosphonium (TPP+) or tetraphenylarsonium (TPA+). This has been attributed to the membrane dipole potential, of which a major contributor has been determined to be oriented water dipoles in the lipid headgroup region of the membrane. From the ratio of the TPB- to TPP+ or TPA+ conductances, the magnitude and polarity of the dipole potential can be estimated. Using the voltage-sensitive dye RH421 in conjunction with the stopped-flow technique and solid-supported membrane electrophysiology here we show that the transport of these ions is not simply a diffusion through the membrane but rather occurs in jumps between discrete binding sites within the membrane. The hydrophobic anion TPB- causes much greater RH421 spectral changes than TPA+. This could be explained by a combination of a stronger interaction of TPB- with RH421 and a deeper binding of TPB- within the membrane compared to TPA+. The experimental methods, used here for the first time to study the kinetics of ion transport across membranes, are potentially applicable to investigations of the membrane permeability of charged drug molecules, in particular anticancer agents.
Collapse
Affiliation(s)
- Alexander Baumgart
- School of Chemistry, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Do Trang Le
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Samara Bridge
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | | | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (FI), Metropolitan 50019, Italy
| | | | - Ronald J Clarke
- School of Chemistry, University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
2
|
Duret G, Coffler S, Avant B, Kim W, Peterchev AV, Robinson J. Magnetic activation of electrically active cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636926. [PMID: 39975002 PMCID: PMC11839070 DOI: 10.1101/2025.02.07.636926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Magnetic control of cell activity has applications ranging from non-invasive neurostimulation to remote activation of cell-based therapies. Unlike other methods of regulating cell activity like heat and light, which are based on known receptors or proteins, no magnetically gated channel has been identified to date. As a result, effective approaches for magnetic control of cell activity are based on strong alternating magnetic fields able to induce electric fields or materials that convert magnetic energy into electrical, thermal, or mechanical energy to stimulate cells. In our investigations of magnetic cell responses, we found that a spiking HEK cell line with no other co-factors responds to a magnetic field that reaches a maximum of 500 mT within 200 ms using a permanent magnet. The response is rare, approximately 1 in 50 cells, but is fast and reproducible, generating an action potential within 200 ms of magnetic field stimulation. The magnetic field stimulation is over 10,000 times slower than the magnetic fields used in transcranial magnetic stimulation (TMS) and the induced electric field is more than an order of magnitude lower than necessary for neuromodulation, suggesting that induced electric currents do not drive the cell response. Instead, our calculation suggests that this response depends on mechanoreception pathways activated by the magnetic torque of TRP-associated lipid rafts. Despite the relatively rare response to magnetic stimulation, when cells form gap junctions, the magnetic stimulation can propagate to nearby cells, causing tissue-level responses. As an example, we co-cultured spiking HEK cells with beta-pancreatic MIN6 cells and found that this co-culture responds to magnetic fields by increasing insulin production. Together, these results point toward a method for the magnetic control of biological activity without the need for a material co-factor such as synthetic nanoparticles. By better understanding this mechanism and enriching for magneto-sensitivity it may be possible to adapt this approach to the rapidly expanding tool kit for wireless cell activity regulation.
