1
|
Liu X, Ding L, Zhang A, Feng F, Zhou F, Wu Y. Dynamic characteristics of metabolism and small extracellular vesicles during malignant transformation of BEAS-2B cells induced by coal tar pitch extract. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126108. [PMID: 40154873 DOI: 10.1016/j.envpol.2025.126108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer poses a significant global burden with rising morbidity and mortality. Coal tar pitch-induced lung cancer is an occupational disease where early detection is crucial but challenging due to unclear pathogenesis. We established a malignant transformation model using BEAS-2B cells treated with coal tar pitch extract (CTPE). Macro- and micro-observations showed CTPE-induced alterations, including changes in cell morphology, enhanced proliferation and migration abilities, upregulated EGFR expression, modified levels of CYP1A1 and GSTM1 metabolizing enzymes, and a transition towards a mesenchymal phenotype. These findings strongly suggest that the cells have undergone malignant transformation. Metabolomics analysis revealed changes in 1120 metabolites, with 31 co-expressed, mainly in energy and amino acid metabolism. Small extracellular vesicles (SEVs) concentrations and EGFR levels were significantly altered. Correlation analysis identified a relationship between these biomarkers, implying their potential significance as early events in the initiation and progression of lung cancer. These findings provide valuable insights and a rationale for lung cancer screening and mechanistic investigations, thereby contributing to a deeper understanding of the disease.
Collapse
Affiliation(s)
- Xia Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Aiai Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Fang Zhou
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
3
|
Tu JB, Liu T, Li JF, Long J, Wang X, Liu WC, Gao XH. Global research trends and hotspots in metabolomics of osteosarcoma: a decade-spanning bibliometric and visualized analysis. Front Immunol 2024; 15:1463078. [PMID: 39445018 PMCID: PMC11496093 DOI: 10.3389/fimmu.2024.1463078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECT Osteosarcoma is a malignant tumor originating from the bones, commonly found in children and adolescents, especially in rapidly growing bone areas such as the knees and upper arms. In this study, we aim to delineate the evolution and convergence of research themes in osteosarcoma metabolomics over the past decade, identify major contributors, and forecast emerging trends that could direct future research efforts. METHOD The bibliometric method has been applied to systematically analyze the literature in the field of osteosarcoma metabolomics. The relevant literatures were collected from the Web of Science Core Collection, spanning from January 1, 2014, to December 31, 2023. Tools such as CiteSpace, Bibliometrix, and VOSviewer were used for the visual analysis of the collected literatures. The focused information includes institutions, journals, countries, authors, keywords, and citations. RESULT Various aspects in the field of osteosarcoma metabolism were analyzed. Shanghai Jiao Tong University has published the most papers in the past ten years, followed by Central South University and Zhejiang University. Among the sources, the international journal of molecular sciences publishes the most articles, and oncotarget is the journal with the highest H index. According to Bradford's law, there are 34 core journals identified. A total of 5501 authors participated in the creation of papers in this field. The distribution of authors follows Lotka`s Law, and 85.3% of authors have only one article. 46% of the corresponding authors are from China, but most of these corresponding authors are not good at international cooperation. China also has the largest number of publications, followed by the United States. It can be confirmed that China dominates this field. Among the keywords, "expression" is the keyword that has received the most attention in the past ten years. All keywords can be divided into 9 clusters. Based on the explosive words and hot topics each year, we speculate that future research will focus on the tumor microenvironment, molecular mechanisms and autophagy, targeted therapies and inhibitors. CONCLUSION In summary, this study comprehensively analyzed the current state of research in the field of osteosarcoma metabolism through bibliometric methods. The findings revealed the development trends and research hotspots in this field, which may provide valuable references for future research directions.
Collapse
Affiliation(s)
- Jun-Bo Tu
- Department of Orthopaedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Oethopaedics, Xinfeng County People's Hospital, Ganzhou, Jiangxi, China
| | - Tao Liu
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Jun-Feng Li
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Jian Long
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Xiu Wang
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Wen-Cai Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Hua Gao
- Department of Orthopaedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Pontes JGDM, Jadranin M, Assalin MR, Quintero Escobar M, Stanisic D, Costa TBBC, van Helvoort Lengert A, Boldrini É, Morini da Silva SR, Vidal DO, Liu LHB, Maschietto M, Tasic L. Lipidomics by Nuclear Magnetic Resonance Spectroscopy and Liquid Chromatography-High-Resolution Mass Spectrometry in Osteosarcoma: A Pilot Study. Metabolites 2024; 14:416. [PMID: 39195512 DOI: 10.3390/metabo14080416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer is a complex disease that can also affect the younger population; however, it is responsible for a relatively high mortality rate of children and youth, especially in low- and middle-income countries (LMICs). Besides that, lipidomic studies in this age range are scarce. Therefore, we analyzed blood serum samples from young patients (12 to 35 years) with bone sarcoma (osteosarcoma) and compared their lipidomics to the ones from the control group of samples, named healthy control (HC group), using NMR and LC-MS techniques. Furthermore, differences in the lipidomic profiles between OS patients with and without metastasis indicate higher glycerophosphocholine (GPC) and glycerophospholipid (GPL) levels in osteosarcoma and increased cholesterol, choline, polyunsaturated fatty acids (PUFAs), and glycerols during the metastasis. These differences, detected in the peripheral blood, could be used as biomarkers for liquid biopsy.
