1
|
Shamaprasad P, Nădăban A, Iacovella CR, Gooris GS, Bunge AL, Bouwstra JA, McCabe C. The phase behavior of skin-barrier lipids: A combined approach of experiments and simulations. Biophys J 2024; 123:3188-3204. [PMID: 39030908 PMCID: PMC11447553 DOI: 10.1016/j.bpj.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Skin barrier function is localized in its outermost layer, the stratum corneum (SC), which is comprised of corneocyte cells embedded in an extracellular lipid matrix containing ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). The unique structure and composition of this lipid matrix are important for skin barrier function. In this study, experiments and molecular dynamics simulation were combined to investigate the structural properties and phase behavior of mixtures containing nonhydroxy sphingosine CER (CER NS), CHOL, and FFA. X-ray scattering for mixtures with varying CHOL levels revealed the presence of the 5.4 nm short periodicity phase in the presence of CHOL. Bilayers in coarse-grained multilayer simulations of the same compositions contained domains with thicknesses of approximately 5.3 and 5.8 nm that are associated with elevated levels, respectively, of CER sphingosine chains with CHOL, and CER acyl chains with FFA chains. The prevalence of the thicker domain increased with decreasing CHOL content. This might correspond to a phase with ∼5.8 nm spacing observed by x-rays (other details unknown) in mixtures with lower CHOL content. Scissoring and stretching frequencies from Fourier transform infrared spectroscopy (FTIR) also indicate interaction between FFA and CER acyl chains and little interaction between CER acyl and CER sphingosine chains, which requires CER molecules to adopt a predominantly extended conformation. In the simulated systems, neighbor preferences of extended CER chains align more closely with the FTIR observations than those of CERs with hairpin ceramide chains. Both FTIR and atomistic simulations of reverse mapped multilayer membranes detect a hexagonal to fluid phase transition between 65 and 80°C. These results demonstrate the utility of a collaborative experimental and simulation effort in gaining a more comprehensive understanding of SC lipid membranes.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Nădăban A, Frame CO, El Yachioui D, Gooris GS, Dalgliesh RM, Malfois M, Iacovella CR, Bunge AL, McCabe C, Bouwstra JA. The Sphingosine and Phytosphingosine Ceramide Ratio in Lipid Models Forming the Short Periodicity Phase: An Experimental and Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13794-13809. [PMID: 38917358 PMCID: PMC11238587 DOI: 10.1021/acs.langmuir.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The lipids located in the outermost layer of the skin, the stratum corneum (SC), play a crucial role in maintaining the skin barrier function. The primary components of the SC lipid matrix are ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). They form two crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). In inflammatory skin conditions like atopic dermatitis and psoriasis, there are changes in the SC CER composition, such as an increased concentration of a sphingosine-based CER (CER NS) and a reduced concentration of a phytosphingosine-based CER (CER NP). In the present study, a lipid model was created exclusively forming the SPP, to examine whether alterations in the CER NS:CER NP molar ratio would affect the lipid organization. Experimental data were combined with molecular dynamics simulations of lipid models containing CER NS:CER NP at ratios of 1:2 (mimicking a healthy SC ratio) and 2:1 (observed in inflammatory skin diseases), mixed with CHOL and lignoceric acid as the FFA. The experimental findings show that the acyl chains of CER NS and CER NP and the FFA are in close proximity within the SPP unit cell, indicating that CER NS and CER NP adopt a linear conformation, similarly as observed for the LPP. Both the experiments and simulations indicate that the lamellar organization is the same for the two CER NS:CER NP ratios while the SPP NS:NP 1:2 model had a slightly denser hydrogen bonding network than the SPP NS:NP 2:1 model. The simulations show that this might be attributed to intermolecular hydrogen bonding with the additional hydroxide group on the headgroup of CER NP compared with CER NS.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
4
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Nădăban A, Gooris GS, Beddoes CM, Dalgliesh RM, Malfois M, Demé B, Bouwstra JA. The molecular arrangement of ceramides in the unit cell of the long periodicity phase of stratum corneum models shows a high adaptability to different ceramide head group structures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184324. [PMID: 38688405 DOI: 10.1016/j.bbamem.2024.184324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
The stratum corneum (SC) lipid matrix, composed primarily of ceramides (CERs), cholesterol and free fatty acids (FFA), has an important role for the skin barrier function. The presence of the long periodicity phase (LPP), a unique lamellar phase, is characteristic for the SC. Insight into the lipid molecular arrangement within the LPP unit cell is imperative for understanding the relationship between the lipid subclasses and the skin barrier function. In this study, the impact of the CER head group structure on the lipid arrangement and barrier functionality was investigated using lipid models forming the LPP. The results demonstrate that the positions of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), two essentials CER subclasses, are not influenced by the addition of another CER subclass (N-(tetracosanoyl)-dihydrosphingosine (CER NdS), N-(2R-hydroxy-tetracosanoyl)-sphingosine (CER AS) or D-(2R-hydroxy-tetracosanoyl)-phytosphingosine (CER AP)). However, differences are observed in the lipid organization and the hydrogen bonding network of the three different models. A similar localization of CER NP and CER NS is also observed in a more complex lipid model, with the CER subclass composition mimicking that of human SC. These studies show the adaptability and insensitivity of the LPP unit cell structure to changes in the lipid head group structures of the CER subclasses.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Carrer de la Llum 2-6, Cerdanyola del Vallès 08290, Barcelona, Spain
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333CC, the Netherlands.