Collapse
|
3
|
Szabo M, Cs. Szabo B, Kurtan K, Varga Z, Panyi G, Nagy P, Zakany F, Kovacs T. Look Beyond Plasma Membrane Biophysics: Revealing Considerable Variability of the Dipole Potential Between Plasma and Organelle Membranes of Living Cells. Int J Mol Sci 2025; 26:889. [PMID: 39940660 PMCID: PMC11816637 DOI: 10.3390/ijms26030889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Due to the lack of measurement techniques suitable for examining compartments of intact, living cells, membrane biophysics is almost exclusively investigated in the plasma membrane despite the fact that its alterations in intracellular organelles may also contribute to disease pathogenesis. Here, we employ a novel, easy-to-use, confocal microscopy-based approach utilizing F66, an environment-sensitive fluorophore in combination with fluorescent organelle markers and quantitative image analysis to determine the magnitude of the molecular order-related dipole potential in the plasma membrane and intracellular organelles of various tumor and neural cell lines. Our comparative analysis demonstrates considerable intracellular variations of the dipole potential that may be large enough to modulate protein functions, with an inward decreasing gradient on the route of the secretory/endocytic pathway (plasma membrane >> lysosome > Golgi > endoplasmic reticulum), whereas mitochondrial membranes are characterized by a dipole potential slightly larger than that of lysosomes. Our approach is suitable and sensitive enough to quantify membrane biophysical properties selectively in intracellular compartments and their comparative analysis in intact, living cells, and, therefore, to identify the affected organelles and potential therapeutic targets in diseases associated with alterations in membrane lipid composition and thus biophysics such as tumors, metabolic, neurodegenerative, or lysosomal storage disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| |
Collapse
|
4
|
Kovacs T, Cs. Szabo B, Kothalawala RC, Szekelyhidi V, Nagy P, Varga Z, Panyi G, Zakany F. Inhibition of the H V1 voltage-gated proton channel compromises the viability of human polarized macrophages in a polarization- and ceramide-dependent manner. Front Immunol 2024; 15:1487578. [PMID: 39742270 PMCID: PMC11685079 DOI: 10.3389/fimmu.2024.1487578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
The human voltage-gated proton channel (HV1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit HV1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied HV1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound. ClGBI may exert this effect principally by blocking HV1 since the sensitivity of polarized macrophages correlates well with their HV1 expression levels; inhibitors of other macrophage ion channels that may be susceptible for off-target ClGBI effects cause no viability reductions; and Zn2+, another non-specific HV1 blocker, exerts similar effects. As a potential mechanism behind the ClGBI-induced cell death, we identify a complex pH dysregulation involving acidification of the cytoplasm and alkalinization of the lysosomes, which eventually result in membrane ceramide accumulation. Furthermore, ClGBI effects are alleviated by ARC39, a selective acid sphingomyelinase inhibitor supporting the unequivocal significance of ceramide accumulation in the process. Altogether, our results suggest that HV1 inhibition leads to cellular toxicity in polarized macrophages in a polarization-dependent manner, which occurs due to a pH dysregulation and concomitant ceramide overproduction mainly depending on the activity of acid sphingomyelinase. The reduced macrophage viability and plausible concomitant changes in homeostatic M1-M2 balance could contribute to both the therapeutic and potential side effects of HV1 inhibitors that show great promise in the treatment of neuroinflammation and malignant diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Minnaar CA, Szigeti GP, Szasz A. The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology. Cancers (Basel) 2024; 16:3908. [PMID: 39682096 DOI: 10.3390/cancers16233908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. METHOD This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. RESULTS The thermal and electrical heterogeneity of tissues allows the radiofrequency signal to selectively target malignant tissue. The applied modulation appears to activate various apoptotic pathways, predominantly leading to immunogenic cell death (ICD). ICD promotes the release of damage-associated molecular patterns, potentially producing tumour-specific antigen-presenting cells. This abscopal-type effect may target distant metastases while treating the primary tumour locally. This immune memory effect is like vaccination mechanisms. CONCLUSIONS The application of mEHT has the potential to expand from local to systemic disease, enabling the simultaneous treatment of micro- and macro-metastases.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Gyula Peter Szigeti
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- MedTech Innovation and Education Center, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| | - Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
6
|
Lev B, Vorobyov I, Clarke RJ, Allen TW. The Membrane Dipole Potential and the Roles of Interfacial Water and Lipid Hydrocarbon Chains. J Phys Chem B 2024; 128:9482-9499. [PMID: 39303305 DOI: 10.1021/acs.jpcb.4c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Understanding membrane charge transport processes, including the actions of ion channels, pumps, carriers, and membrane-active peptides, requires a description of the electrostatics of the lipid bilayer. We have simulated a library of different lipid chemistries to reveal the impact of the headgroup, glycerol backbone, and hydrocarbon chains on the membrane dipole potential. We found a strong dependence of the potential on lipid packing, but this was not caused by the packing of lipid polar components, due to cancellation of their electric fields by electrolyte. In contrast, lipid tail contributions were determined by area per lipid, arising from two countering effects. Increased area per lipid leads to chain tilting that increases methylene dipole projections to strengthen the electric field within the bilayer, while at the same time decreasing the electric field from terminal methyl groups. Moreover, electric fields from some nonterminal groups and the terminal methyl group can extend beyond the bilayer center and be canceled by the opposing leaflet. This interleaflet field annulment explains the experimental reduction in dipole potential for unsaturated and branched lipid bilayers, by as much as ∼200 mV, as well as experiments that substitute chain carbons with sulfur. Replacing ester with ether groups (eliminating two carbonyl groups) causes a significant reduction in potential, also by ∼200 mV, in agreement with experiment. We show that the effect can be largely attributed to the loss of aligned water molecules in the glycerol backbone region, lowering the potential inside the bilayer core. When only one of the two carbonyls is removed (using a hybrid ester-ether lipid or a single-chain lipid), most of this reduction in potential was lost, with the single carbonyl group able to maintain full hydration in the interfacial region. While headgroup chemistry can have a major effect (by as much as ±100 mV relative to phosphatidylcholine), anionic headgroups either decrease or increase the dipole potential, with the variation involving perturbation in hydrogen-bonded water molecules and changes in packing of lipid tails. Overall, these results suggest that membrane electrostatics are dominated by aligned water molecules at the polar-hydrocarbon interface and, surprisingly, by the charge distribution of the nonpolar lipid tails, and not the packing of headgroup and glycerol carbonyl dipoles.