Collapse
Affiliation(s)
| | - Milka Jadranin
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Márcia Regina Assalin
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
- Embrapa Environment, Jaguariúna 13820-000, Brazil
| | - Melissa Quintero Escobar
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Danijela Stanisic
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | | | | | - Érica Boldrini
- Barretos Children's Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Leticia Huan Bacellar Liu
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil
| | - Ljubica Tasic
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| |
Collapse
|
5
|
Li S, Zheng Z, Wang B. Machine learning survival prediction using tumor lipid metabolism genes for osteosarcoma. Sci Rep 2024; 14:12934. [PMID: 38839983 PMCID: PMC11153634 DOI: 10.1038/s41598-024-63736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Osteosarcoma is a primary malignant tumor that commonly affects children and adolescents, with a poor prognosis. The existence of tumor heterogeneity leads to different molecular subtypes and survival outcomes. Recently, lipid metabolism has been identified as a critical characteristic of cancer. Therefore, our study aims to identify osteosarcoma's lipid metabolism molecular subtype and develop a signature for survival outcome prediction. Four multicenter cohorts-TARGET-OS, GSE21257, GSE39058, and GSE16091-were amalgamated into a unified Meta-Cohort. Through consensus clustering, novel molecular subtypes within Meta-Cohort patients were delineated. Subsequent feature selection processes, encompassing analyses of differentially expressed genes between subtypes, univariate Cox analysis, and StepAIC, were employed to pinpoint biomarkers related to lipid metabolism in TARGET-OS. We selected the most effective algorithm for constructing a Lipid Metabolism-Related Signature (LMRS) by utilizing four machine-learning algorithms reconfigured into ten unique combinations. This selection was based on achieving the highest concordance index (C-index) in the test cohort of GSE21257, GSE39058, and GSE16091. We identified two distinct lipid metabolism molecular subtypes in osteosarcoma patients, C1 and C2, with significantly different survival rates. C1 is characterized by increased cholesterol, fatty acid synthesis, and ketone metabolism. In contrast, C2 focuses on steroid hormone biosynthesis, arachidonic acid, and glycerolipid and linoleic acid metabolism. Feature selection in the TARGET-OS identified 12 lipid metabolism genes, leading to a model predicting osteosarcoma patient survival. The LMRS, based on the 12 identified genes, consistently accurately predicted prognosis across TARGET-OS, testing cohorts, and Meta-Cohort. Incorporating 12 published signatures, LMRS showed robust and significantly superior predictive capability. Our results offer a promising tool to enhance the clinical management of osteosarcoma, potentially leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, Hunan, China
| | - Zhenzhong Zheng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
7
|
Piontkowski ZT, Hayes DC, McDonald A, Pattison K, Butler KS, Timlin JA. Label-Free, Noninvasive Bone Cell Classification by Hyperspectral Confocal Raman Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:147-155. [PMID: 38425368 PMCID: PMC10900511 DOI: 10.1021/cbmi.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
Characterizing and identifying cells in multicellular in vitro models remain a substantial challenge. Here, we utilize hyperspectral confocal Raman microscopy and principal component analysis coupled with linear discriminant analysis to form a label-free, noninvasive approach for classifying bone cells and osteosarcoma cells. Through the development of a library of hyperspectral Raman images of the K7M2-wt osteosarcoma cell lines, 7F2 osteoblast cell lines, RAW 264.7 macrophage cell line, and osteoclasts induced from RAW 264.7 macrophages, we built a linear discriminant model capable of correctly identifying each of these cell types. The model was cross-validated using a k-fold cross validation scheme. The results show a minimum of 72% accuracy in predicting cell type. We also utilize the model to reconstruct the spectra of K7M2 and 7F2 to determine whether osteosarcoma cancer cells and normal osteoblasts have any prominent differences that can be captured by Raman. We find that the main differences between these two cell types are the prominence of the β-sheet protein secondary structure in K7M2 versus the α-helix protein secondary structure in 7F2. Additionally, differences in the CH2 deformation Raman feature highlight that the membrane lipid structure is different between these cells, which may affect the overall signaling and functional contrasts. Overall, we show that hyperspectral confocal Raman microscopy can serve as an effective tool for label-free, nondestructive cellular classification and that the spectral reconstructions can be used to gain deeper insight into the differences that drive different functional outcomes of different cells.
Collapse
Affiliation(s)
- Zachary T. Piontkowski
- Sandia
National Laboratories, Department of Applied
Optics and Plasma Sciences, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Dulce C. Hayes
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Anthony McDonald
- Sandia
National Laboratories, Department of Applied
Optics and Plasma Sciences, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Kalista Pattison
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Kimberly S. Butler
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Jerilyn A. Timlin
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
8
|
Kimura N, Tanaka Y, Yamanishi Y, Takahashi A, Sakuma S. Nanoparticles Based on Natural Lipids Reveal Extent of Impacts of Designed Physical Characteristics on Biological Functions. ACS NANO 2024; 18:1432-1448. [PMID: 38165131 DOI: 10.1021/acsnano.3c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nanoparticles based on lipids (LNPs) are essential in pharmaceuticals and intercellular communication, and their design parameters span a diverse range of molecules and assemblies. In bridging the gap in insight between extracellular vesicles (EVs) and synthetic LNPs, one challenge is understanding their in-cell/in-body behavior when simultaneously assessing more than one physical characteristic. Herein, we demonstrate comprehensive evaluation of LNP behavior by using LNPs based on natural lipids (N-LNPs) with designed physical characteristics: size tuned using microfluidic methods, surface fluidity designed based on EV components, and stiffness tuned using biomolecules. We produce 12 types of N-LNPs having different physical characteristics─two sizes, three membrane fluidities, and two stiffnesses for in vitro evaluation─and evaluate cellular uptake vitality and endocytic pathways of N-LNPs based on the physical characteristics of N-LNPs. To reveal the extent of the impact of the predesigned physical characteristics of N-LNPs on cellular uptakes in vivo, we also carried out animal experiments with four types of N-LNPs having different sizes and fluidities. The use of N-LNPs has helped to clarify the extent of the impact of inextricably related, designed physical characteristics on transportation and provided a bidirectional guidepost for the streamlined design and understanding of the biological functions of LNPs.