| |
Collapse
|
6
|
Paraskevopoulos G, Fandrei F, Kumar Pratihast A, Paraskevopoulou A, Panoutsopoulou E, Opálka L, Singh Mithu V, Huster D, Vávrová K. Effects of imidazolium ionic liquids on skin barrier lipids - Perspectives for drug delivery. J Colloid Interface Sci 2024; 659:449-462. [PMID: 38183811 DOI: 10.1016/j.jcis.2023.12.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Ionic liquids (ILs) have great potential to facilitate transdermal and topical drug delivery. Here, we investigated the mechanism of action of amphiphilic ILs 1-methyl-3-octylimidazolium bromide (C8MIM) and 3-dodecyl-1-methylimidazolium bromide (C12MIM) in skin barrier lipid models in comparison to their complex effects in human skin. C8MIM incorporated in a skin lipid model was a better permeation enhancer than C12MIM for water and model drugs, theophylline and diclofenac. Solid state 2H NMR and X-ray diffraction indicated that both ILs prefer the cholesterol-rich regions in skin lipids without significantly perturbing their lamellar arrangement and that C8MIM induces the formation of an isotropic lipid phase to a greater extent compared to C12MIM. C12MIM applied topically to the lipid model or human skin as a pretreatment was more potent than C8MIM. When co-applied with the drugs to human skin, aqueous C12MIM was more potent than C8MIM in enhancing theophylline permeation, but neither IL affected (even decreased) diclofenac permeation. Thus, the IL's ability to permeabilize skin lipid barrier is strongly modulated by its ability to reach the site of action and its interactions with drug and solvent. Such an interplay is far from trivial and requires detailed investigation to realize the full potential of ILs.
Collapse
Affiliation(s)
- Georgios Paraskevopoulos
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Ferdinand Fandrei
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04275 Leipzig, Germany
| | - Ajit Kumar Pratihast
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Anna Paraskevopoulou
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Eleni Panoutsopoulou
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Venus Singh Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04275 Leipzig, Germany
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
8
|
Hergesell K, Paraskevopoulou A, Opálka L, Velebný V, Vávrová K, Dolečková I. The effect of long-term cigarette smoking on selected skin barrier proteins and lipids. Sci Rep 2023; 13:11572. [PMID: 37463939 DOI: 10.1038/s41598-023-38178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
The negative impact of cigarette smoking on the skin includes accelerated aging, pigmentation disorders, and impaired wound healing, but its effect on the skin barrier is not completely understood. Here, we studied the changes in selected epidermal proteins and lipids between smokers (45-66 years, smoking > 10 years, > 10 cigarettes per day) and non-smokers. Volar forearm epidermal and stratum corneum samples, obtained by suction blister and tape stripping, respectively, showed increased thickness in smokers. In the epidermis of smokers, we observed a significant upregulation of filaggrin, loricrin, and a trend of increased involucrin but no differences were found in the case of transglutaminase 1 and kallikrein-related peptidase 7, on the gene and protein levels. No significant changes were observed in the major skin barrier lipids, except for increased cholesterol sulfate in smokers. Liquid chromatography coupled with mass spectrometry revealed shorter acyl chains in ceramides, and an increased proportion of sphingosine and 6-hydroxysphingosine ceramides (with C4 trans-double bond) over dihydrosphingosine and phytosphingosine ceramides in smokers, suggesting altered desaturase 1 activity. Smokers had more ordered lipid chains found by infrared spectroscopy. In conclusion, cigarette smoking perturbs the homeostasis of the barrier proteins and lipids even at a site not directly exposed to smoke.
