1
|
Moreews M, Karlsson MCI. Endoplasmic reticulum stress: A key player in immune cell regulation and autoimmune disorders. Semin Immunol 2025; 78:101954. [PMID: 40267701 DOI: 10.1016/j.smim.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.
Collapse
Affiliation(s)
- Marion Moreews
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
2
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
3
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
4
|
Hazari Y, Urra H, Garcia Lopez VA, Diaz J, Tamburini G, Milani M, Pihan P, Durand S, Aprahamia F, Baxter R, Huang M, Dong XC, Vihinen H, Batista-Gonzalez A, Godoy P, Criollo A, Ratziu V, Foufelle F, Hengstler JG, Jokitalo E, Bailly-Maitre B, Maiers JL, Plate L, Kroemer G, Hetz C. The endoplasmic reticulum stress sensor IRE1 regulates collagen secretion through the enforcement of the proteostasis factor P4HB/PDIA1 contributing to liver damage and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.538835. [PMID: 37205565 PMCID: PMC10187203 DOI: 10.1101/2023.05.02.538835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Collagen is one the most abundant proteins and the main cargo of the secretory pathway, contributing to hepatic fibrosis and cirrhosis due to excessive deposition of extracellular matrix. Here we investigated the possible contribution of the unfolded protein response, the main adaptive pathway that monitors and adjusts the protein production capacity at the endoplasmic reticulum, to collagen biogenesis and liver disease. Genetic ablation of the ER stress sensor IRE1 reduced liver damage and diminished collagen deposition in models of liver fibrosis triggered by carbon tetrachloride (CCl 4 ) administration or by high fat diet. Proteomic and transcriptomic profiling identified the prolyl 4-hydroxylase (P4HB, also known as PDIA1), which is known to be critical for collagen maturation, as a major IRE1-induced gene. Cell culture studies demonstrated that IRE1 deficiency results in collagen retention at the ER and altered secretion, a phenotype rescued by P4HB overexpression. Taken together, our results collectively establish a role of the IRE1/P4HB axis in the regulation of collagen production and its significance in the pathogenesis of various disease states.
Collapse
|
5
|
Huang Z, Zheng X, Chen Z, Zheng Z, Yao D, Yang S, Zhang Y, Aweya JJ. Modulation of SREBP Expression and Fatty Acid Levels by Bacteria-Induced ER Stress Is Mediated by Hemocyanin in Penaeid Shrimp. Mar Drugs 2023; 21:md21030164. [PMID: 36976213 PMCID: PMC10055750 DOI: 10.3390/md21030164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Many environmental and pathogenic insults induce endoplasmic reticulum (ER) stress in animals, especially in aquatic ecosystems, where these factors are crucial for life. In penaeid shrimp, pathogens and environmental stressors induce hemocyanin expression, but the involvement of hemocyanin in ER stress response is unknown. We demonstrate that in response to pathogenic bacteria (Vibrio parahaemolyticus and Streptococcus iniae), hemocyanin, ER stress proteins (Bip, Xbp1s, and Chop), and sterol regulatory element binding protein (SREBP) are induced to alter fatty acid levels in Penaeus vannamei. Interestingly, hemocyanin interacts with ER stress proteins to modulate SREBP expression, while ER stress inhibition with 4-Phenylbutyric acid or hemocyanin knockdown attenuates the expression of ER stress proteins, SREBP, and fatty acid levels. Contrarily, hemocyanin knockdown followed by tunicamycin treatment (ER stress activator) increased their expression. Thus, hemocyanin mediates ER stress during pathogen challenge, which consequently modulates SREBP to regulate the expression of downstream lipogenic genes and fatty acid levels. Our findings reveal a novel mechanism employed by penaeid shrimp to counteract pathogen-induced ER stress.