Collapse
Affiliation(s)
- Niko Kimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoko Tanaka
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Shinya Sakuma
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Luo Y, Sun M, Tan L, Li T, Min L. Nano-Based Drug Delivery Systems: Potential Developments in the Therapy of Metastatic Osteosarcoma-A Narrative Review. Pharmaceutics 2023; 15:2717. [PMID: 38140058 PMCID: PMC10747574 DOI: 10.3390/pharmaceutics15122717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Osteosarcoma, a predominant malignant bone tumor, poses significant challenges due to its high metastatic and recurrent nature. Although various therapeutic strategies are currently in use, they often inadequately target osteosarcoma metastasis. This review focuses on the potential of nanoscale drug delivery systems to bridge this clinical gap. It begins with an overview of the molecular mechanisms underlying metastatic osteosarcoma, highlighting the limitations of existing treatments. The review then transitions to an in-depth examination of nanoscale drug delivery technologies, emphasizing their potential to enhance drug bioavailability and reduce systemic toxicity. Central to this review is a discussion of recent advancements in utilizing nanotechnology for the potential intervention of metastatic osteosarcoma, with a critical analysis of several preclinical studies. This review aims to provide insights into the potential applications of nanotechnology in metastatic osteosarcoma therapy, setting the stage for future clinical breakthroughs and innovative cancer treatments.
Collapse
Affiliation(s)
- Yuanrui Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Ren Z, Wang S, Li B, Huang H, Zhang H, Yang Z, Tian X. Hsa_circ_0000073 promotes lipid synthesis of osteosarcoma through hsa-miR-1184/ FADS2 pathway. Cell Signal 2023; 110:110829. [PMID: 37506860 DOI: 10.1016/j.cellsig.2023.110829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Osteosarcoma is one of the leading causes of cancer mortality in children and teenagers. Dysregulation of lipid metabolism has been reported to involve tumor progression. Our previous evidence has revealed that circular RNA hsa_circ_0000073 enhanced the proliferation and metastasis of osteosarcoma cells. However, the effect of hsa_circ_0000073 on the lipid metabolism of osteosarcoma remains unclear. In this paper, we focused on the effect of hsa_circ_0000073 in lipid metabolism and investigated a network among hsa_circ_0000073/ miR-1184 /FADS2 in osteosarcoma, which provides a new idea to treat osteosarcoma. METHODS The osteosarcoma and its adjacent tissue samples were collected for further validation. qRT-PCR or western blot was employed to detect the expression of hsa_circ_0000073, miR-1184, and FADS2 in OS cells and tissues. Microarray analysis, mass spectrometry, metabolomics analysis, and bioinformatics analysis were used to explore the potential function and target gene of hsa_circ_0000073. Oil red o, Nile red staining, and Triglyceride content assay were adopted to confirm the effect of hsa_circ_0000073 on the lipid metabolism of OS. Dual-luciferase reporter assays and RNA immunoprecipitation were applied to construct and validate the ceRNA network of hsa_circ_0000073. The xenograft mouse model was taken to verify the effect of hsa_circ_0000073 on lipid metabolism in vivo. RESULTS The results confirmed that hsa_circ_0000073 was raised in the tumor tissues more than its adjacent tissue. Moreover, the higher expression of hsa_circ_0000073 was associated with worse survival rates, advanced clinical stage, large tumor size, and metastasis. After hsa_circ_0000073 silence, the gene chip and metabolomics result implied that hsa_circ_0000073 expression is positively correlated with a 91 genes signature and 78 metabolites in MG-63 and Saos-2 cells. The bioinformatics analysis indicated that hsa_circ_0000073 might involve in the biological processes of lipid metabolism. Further loss and gain of function experiments affirmed that hsa_circ_0000073 could impact cell lipid synthesis. Mechanically, hsa_circ_0000073 favored the expression of FADS2 genes by sponging miR-1184. Consistent with these observations, silencing of hsa_circ_0000073 inhibited lipid synthesis in vivo xenograft mouse model. CONCLUSIONS Our study revealed that hsa_circ_0000073 contributed to the lipid synthesis of osteosarcoma by decreasing the expression of miR-1184, thereby increasing FADS2, which provides new insights into treating osteosarcoma.