Collapse
Affiliation(s)
- Kristýna Hergesell
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, 561 02, Dolní Dobrouč, Czech Republic
| | - Anna Paraskevopoulou
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02, Dolní Dobrouč, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Iva Dolečková
- Contipro a.s., Dolní Dobrouč 401, 561 02, Dolní Dobrouč, Czech Republic.
| |
Collapse
|
9
|
Fandrei F, Havrišák T, Opálka L, Engberg O, Smith A, Pullmannová P, Kučerka N, Ondrejčeková V, Demé B, Nováková L, Steinhart M, Vávrová K, Huster D. The Intriguing Molecular Dynamics of Cer[EOS] in Rigid Skin Barrier Lipid Layers Requires Improvement of the Model. J Lipid Res 2023; 64:100356. [PMID: 36948272 PMCID: PMC10154977 DOI: 10.1016/j.jlr.2023.100356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion towards the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic "fillings" i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.
Collapse
Affiliation(s)
- Ferdinand Fandrei
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04275 Leipzig, Germany
| | - Tomáš Havrišák
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Oskar Engberg
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04275 Leipzig, Germany
| | - AlbertA Smith
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04275 Leipzig, Germany
| | - Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Norbert Kučerka
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Veronika Ondrejčeková
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Bruno Demé
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, CEDEX 9, France
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Miloš Steinhart
- Institute of Macromolecular Chemistry, Czech Academy of Science in Prague, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04275 Leipzig, Germany
| |
Collapse
|
10
|
Pullmannová P, Čuříková-Kindlová BA, Ondrejčeková V, Kováčik A, Dvořáková K, Dulanská L, Georgii R, Majcher A, Maixner J, Kučerka N, Zbytovská J, Vávrová K. Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films. ACS OMEGA 2023; 8:422-435. [PMID: 36643519 PMCID: PMC9835644 DOI: 10.1021/acsomega.2c04924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.
Collapse
Affiliation(s)
- Petra Pullmannová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Barbora A. Čuříková-Kindlová
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Veronika Ondrejčeková
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Kristýna Dvořáková
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Lucia Dulanská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Robert Georgii
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische
Universität München, Lichtenbergstr. 1, 85748Garching, Germany
| | - Adam Majcher
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Norbert Kučerka
- Faculty
of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32Bratislava, Slovakia
- Frank
Laboratory of Neutron Physics, Joint Institute
for Nuclear Research, Joliot-Curie 6, 141980Dubna, Russia
| | - Jarmila Zbytovská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Kateřina Vávrová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Shamaprasad P, Moore TC, Xia D, Iacovella CR, Bunge AL, McCabe C. Multiscale Simulation of Ternary Stratum Corneum Lipid Mixtures: Effects of Cholesterol Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7496-7511. [PMID: 35671175 PMCID: PMC9309713 DOI: 10.1021/acs.langmuir.2c00471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular dynamics simulations of mixtures of the ceramide nonhydroxy-sphingosine (NS), cholesterol, and a free fatty acid are performed to gain molecular-level understanding of the structure of the lipids found in the stratum corneum layer of skin. A new coarse-grained force field for cholesterol was developed using the multistate iterative Boltzmann inversion (MS-IBI) method. The coarse-grained cholesterol force field is compatible with previously developed coarse-grained force fields for ceramide NS, free fatty acids, and water and validated against atomistic simulations of these lipids using the CHARMM force field. Self-assembly simulations of multilayer structures using these coarse-grained force fields are performed, revealing that a large fraction of the ceramides adopt extended conformations, which cannot occur in the single bilayer in water structures typically studied using molecular simulation. Cholesterol fluidizes the membrane by promoting packing defects, and an increase in cholesterol content is found to reduce the bilayer thickness due to an increase in interdigitation of the C24 lipid tails, consistent with experimental observations. Using a reverse-mapping procedure, a self-assembled coarse-grained multilayer system is used to construct an equivalent structure with atomistic resolution. Simulations of this atomistic structure are found to closely agree with experimentally derived neutron scattering length density profiles. Significant interlayer hydrogen bonding is observed in the inner layers of the atomistic multilayer structure that are not found in the outer layers in contact with water or in equivalent bilayer structures. This work highlights the importance of simulating multilayer structures, as compared to the more commonly studied bilayer systems, to enable more appropriate comparisons with multilayer experimental membranes. These results also provide validation of the efficacy of the MS-IBI derived coarse-grained force fields and the framework for multiscale simulation.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Timothy C. Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Donna Xia
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Christopher R. Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
| | - Annette L. Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA, 80401
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN, USA, 37235-1604