Collapse
Affiliation(s)
- Bogdan Lev
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology/Department of Pharmacology, University of California, Davis, 4303 Tupper Hall, One Shields Avenue, Davis, California 95616, United States
| | - Ronald J Clarke
- School of Chemistry, University of Sydney/University of Sydney Nano Institute, City Road, Sydney, NSW 2006, Australia
| | - Toby W Allen
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| |
Collapse
|
7
|
Cs Szabo B, Szabo M, Nagy P, Varga Z, Panyi G, Kovacs T, Zakany F. Novel insights into the modulation of the voltage-gated potassium channel K V1.3 activation gating by membrane ceramides. J Lipid Res 2024; 65:100596. [PMID: 39019344 PMCID: PMC11367112 DOI: 10.1016/j.jlr.2024.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (KV), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the KV1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD. We observed rightward shifts in the conductance-voltage (G-V) relationship, slower current activation kinetics, and reduced current amplitudes in response to loading the membrane with C16-ceramide (Cer) or C16-glucosylceramide (GlcCer). When analyzing VSD movements, only Cer induced a rightward shift in the fluorescence signal-voltage (F-V) relationship and slowed fluorescence activation kinetics, whereas GlcCer exerted no such effects. These results point at a distinctive mechanism of action with Cer primarily targeting the VSD, while GlcCer only the PD of KV1.3. Using environment-sensitive probes and fluorescence-based approaches, we show that Cer and GlcCer similarly increase molecular order in the inner, hydrophobic regions of bilayers, however, Cer induces a robust molecular reorganization at the membrane-water interface. We propose that this unique ordering effect in the outermost membrane layer in which the main VSD rearrangement involving an outward sliding of the top of S4 occurs can explain the VSD targeting mechanism of Cer, which is unavailable for GlcCer.
Collapse
Affiliation(s)
- Bence Cs Szabo
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mate Szabo
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Feng R, Sheng H, Lian Y. Advances in using ultrasound to regulate the nervous system. Neurol Sci 2024; 45:2997-3006. [PMID: 38436788 DOI: 10.1007/s10072-024-07426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Ultrasound is a mechanical vibration with a frequency greater than 20 kHz. Due to its high spatial resolution, good directionality, and convenient operation in neural regulation, it has recently received increasing attention from scientists. However, the mechanism by which ultrasound regulates the nervous system is still unclear. This article mainly explores the possible mechanisms of ultrasound's mechanical effects, cavitation effects, thermal effects, and the rise of sonogenetics. In addition, the essence of action potential and its relationship with ultrasound were also discussed. Traditional theory treats nerve impulses as pure electrical signals, similar to cable theory. However, this theory cannot explain the phenomenon of inductance and cell membrane bulging out during the propagation of action potential. Therefore, the flexoelectric effect of cell membrane and soliton model reveal that action potential may also be a mechanical wave. Finally, we also elaborated the therapeutic effect of ultrasound on nervous system disease such as epilepsy, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanqing Sheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Orlikowska-Rzeznik H, Versluis J, Bakker HJ, Piatkowski L. Cholesterol Changes Interfacial Water Alignment in Model Cell Membranes. J Am Chem Soc 2024; 146:13151-13162. [PMID: 38687869 PMCID: PMC11099968 DOI: 10.1021/jacs.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The nanoscopic layer of water that directly hydrates biological membranes plays a critical role in maintaining the cell structure, regulating biochemical processes, and managing intermolecular interactions at the membrane interface. Therefore, comprehending the membrane structure, including its hydration, is essential for understanding the chemistry of life. While cholesterol is a fundamental lipid molecule in mammalian cells, influencing both the structure and dynamics of cell membranes, its impact on the structure of interfacial water has remained unknown. We used surface-specific vibrational sum-frequency generation spectroscopy to study the effect of cholesterol on the structure and hydration of monolayers of the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and egg sphingomyelin (SM). We found that for the unsaturated lipid DOPC, cholesterol intercalates in the membrane without significantly changing the orientation of the lipid tails and the orientation of the water molecules hydrating the headgroups of DOPC. In contrast, for the saturated lipids DPPC and SM, the addition of cholesterol leads to clearly enhanced packing and ordering of the hydrophobic tails. It is also observed that the orientation of the water hydrating the lipid headgroups is enhanced upon the addition of cholesterol. These results are important because the orientation of interfacial water molecules influences the cell membranes' dipole potential and the strength and specificity of interactions between cell membranes and peripheral proteins and other biomolecules. The lipid nature-dependent role of cholesterol in altering the arrangement of interfacial water molecules offers a fresh perspective on domain-selective cellular processes, such as protein binding.