Collapse
Affiliation(s)
- Zhijing Ren
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuhui Wang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hua Zhang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Xiaobin Tian
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
11
|
Louie AY, Kim JS, Drnevich J, Dibaeinia P, Koito H, Sinha S, McKim DB, Soto-Diaz K, Nowak RA, Das A, Steelman AJ. Influenza A virus infection disrupts oligodendrocyte homeostasis and alters the myelin lipidome in the adult mouse. J Neuroinflammation 2023; 20:190. [PMID: 37596606 PMCID: PMC10439573 DOI: 10.1186/s12974-023-02862-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Recent data suggest that myelin may be altered by physiological events occurring outside of the central nervous system, which may cause changes to cognition and behavior. Similarly, peripheral infection by non-neurotropic viruses is also known to evoke changes to cognition and behavior. METHODS Mice were inoculated with saline or influenza A virus. Bulk RNA-seq, lipidomics, RT-qPCR, flow cytometry, immunostaining, and western blots were used to determine the effect of infection on OL viability, protein expression and changes to the lipidome. To determine if microglia mediated infection-induced changes to OL homeostasis, mice were treated with GW2580, an inhibitor of microglia activation. Additionally, conditioned medium experiments using primary glial cell cultures were also used to test whether secreted factors from microglia could suppress OL gene expression. RESULTS Transcriptomic and RT-qPCR analyses revealed temporal downregulation of OL-specific transcripts with concurrent upregulation of markers characteristic of cellular stress. OLs isolated from infected mice had reduced cellular expression of myelin proteins compared with those from saline-inoculated controls. In contrast, the expression of these proteins within myelin was not different between groups. Similarly, histological and immunoblotting analysis performed on various brain regions indicated that infection did not alter OL viability, but increased expression of a cellular stress marker. Shot-gun lipidomic analysis revealed that infection altered the lipid profile within the prefrontal cortex as well as in purified brain myelin and that these changes persisted after recovery from infection. Treatment with GW2580 during infection suppressed the expression of genes associated with glial activation and partially restored OL-specific transcripts to baseline levels. Finally, conditioned medium from activated microglia reduced OL-gene expression in primary OLs without altering their viability. CONCLUSIONS These findings show that peripheral respiratory viral infection with IAV is capable of altering OL homeostasis and indicate that microglia activation is likely involved in the process.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 3306, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, 315 Fernst Dr. NW, Atlanta, GA, 30332, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 Veterinary Medicine Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
| | - Hisami Koito
- Department of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295, Japan
| | - Saurabh Sinha
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Daniel B McKim
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Katiria Soto-Diaz
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
| | - Romana A Nowak
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Aditi Das
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 3306, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, 315 Fernst Dr. NW, Atlanta, GA, 30332, USA.
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 Veterinary Medicine Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA.
| | - Andrew J Steelman
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA.
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Chatree K, Sriboonaied P, Phetkong C, Wattananit W, Chanchao C, Charoenpanich A. Distinctions in bone matrix nanostructure, composition, and formation between osteoblast-like cells, MG-63, and human mesenchymal stem cells, UE7T-13. Heliyon 2023; 9:e15556. [PMID: 37153435 PMCID: PMC10160763 DOI: 10.1016/j.heliyon.2023.e15556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Osteoblast-like cells and human mesenchymal stem cells (hMSCs) are frequently employed as osteoprogenitor cell models for evaluating novel biomaterials in bone healing and tissue engineering. In this study, the characterization of UE7T-13 hMSCs and MG-63 human osteoblast-like cells was examined. Both cells can undergo osteogenesis and produce calcium extracellular matrix; however, calcium nodules produced by MG-63 lacked a central mass and appeared flatter than UE7T-13. The absence of growing calcium nodules in MG-63 was discovered by SEM-EDX to be associated with the formation of alternating layers of cells and calcium extracellular matrix. The nanostructure and composition analysis showed that UE7T-13 had a finer nanostructure of calcium nodules with a higher calcium/phosphate ratio than MG-63. Both cells expressed high intrinsic levels of collagen type I alpha 1 chain, while only UE7T-13 expressed high levels of alkaline phosphatase, biomineralization associated (ALPL). High ALP activity in UE7T-13 was not further enhanced by osteogenic induction, but in MG-63, low intrinsic ALP activity was greatly induced by osteogenic induction. These findings highlight the differences between the two immortal osteoprogenitor cell lines, along with some technical notes that should be considered while selecting and interpreting the pertinent in vitro model.
Collapse
Affiliation(s)
- Kamonwan Chatree
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Chinnatam Phetkong
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Witoon Wattananit
- Scientific and Technological Equipment Centre, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|
14
|
Sveeggen TM, Abbey CA, Smith RL, Salinas ML, Chapkin RS, Bayless KJ. Annexin A2 modulates phospholipid membrane composition upstream of Arp2 to control angiogenic sprout initiation. FASEB J 2023; 37:e22715. [PMID: 36527391 PMCID: PMC10586062 DOI: 10.1096/fj.202201088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The intersection of protein and lipid biology is of growing importance for understanding how cells address structural challenges during adhesion and migration. While protein complexes engaged with the cytoskeleton play a vital role, support from the phospholipid membrane is crucial for directing localization and assembly of key protein complexes. During angiogenesis, dramatic cellular remodeling is necessary for endothelial cells to shift from a stable monolayer to invasive structures. However, the molecular dynamics between lipids and proteins during endothelial invasion are not defined. Here, we utilized cell culture, immunofluorescence, and lipidomic analyses to identify a novel role for the membrane binding protein Annexin A2 (ANXA2) in modulating the composition of specific membrane lipids necessary for cortical F-actin organization and adherens junction stabilization. In the absence of ANXA2, there is disorganized cortical F-actin, reduced junctional Arp2, excess sprout initiation, and ultimately failed sprout maturation. Furthermore, we observed reduced filipin III labeling of membrane cholesterol in cells with reduced ANXA2, suggesting there is an alteration in phospholipid membrane dynamics. Lipidomic analyses revealed that 42 lipid species were altered with loss of ANXA2, including an accumulation of phosphatidylcholine (16:0_16:0). We found that supplementation of phosphatidylcholine (16:0_16:0) in wild-type endothelial cells mimicked the ANXA2 knock-down phenotype, indicating that ANXA2 regulated the phospholipid membrane upstream of Arp2 recruitment and organization of cortical F-actin. Altogether, these data indicate a novel role for ANXA2 in coordinating events at endothelial junctions needed to initiate sprouting and show that proper lipid modulation is a critical component of these events.