Collapse
Affiliation(s)
- Zishu Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zeyan Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Defu Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shen Yang
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: (Y.Z.); (J.J.A.); Tel.: +86-13615050594 (J.J.A.); +86-754-86502580 (Y.L.Z.)
| | - Jude Juventus Aweya
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: (Y.Z.); (J.J.A.); Tel.: +86-13615050594 (J.J.A.); +86-754-86502580 (Y.L.Z.)
| |
Collapse
|
6
|
Yan B, Chen L, Wang Y, Zhang J, Zhao H, Hua Q, Pei S, Yue Z, Liang H, Zhang H. Preventive Effect of Apple Polyphenol Extract on High-Fat Diet-Induced Hepatic Steatosis in Mice through Alleviating Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3172-3180. [PMID: 35227062 DOI: 10.1021/acs.jafc.1c07733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, the protective effect of apple polyphenol extract (APE) on hepatic steatosis was investigated. Thirty-two C57BL/6J mice were assigned randomly to control group, hepatic steatosis group, lovastatin group, and APE group. After 8 weeks of intervention, APE supplementation markedly decreased the body weight gain, liver weight, liver index, epididymal adipose weight, epididymal adipose index, serum, and hepatic lipid levels. Hematoxylin and eosin staining revealed that APE supplementation alleviated histopathological changes of hepatic steatosis. Western blot revealed that APE downregulated the protein levels of GRP78, IRE1α, p-IRE1α, XBP1, PERK, p-PERK, p-eIF2α, ATF6, PPAR-γ, SREBP-1c, FAS, and ACC1. In conclusion, this study found that APE inhibited IRE1α-XBP1, PERK-eIF2α, and ATF6 signaling pathways to alleviate endoplasmic reticulum stress, thereby improving HFD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Bei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lei Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qinglian Hua
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shengjie Pei
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zihang Yue
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Lipid metabolism presents a targetable metabolic vulnerability in colorectal cancer (CRC). Lipid signatures and cancer-cell lipid requirements may serve as noninvasive diagnostic and prognostic biomarkers and as a therapeutic target, respectively. RECENT FINDINGS A growing body of new studies highlight the complexity of lipid metabolism in CRC. Cancer cells are able to utilize an alternative fatty acid desaturation pathway, underlining the metabolic plasticity of tumors. CRC tissue shows a robust triglyceride-species signature with prognostic value in CRC patients. Lipidomic analyses in germfree and colonized mice identify a unique lipid signature and suggest that bacteria inhibit metabolism of polyunsaturated fatty acids by blocking desaturase and elongase activities. Cellular stress responses, particularly the well characterized unfolded protein response, are involved in regulating lipid synthesis and homeostasis, and contribute to adaptation of the lipid environment. Together, lipid metabolism, the intestinal microbiota and cellular stress responses unarguably play crucial roles in CRC. SUMMARY A number of recent advances in our understanding of dysregulated lipid metabolism in CRC underline the importance of this research field. An improved knowledge of the complex interplay between lipid metabolism, cellular stress and the intestinal microbiota in the context of CRC may lead to novel therapeutic strategies.
Collapse
|
8
|
Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM. Regulation of lipid metabolism by the unfolded protein response. J Cell Mol Med 2021; 25:1359-1370. [PMID: 33398919 PMCID: PMC7875919 DOI: 10.1111/jcmm.16255] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the site of protein folding and secretion, Ca2+ storage and lipid synthesis in eukaryotic cells. Disruption to protein folding or Ca2+ homeostasis in the ER leads to the accumulation of unfolded proteins, a condition known as ER stress. This leads to activation of the unfolded protein response (UPR) pathway in order to restore protein homeostasis. Three ER membrane proteins, namely inositol‐requiring enzyme 1 (IRE1), protein kinase RNA‐like ER kinase (PERK) and activating transcription factor 6 (ATF6), sense the accumulation of unfolded/misfolded proteins and are activated, initiating an integrated transcriptional programme. Recent literature demonstrates that activation of these sensors can alter lipid enzymes, thus implicating the UPR in the regulation of lipid metabolism. Given the presence of ER stress and UPR activation in several diseases including cancer and neurodegenerative diseases, as well as the growing recognition of altered lipid metabolism in disease, it is timely to consider the role of the UPR in the regulation of lipid metabolism. This review provides an overview of the current knowledge on the impact of the three arms of the UPR on the synthesis, function and regulation of fatty acids, triglycerides, phospholipids and cholesterol.
Collapse
Affiliation(s)
- Matthieu Moncan
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-institute, University of Liège, Liège, Belgium
| | - Aitor Almanza
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|