Collapse
Affiliation(s)
- Hanna Orlikowska-Rzeznik
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jan Versluis
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Lukasz Piatkowski
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
10
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
11
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
12
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
13
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
14
|
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z, Zakany F. Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the K V1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Front Mol Biosci 2021; 8:735357. [PMID: 34805269 PMCID: PMC8599428 DOI: 10.3389/fmolb.2021.735357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, β-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.
Collapse
Affiliation(s)
- Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sohajda
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Batta G, Kárpáti L, Henrique GF, Tóth G, Tarapcsák S, Kovacs T, Zakany F, Mándity IM, Nagy P. Statin-boosted cellular uptake and endosomal escape of penetratin due to reduced membrane dipole potential. Br J Pharmacol 2021; 178:3667-3681. [PMID: 33908640 DOI: 10.1111/bph.15509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Cell penetrating peptides are promising tools for delivery of cargo into cells, but factors limiting or facilitating their cellular uptake are largely unknown. We set out to study the effect of the biophysical properties of the cell membrane on the uptake of penetratin, a cell penetrating peptide. EXPERIMENTAL APPROACH Using labelling with pH-insensitive and pH-sensitive dyes, the kinetics of cellular uptake and endo-lysosomal escape of penetratin were studied by flow cytometry. KEY RESULTS We report that escape of penetratin from acidic endo-lysosomal compartments is retarded compared with its total cellular uptake. The membrane dipole potential, known to alter transmembrane transport of charged molecules, is shown to be negatively correlated with the concentration of penetratin in the cytoplasmic compartment. Treatment of cells with therapeutically relevant concentrations of atorvastatin, an inhibitor of HMG-CoA reductase and cholesterol synthesis, significantly increased endosomal escape of penetratin in two different cell types. This effect of atorvastatin correlated with its ability to decrease the membrane dipole potential. CONCLUSION AND IMPLICATIONS These results highlight the importance of the dipole potential in regulating cellular uptake of cell penetrating peptides and suggest a clinically relevant way of boosting this process.
Collapse
Affiliation(s)
- Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Levente Kárpáti
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Gabriela Fulaneto Henrique
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gabriella Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István M Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Zakany F, Szabo M, Batta G, Kárpáti L, Mándity IM, Fülöp P, Varga Z, Panyi G, Nagy P, Kovacs T. An ω-3, but Not an ω-6 Polyunsaturated Fatty Acid Decreases Membrane Dipole Potential and Stimulates Endo-Lysosomal Escape of Penetratin. Front Cell Dev Biol 2021; 9:647300. [PMID: 33912562 PMCID: PMC8074792 DOI: 10.3389/fcell.2021.647300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Although the largely positive intramembrane dipole potential (DP) may substantially influence the function of transmembrane proteins, its investigation is deeply hampered by the lack of measurement techniques suitable for high-throughput examination of living cells. Here, we describe a novel emission ratiometric flow cytometry method based on F66, a 3-hydroxiflavon derivative, and demonstrate that 6-ketocholestanol, cholesterol and 7-dehydrocholesterol, saturated stearic acid (SA) and ω-6 γ-linolenic acid (GLA) increase, while ω-3 α-linolenic acid (ALA) decreases the DP. These changes do not correlate with alterations in cell viability or membrane fluidity. Pretreatment with ALA counteracts, while SA or GLA enhances cholesterol-induced DP elevations. Furthermore, ALA (but not SA or GLA) increases endo-lysosomal escape of penetratin, a cell-penetrating peptide. In summary, we have developed a novel method to measure DP in large quantities of individual living cells and propose ALA as a physiological DP lowering agent facilitating cytoplasmic entry of penetratin.