Collapse
Affiliation(s)
- Timothy M. Sveeggen
- Texas A&M Health Science Center, Texas, Bryan, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, Texas, USA
| | | | | | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
15
|
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab 2022; 34:1675-1699. [PMID: 36261043 DOI: 10.1016/j.cmet.2022.09.023] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028 Barcelona, Spain.
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
16
|
Lai HT, Naumova N, Marchais A, Gaspar N, Geoerger B, Brenner C. Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma. Front Cell Dev Biol 2022; 10:948097. [PMID: 36072341 PMCID: PMC9441498 DOI: 10.3389/fcell.2022.948097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is a pediatric malignant bone tumor that predominantly affects adolescent and young adults. It has high risk for relapse and over the last four decades no improvement of prognosis was achieved. It is therefore crucial to identify new drug candidates for OS treatment to combat drug resistance, limit relapse, and stop metastatic spread. Two acquired hallmarks of cancer cells, mitochondria-related regulated cell death (RCD) and metabolism are intimately connected. Both have been shown to be dysregulated in OS, making them attractive targets for novel treatment. Promising OS treatment strategies focus on promoting RCD by targeting key molecular actors in metabolic reprogramming. The exact interplay in OS, however, has not been systematically analyzed. We therefore review these aspects by synthesizing current knowledge in apoptosis, ferroptosis, necroptosis, pyroptosis, and autophagy in OS. Additionally, we outline an overview of mitochondrial function and metabolic profiles in different preclinical OS models. Finally, we discuss the mechanism of action of two novel molecule combinations currently investigated in active clinical trials: metformin and the combination of ADI-PEG20, Docetaxel and Gemcitabine.
Collapse
Affiliation(s)
- Hong Toan Lai
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Nataliia Naumova
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Gaspar
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l’oncogénèse pour de nouvelles approches thérapeutiques, Université Paris-Saclay, Villejuif, France
- *Correspondence: Catherine Brenner,
| |
Collapse
|
17
|
Leitner N, Hlavatý J, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I. Lipid droplets and perilipins in canine osteosarcoma. Investigations on tumor tissue, 2D and 3D cell culture models. Vet Res Commun 2022; 46:1175-1193. [PMID: 35834072 DOI: 10.1007/s11259-022-09975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Lipid droplets were identified as important players in biological processes of various tumor types. With emphasis on lipid droplet-coating proteins (perilipins, PLINs), this study intended to shed light on the presence and formation of lipid droplets in canine osteosarcoma. For this purpose, canine osteosarcoma tissue samples (n = 11) were analyzed via immunohistochemistry and electron microscopy for lipid droplets and lipid droplet-coating proteins (PLINs). Additionally, we used the canine osteosarcoma cell lines D-17 and COS4288 in 2D monolayer and 3D spheroid (cultivated for 7, 14, and 21 days) in vitro models, and further analyzed the samples by means of histochemistry, immunofluorescence, molecular biological techniques (RT-qPCR, Western Blot) and electron microscopical imaging. Lipid droplets, PLIN2, and PLIN3 were detected in osteosarcoma tissue samples as well as in 2D and 3D cultivated D-17 and COS4288 cells. In spheroids, specific distribution patterns of lipid droplets and perilipins were identified, taking into consideration cell line specific zonal apportionment. Upon external lipid supplementation (oleic acid), a rise of lipid droplet amount accompanied with an increase of PLIN2 expression was observed. Detailed electron microscopical analyzes revealed that lipid droplet sizes in tumor tissue were comparable to that of 3D spheroid models. Moreover, the biggest lipid droplets were found in the central zone of the spheroids at all sampling time-points, reaching their maximum size at 21 days. Thus, the 3D spheroids can be considered as a relevant in vitro model for further studies focusing on lipid droplets biology and function in osteosarcoma.
Collapse
Affiliation(s)
- N Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - J Hlavatý
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - R Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - S Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - A Fuchs-Baumgartinger
- Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria. .,VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
18
|
Yan Y, Wang J, Huang D, Lv J, Li H, An J, Cui X, Zhao H. Plasma lipidomics analysis reveals altered lipids signature in patients with osteonecrosis of the femoral head. Metabolomics 2022; 18:14. [PMID: 35147763 DOI: 10.1007/s11306-022-01872-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Although studies have established a link between lipid metabolism disorder and osteonecrosis of the femoral head (ONFH), the characteristics of the circulating lipidome signature of ONFH have not yet been investigated and need to be explored. OBJECTIVES We aimed to explore the plasma lipidome signatures in patients with ONFH, and to identify specific lipid biomarkers of ONFH. METHODS In this study, a comprehensive detection and analysis of plasma lipidomics was conducted in clinical human cohort, including 32 healthy normal control (NC) subjects and 91 ONFH patients in different subgroups [alcohol-induced ONFH (AONFH), steroid-induced ONFH (SONFH), and traumatic-induced ONFH (TONFH)] or at different disease stages (stage I, II, III and IV of ONFH) using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS Overall, the plasma lipidome profile differs between ONFH and NC samples. Lipidome signature including 22 common differentially expressed lipids (DELs) in all three subgroups (variable importance in projection > 1, P < 0.05, fold change > 1.5 or < 0.67, compared to the NC group) was identified. Besides, the subtype-specific lipidome profiles for each ONFH subgroup were also analyzed. Generally, the AONFH subgroup has the largest number of DELs, and the plasma levels of triacylglycerol lipid compounds increased obviously in the AONFH samples. In the subgroup of SONFH, the relative abundance of lipid 4-Aminobenzoic acid increased significantly with changes in the expression of several of its interactive genes. We have identified that 9 stage-positive and 2 stage-negative lipids may function as novel biomarkers predicting the progression of ONFH. CONCLUSION Our study presents an overview of the phenotype-related plasma lipidome signature of patients with ONFH. The results will provide insight into the mechanisms underlying the metabolism of lipids in the pathogenesis and progression of ONFH and help identify novel lipids biomarkers or disease diagnosis and treatment targets.
Collapse
Affiliation(s)
- Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing Lv
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaojian Cui
- Department of Radiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Heping Zhao
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
19
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Liu J, Li T, Pei W, Zhao Y, Zhang X, Shi X, Li Y, Xu W. Lipidomics reveals the dysregulated ceramide metabolism in oxidized low-density lipoprotein-induced macrophage-derived foam cell. Biomed Chromatogr 2021; 36:e5297. [PMID: 34893994 DOI: 10.1002/bmc.5297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis (AS) is associated with increasing lipid peroxidation. Oxidative modification of low-density lipoproteins (ox-LDL) is one most important factors contributing to the pathogenesis and clinical features of AS. The lipid composition influenced by ox-LDL is not known clearly. In this work, a UHPLC/Orbitrap MS-based lipidomics approach integrated pathway analysis was performed to advance understanding of the lipid composition and feature pathway in an ox-LDL-induced foamy macrophage cell. In the lipid metabolic profiling, 196 lipid species from 15 (sub)classes were identified. Lipid profiling indicated that increasing ox-LDL caused lipid metabolic alternations, manifesting as phospholipids being down-regulated and sphingolipids being up-regulated. Pathway analysis explored glycerophospholipid and sphingolipid metabolism, which was involved in atherogenic changes. Notably, dysregulated ceramide metabolism was a typical feature of foamy cell formation. qRT-PCR analysis was conducted to explore the differentially expressed genes. It indicated that ceramide metabolic balance might be disordered, performing higher synthesis and lower hydrolysis, with the ratio of SMPD1/SGMS2 being significantly up-regulated (p < 0.05) in the ox-LDL induced group. Our work offers a comprehensive understanding of macrophage-derived foam cells and screen feature pathways associated with foamy cell formation, which provides a reference for the clinic diagnosis of AS and drug interventions.
Collapse
Affiliation(s)
- Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxuan Pei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiujia Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanping Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 2021; 21:753-766. [PMID: 34417571 DOI: 10.1038/s41568-021-00388-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.
Collapse
Affiliation(s)
- Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
23
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Varela-López A, Vera-Ramírez L, Giampieri F, Navarro-Hortal MD, Forbes-Hernández TY, Battino M, Quiles JL. The central role of mitochondria in the relationship between dietary lipids and cancer progression. Semin Cancer Biol 2021; 73:86-100. [DOI: 10.1016/j.semcancer.2021.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022]
|
25
|
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers (Basel) 2021; 13:cancers13123044. [PMID: 34207243 PMCID: PMC8233868 DOI: 10.3390/cancers13123044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histological subtypes with clinical and histopathological characteristics which are not always distinct. One of the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could help clinicians provide more effective clinical management. Abstract Soft tissue sarcomas (STSs) are a heterogeneous group of rare tumors. Although constituting only 1% of all human malignancies, STSs represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. Over 100 histologic subtypes have been characterized to date (occurring predominantly in the trunk, extremity, and retroperitoneum), and many more are being discovered due to molecular profiling. STS mortality remains high, despite adjuvant chemotherapy. New prognostic stratification markers are needed to help identify patients at risk of recurrence and possibly apply more intensive or novel treatments. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the most relevant cellular, molecular and metabolic biomarkers for STS, and highlight advances in STS-related biomarker research.