Collapse
Affiliation(s)
- Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mate Szabo
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Levente Kárpáti
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Lendület-Artificial Chloride Ion Transporter Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Péter Fülöp
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Krenacs T, Meggyeshazi N, Forika G, Kiss E, Hamar P, Szekely T, Vancsik T. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. Int J Mol Sci 2020; 21:E6270. [PMID: 32872532 PMCID: PMC7504298 DOI: 10.3390/ijms21176270] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
The benefits of high-fever range hyperthermia have been utilized in medicine from the Ancient Greek culture to the present day. Amplitude-modulated electro-hyperthermia, induced by a 13.56 MHz radiofrequency current (mEHT, or Oncothermia), has been an emerging means of delivering loco-regional clinical hyperthermia as a complementary of radiation-, chemo-, and molecular targeted oncotherapy. This unique treatment exploits the metabolic shift in cancer, resulting in elevated oxidative glycolysis (Warburg effect), ion concentration, and electric conductivity. These promote the enrichment of electric fields and induce heat (controlled at 42 °C), as well as ion fluxes and disequilibrium through tumor cell membrane channels. By now, accumulating preclinical studies using in vitro and in vivo models of different cancer types have revealed details of the mechanism and molecular background of the oncoreductive effects of mEHT monotherapy. These include the induction of DNA double-strand breaks, irreversible heath and cell stress, and programmed cells death; the upregulation of molecular chaperones and damage (DAMP) signaling, which may contribute to a secondary immunogenic tumor cell death. In combination therapies, mEHT proved to be a good chemosensitizer through increasing drug uptake and tumor reductive effects, as well as a good radiosensitizer by downregulating hypoxia-related target genes. Recently, immune stimulation or intratumoral antigen-presenting dendritic cell injection have been able to extend the impact of local mEHT into a systemic "abscopal" effect. The complex network of pathways emerging from the published mEHT experiments has not been overviewed and arranged yet into a framework to reveal links between the pieces of the "puzzle". In this paper, we review the mEHT-related damage mechanisms published in tumor models, which may allow some geno-/phenotype treatment efficiency correlations to be exploited both in further research and for more rational clinical treatment planning when mEHT is involved in combination therapies.
Collapse
Affiliation(s)
- Tibor Krenacs
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Nora Meggyeshazi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Gertrud Forika
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Eva Kiss
- Institute of Oncology at 1st Department of Internal Medicine, Semmelweis University, H-1083 Budapest, Hungary;
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| | - Tamas Szekely
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Tamas Vancsik
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| |
Collapse
|
18
|
Batta G, Kárpáti L, Henrique GF, Tarapcsák S, Kovács T, Zákány F, Mándity IM, Nagy P. Statin-boosted cellular uptake of penetratin due to reduced membrane dipole potential.. [DOI: 10.1101/2020.08.04.236984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
AbstractSince cell penetrating peptides are promising tools for delivery of cargo into cells, factors limiting or facilitating their cellular uptake are intensely studied. Using labeling with pH-insensitive and pH-sensitive dyes we report that escape of penetratin from acidic endo-lysosomal compartments is retarded compared to its cellular uptake. The membrane dipole potential, known to alter transmembrane transport of charged molecules, is shown to be negatively correlated with the concentration of penetratin in the cytoplasmic compartment. Treatment of cells with therapeutically relevant concentrations of atorvastatin, an inhibitor of HMG-CoA reductase and cholesterol synthesis, significantly increased the release of penetratin from acidic endocytic compartments in two different cell types. This effect of atorvastatin correlated with its ability to decrease the membrane dipole potential. These results highlight the importance of the dipole potential in regulating cellular uptake of cell penetrating peptides and suggest a clinically relevant way of boosting this process.