Collapse
Affiliation(s)
- Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Correspondence:
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Domenico Campanacci
- Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| |
Collapse
|
26
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune-associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Peter J. Nelson
- Medical Clinic and Policlinic IVLudwig‐Maximilian‐University (LMU)MunichGermany
| | - Jiahui Li
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Chao Wu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Christiane Bruns
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Yue Zhao
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
27
|
Cortini M, Armirotti A, Columbaro M, Longo DL, Di Pompo G, Cannas E, Maresca A, Errani C, Longhi A, Righi A, Carelli V, Baldini N, Avnet S. Exploring Metabolic Adaptations to the Acidic Microenvironment of Osteosarcoma Cells Unveils Sphingosine 1-Phosphate as a Valuable Therapeutic Target. Cancers (Basel) 2021; 13:cancers13020311. [PMID: 33467731 PMCID: PMC7830496 DOI: 10.3390/cancers13020311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary By studying the role of tumor acidosis in osteosarcoma, we have identified a novel lipid signaling pathway that is selectively activated in acid-induced highly metastatic cell subpopulation. Furthermore, when combined to low-serine/glycine diet, the targeting of this acid-induced lipid pathway by the FDA-approved drug FTY720 significantly impaired tumor growth. This new knowledge will provide a giant leap in the understanding of the molecular mechanisms responsible for sarcoma relapses and metastasis. Finally, we paved the way to the recognition of a novel biomarker, as our data provided evidence of significantly high circulating levels in the serum of osteosarcoma patients of S1P, a lipid member of the identified acid-driven metabolic pathway. Abstract Acidity is a key player in cancer progression, modelling a microenvironment that prevents immune surveillance and enhances invasiveness, survival, and drug resistance. Here, we demonstrated in spheroids from osteosarcoma cell lines that the exposure to acidosis remarkably caused intracellular lipid droplets accumulation. Lipid accumulation was also detected in sarcoma tissues in close proximity to tumor area that express the acid-related biomarker LAMP2. Acid-induced lipid droplets-accumulation was not functional to a higher energetic request, but rather to cell survival. As a mechanism, we found increased levels of sphingomyelin and secretion of the sphingosine 1-phosphate, and the activation of the associated sphingolipid pathway and the non-canonical NF-ĸB pathway, respectively. Moreover, decreasing sphingosine 1-phosphate levels (S1P) by FTY720 (Fingolimod) impaired acid-induced tumor survival and migration. As a confirmation of the role of S1P in osteosarcoma, we found S1P high circulating levels (30.8 ± 2.5 nmol/mL, n = 17) in the serum of patients. Finally, when we treated osteosarcoma xenografts with FTY720 combined with low-serine/glycine diet, both lipid accumulation (as measured by magnetic resonance imaging) and tumor growth were greatly inhibited. For the first time, this study profiles the lipidomic rearrangement of sarcomas under acidic conditions, suggesting the use of anti-S1P strategies in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Margherita Cortini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
| | - Marta Columbaro
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, 10135 Torino, Italy;
| | - Gemma Di Pompo
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Elena Cannas
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| | - Alessandra Maresca
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Costantino Errani
- Oncologic Orthopaedic Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Longhi
- Chemotherapy Unit for Musculoskeletal Tumors, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alberto Righi
- Anatomy and Pathological Histology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Nicola Baldini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Correspondence:
| | - Sofia Avnet
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| |
Collapse
|
28
|
Casati S, Giannasi C, Minoli M, Niada S, Ravelli A, Angeli I, Mergenthaler V, Ottria R, Ciuffreda P, Orioli M, Brini AT. Quantitative Lipidomic Analysis of Osteosarcoma Cell-Derived Products by UHPLC-MS/MS. Biomolecules 2020; 10:E1302. [PMID: 32917006 PMCID: PMC7563490 DOI: 10.3390/biom10091302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Changes in lipid metabolism are involved in several pathological conditions, such as cancer. Among lipids, eicosanoids are potent inflammatory mediators, synthesized from polyunsaturated fatty acids (PUFAs), which coexist with other lipid-derived ones, including endocannabinoids (ECs) and N-acylethanolamides (NAEs). In this work, a bioanalytical assay for 12 PUFAs/eicosanoids and 20 ECs/NAEs in cell culture medium and human biofluids was validated over a linear range of 0.1-2.5 ng/mL. A fast pretreatment method consisting of protein precipitation with acetonitrile followed by a double step liquid-liquid extraction was developed. The final extracts were injected onto a Kinetex ultra-high-performance liquid chromatography (UHPLC) XB-C18 column with a gradient elution of 0.1% formic acid in water and methanol/acetonitrile (5:1; v/v) mobile phase. Chromatographic separation was followed by detection with a triple-quadrupole mass spectrometer operating both in positive and negative ion-mode. A full validation was carried out in a small amount of cell culture medium and then applied to osteosarcoma cell-derived products. To the best of our knowledge, this is the first lipid profiling of bone tumor cell lines (SaOS-2 and MG-63) and their secretome. Our method was also partially validated in other biological matrices, such as serum and urine, ensuring its broad applicability as a powerful tool for lipidomic translational research.
Collapse
Affiliation(s)
- Sara Casati
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, 20133 Milan, Italy; (M.M.); (A.R.); (I.A.); (V.M.); (M.O.); (A.T.B.)
| | - Chiara Giannasi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.G.); (S.N.)
| | - Mauro Minoli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, 20133 Milan, Italy; (M.M.); (A.R.); (I.A.); (V.M.); (M.O.); (A.T.B.)
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.G.); (S.N.)
| | - Alessandro Ravelli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, 20133 Milan, Italy; (M.M.); (A.R.); (I.A.); (V.M.); (M.O.); (A.T.B.)
| | - Ilaria Angeli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, 20133 Milan, Italy; (M.M.); (A.R.); (I.A.); (V.M.); (M.O.); (A.T.B.)
| | - Veronica Mergenthaler
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, 20133 Milan, Italy; (M.M.); (A.R.); (I.A.); (V.M.); (M.O.); (A.T.B.)
| | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche “L.Sacco”, Università degli studi di Milano, 20157 Milan, Italy; (R.O.); (P.C.)
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche “L.Sacco”, Università degli studi di Milano, 20157 Milan, Italy; (R.O.); (P.C.)
| | - Marica Orioli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, 20133 Milan, Italy; (M.M.); (A.R.); (I.A.); (V.M.); (M.O.); (A.T.B.)
| | - Anna T. Brini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli studi di Milano, 20133 Milan, Italy; (M.M.); (A.R.); (I.A.); (V.M.); (M.O.); (A.T.B.)