Collapse
|
19
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
20
|
Effect of dipole moment on amphiphile solubility and partition into liquid ordered and liquid disordered phases in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183157. [PMID: 31846646 DOI: 10.1016/j.bbamem.2019.183157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Association of amphiphiles with biomembranes is important for their availability at specific locations in organisms and cells, being critical for their biological function. A prominent role is usually attributed to the hydrophobic effect, and to electrostatic interactions between charged amphiphiles and lipids. This work explores a closely related and complementary aspect, namely the contribution made by dipole moments to the strength of the interactions established. Two xanthene amphiphiles with opposite relative orientations of their dipole and amphiphilic moments have been selected (Rhodamine-C14 and Carboxyfluorescein-C14). The membranes studied have distinct lipid compositions, representing typical cell membrane pools, ranging from internal membranes to the outer and inner leaflet of the plasma membrane. A comprehensive study is reported, including the affinity of the amphiphiles for the different membranes, the stability of the amphiphiles as monomers and their tendency to form small clusters, as well as their transverse location in the membrane. The orientation of the amphiphile dipole moment, which determines whether its interaction with the membrane dipole potential is repulsive or attractive, is found to exert a large influence on the association of the amphiphile with ordered lipid membranes. These interactions are also responsible for the formation of small clusters or stabilization of amphiphile monomers in the membrane. The results obtained allow understanding the prevalence of protein lipidation at the N-terminal for efficient targeting to the plasma membrane, as well as the tendency of GPI-anchored proteins (usually lipidated at the C-terminal) to form small clusters in the membrane ordered domains.
Collapse
|
21
|
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, Brown RE. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A 2α. eLife 2019; 8:e44760. [PMID: 31050338 PMCID: PMC6550875 DOI: 10.7554/elife.44760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/03/2019] [Indexed: 01/19/2023] Open
Abstract
Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report the structure of the cPLA2α C2-domain (at 2.2 Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2α activity. The DHPC-binding mode of the cPLA2α C2-domain, which differs from phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of the lipid-binding mechanisms mediated by C2-domains.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
- Graduate School of Biological SciencesNara Institute of Science and Technology (NAIST)TakayamaJapan
| | - Yong-Guang Gao
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
| | - Ngoc T Vu
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
| | - Lucy Malinina
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Dhirendra K Simanshu
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
- Research ServiceJames A. Haley Veterans HospitalTampaUnited States
- The Moffitt Cancer CenterTampaUnited States
| | - Dinshaw J Patel
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | | |
Collapse
|
22
|
Affiliation(s)
- Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
23
|
Sapoń K, Janas T, Sikorski AF, Janas T. Polysialic acid chains exhibit enhanced affinity for ordered regions of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:245-255. [DOI: 10.1016/j.bbamem.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/25/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
|
24
|
Zakany F, Pap P, Papp F, Kovacs T, Nagy P, Peter M, Szente L, Panyi G, Varga Z. Determining the target of membrane sterols on voltage-gated potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:312-325. [PMID: 30553843 DOI: 10.1016/j.bbalip.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Cholesterol, an essential lipid component of cellular plasma membranes, regulates fluidity, mechanical integrity, raft structure and may specifically interact with membrane proteins. Numerous effects on ion channels by cholesterol, including changes in current amplitude, voltage dependence and gating kinetics, have been reported. We have previously described such changes in the voltage-gated potassium channel Kv1.3 of lymphocytes by cholesterol and its analog 7-dehydrocholesterol (7DHC). In voltage-gated channels membrane depolarization induces movement of the voltage sensor domains (VSD), which is transmitted by a coupling mechanism to the pore domain (PD) to open the channel. Here, we investigated whether cholesterol effects were mediated by the VSD to the pore or the PD was the direct target. Specificity was tested by comparing Kv1.3 and Kv10.1 channels having different VSD-PD coupling mechanisms. Current recordings were performed with two-electrode voltage-clamp fluorometry, where movement of the VSDs was monitored by attaching fluorophores to external cysteine residues introduced in the channel sequence. Loading the membrane with cholesterol or 7DHC using methyl-β-cyclodextrin induced changes in the steady-state and kinetic parameters of the ionic currents while leaving fluorescence parameters mostly unaffected in both channels. Non-stationary noise analysis revealed that reduction of single channel conductance rather than that of open probability caused the observed current decrease. Furthermore, confocal laser scanning and stimulated emission depletion microscopy demonstrated significant changes in the distribution of these ion channels in response to sterol loading. Our results indicate that sterol-induced effects on ion channel gating directly target the pore and do not act via the VSD.
Collapse
Affiliation(s)
- Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Pal Pap
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Ferenc Papp
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Maria Peter
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged H-6726, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., Illatos u. 7, Budapest H-1097, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary.
| |
Collapse
|
25
|
Stereospecific Interactions of Cholesterol in a Model Cell Membrane: Implications for the Membrane Dipole Potential. J Membr Biol 2018; 251:507-519. [DOI: 10.1007/s00232-018-0016-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
|