- Dipartimento di Scienze Biomediche e Cliniche “L.Sacco”, Università degli studi di Milano, 20157 Milan, Italy; (R.O.); (P.C.)
| |
Collapse
|
29
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Integration of Serum Metabolomics into Clinical Assessment to Improve Outcome Prediction of Metastatic Soft Tissue Sarcoma Patients Treated with Trabectedin. Cancers (Basel) 2020; 12:cancers12071983. [PMID: 32708128 PMCID: PMC7409362 DOI: 10.3390/cancers12071983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Soft tissue sarcomas (STS) are a group of rare and heterogeneous cancers with few diagnostic or prognostic biomarkers. This metabolomics study aimed to identify new serum prognostic biomarkers to improve the prediction of overall survival in patients with metastatic STS. The study enrolled 24 patients treated with the same trabectedin regimen. The baseline serum metabolomics profile, targeted to 68 metabolites encompassing amino acids and bile acids pathways, was quantified by liquid chromatography-tandem mass spectrometry. Correlations between individual metabolomics profiles and overall survival were examined and a risk model to predict survival was built by Cox multivariate regression. The median overall survival of the studied patients was 13.0 months (95% CI, 5.6–23.5). Among all the metabolites investigated, only citrulline and histidine correlated significantly with overall survival. The best Cox risk prediction model obtained integrating metabolomics and clinical data, included citrulline, hemoglobin and patients’ performance status score. It allowed to distinguish patients into a high-risk group with a low median overall survival of 2.1 months and a low- to moderate-risk group with a median overall survival of 19.1 months (p < 0.0001). The results of this metabolomics translation study indicate that citrulline, an amino acid belonging to the arginine metabolism, represents an important metabolic signature that may contribute to explain the high inter-patients overall survival variability of STS patients. The risk prediction model based on baseline serum citrulline, hemoglobin and performance status may represent a new prognostic tool for the early classification of patients with metastatic STS, according to their overall survival expectancy.
Collapse
|
31
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Luo Y, Liu W, Tang P, Jiang D, Gu C, Huang Y, Gong F, Rong Y, Qian D, Chen J, Zhou Z, Zhao S, Wang J, Xu T, Wei Y, Yin G, Fan J, Cai W. miR-624-5p promoted tumorigenesis and metastasis by suppressing hippo signaling through targeting PTPRB in osteosarcoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:488. [PMID: 31829261 PMCID: PMC6907337 DOI: 10.1186/s13046-019-1491-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Background Accumulating evidence indicates that aberrant microRNA (miRNA) expression contributes to osteosarcoma progression. This study aimed to elucidate the association between miR-624-5p expression and osteosarcoma (OS) development and to investigate its underlying mechanism. Methods We analyzed GSE65071 from the GEO database and found miR-624-5p was the most upregulated miRNA. The expression of miR-624-5p and its specific target gene were determined in human OS specimens and cell lines by RT-PCR and western blot. The effects of miR-624-5p depletion or ectopic expression on OS proliferation, migration and invasion were evaluated in vitro using CCK-8 proliferation assay, colony formation assay, transwell assay, would-healing assay and 3D spheroid BME cell invasion assay respectively. We investigated in vivo effects of miR-624-5p using a mouse tumorigenicity model. Besides, luciferase reporter assays were employed to identify interactions between miR-624-5p and its specific target gene. Results miR-624-5p expression was upregulated in OS cells and tissues, and overexpressing miR-624-5p led to a higher malignant level of OS, including cell proliferation, migration and invasion in vitro and in vivo. Protein tyrosine phosphatase receptor type B (PTPRB) was negatively correlated with miR-624-5p expression in OS tissues. Using the luciferase reporter assay and Western blotting, PTPRB was confirmed as a downstream target of miR-624-5p. PTPRB restored the effects of miR-624-5p on OS migration and invasion. The Hippo signaling pathway was identified as being involved in the miR-624-5p/PTPRB axis. Conclusions In conclusion, our results suggest that miR-624-5p is a negative regulator of PTPRB and a risk factor for tumor metastasis in OS progression.
Collapse
Affiliation(s)
- Yongjun Luo
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Changjiang Gu
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yumin Huang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangyi Gong
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dingfei Qian
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Chen
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tao Xu
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yongzhong Wei
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jin Fan
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Weihua Cai
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
33
|
Xu X, Liu M. miR-522 stimulates TGF-β/Smad signaling pathway and promotes osteosarcoma tumorigenesis by targeting PPM1A. J Cell Biochem 2019; 120:18425-18434. [PMID: 31190351 DOI: 10.1002/jcb.29160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is identified as an aggressive malignancy of the skeletal system and normally occurs among young people. It is well accepted that microRNAs are implicated in biological activities of diverse tumors. Although miR-522 has been proved to elicit oncogenic properties in a wide range of human cancers, the physiological function and latent mechanism of miR-522 in OS tumorigenesis remain largely to be probed. In the current study, we certified that miR-522 was highly expressed in OS cells and presented carcinogenic function by contributing to cell proliferation, migration, and EMT progression whereas dampening cell apoptosis. In addition, miR-522 provoked TGF-β/Smad pathway through targeting PPM1A. Finally, the results of mechanism experiments elucidated that miR-522 stimulated TGF-β/Smad pathway to induce the development of OS via targeting PPM1A, which exposed that miR-522 may become a promising curative target for OS patients.
Collapse
Affiliation(s)
- Xiqiang Xu
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Mengmeng Liu
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|