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37235-1604
| |
Collapse
|
12
|
Shin KO, Mihara H, Ishida K, Uchida Y, Park K. Exogenous Ceramide Serves as a Precursor to Endogenous Ceramide Synthesis and as a Modulator of Keratinocyte Differentiation. Cells 2022; 11:cells11111742. [PMID: 35681438 PMCID: PMC9179460 DOI: 10.3390/cells11111742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
Since ceramide is a key epidermal barrier constituent and its deficiency causes barrier-compromised skin, several molecular types of ceramides are formulated in commercial topical agents to improve barrier function. Topical ceramide localizes on the skin surface and in the stratum corneum, but certain amounts of ceramide penetrate the stratum granulosum, becoming precursors to endogenous ceramide synthesis following molecular modification. Moreover, exogenous ceramide as a lipid mediator could modulate keratinocyte proliferation/differentiation. We here investigated the biological roles of exogenous NP (non-hydroxy ceramide containing 4-hydroxy dihydrosphingosine) and NDS (non-hydroxy ceramide containing dihydrosphingosine), both widely used as topical ceramide agents, in differentiated-cultured human keratinocytes. NDS, but not NP, becomes a precursor for diverse ceramide species that are required for a vital permeability barrier. Loricrin (late differentiation marker) production is increased in keratinocytes treated with both NDS and NP vs. control, while bigger increases in involucrin (an early differentiation marker) synthesis were observed in keratinocytes treated with NDS vs. NP and control. NDS increases levels of a key antimicrobial peptide (an innate immune component), cathelicidin antimicrobial peptide (CAMP/LL-37), that is upregulated by a ceramide metabolite, sphingosine-1-phosphate. Our studies demonstrate that NDS could be a multi-potent ceramide species, forming heterogenous ceramide molecules and a lipid mediator to enhance differentiation and innate immunity.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- LaSS Lipid Institute (LLI), LaSS Inc., Chuncheon 31151, Korea
| | - Hisashi Mihara
- Takasago International Company, Hiratsuka 259-1207, Japan; (H.M.); (K.I.)
| | - Kenya Ishida
- Takasago International Company, Hiratsuka 259-1207, Japan; (H.M.); (K.I.)
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- Veterans Affairs Medical Center, Department of Dermatology, School of Medicine, Northern California Institute for Research and Education, University of California, San Francisco, CA 94158, USA
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| | - Kyungho Park
- Department of Food Science & Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 31151, Korea;
- The Korean Institute of Nutrition, Hallym University, Chuncheon 31151, Korea
- Correspondence: (Y.U.); (K.P.); Tel.: +82-33-248-3146 (Y.U.); +82-33-248-2131 (K.P.)
| |
Collapse
|
13
|
Opálka L, Meyer JM, Ondrejčeková V, Svatošová L, Radner FPW, Vávrová K. ω-O-Acylceramides but not ω-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. J Lipid Res 2022; 63:100226. [PMID: 35568253 PMCID: PMC9192818 DOI: 10.1016/j.jlr.2022.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase (LPP). To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to LPP. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.
Collapse
Affiliation(s)
- Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Jason M Meyer
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Veronika Ondrejčeková
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Linda Svatošová
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
14
|
Cholesterol Sulfate Fluidizes the Sterol Fraction of the Stratum Corneum Lipid Phase and Increases its Permeability. J Lipid Res 2022; 63:100177. [PMID: 35143845 PMCID: PMC8953687 DOI: 10.1016/j.jlr.2022.100177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide’s acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.
Collapse
|
15
|
Uche L, Gooris GS, Bouwstra JA, Beddoes CM. Increased Levels of Short-Chain Ceramides Modify the Lipid Organization and Reduce the Lipid Barrier of Skin Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9478-9489. [PMID: 34319754 PMCID: PMC8389989 DOI: 10.1021/acs.langmuir.1c01295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The skin barrier function is attributed to the stratum corneum (SC) intercellular lipid matrix, which is composed primarily of ceramides (CERs), free fatty acids, and cholesterol. These lipids are organized in two lamellar phases: the short and long periodicity phases (SPP and LPP), respectively. The LPP is considered important for the skin barrier function. High levels of short-chain CERs are observed in various inflammatory skin diseases and have been correlated with barrier dysfunction. In this research, we investigated how the increase in the fraction of the short-chain CER with a nonhydroxy C16 acyl chain linked to a C18 sphingosine base CER NS(C16) at the expense of the physiological chain length CER NS with a C24 acyl chain (CER NS(C24)) impacts the microstructure and barrier function of a lipid model that mimicked certain characteristics of the SC lipid organization. The permeability and lipid organization of the model membranes were compared with that of a control model without CER NS(C16). The permeability increased significantly when ≥50% of CER NS(C24) was substituted with CER NS(C16). Employing biophysical techniques, we showed that the lipid packing density reduced with an increasing proportion of CER NS(C16). Substitution of 75% of CER NS(C24) by CER NS(C16) resulted in the formation of phase-separated lipid domains and alteration of the LPP structure. Using deuterium-labeled lipids enabled simultaneous characterization of the C24 and C16 acyl chains in the lipid models, providing insight into the mechanisms underlying the reduced skin barrier function in diseased skin.
Collapse
|
16
|
Kováčik A, Pullmannová P, Opálka L, Šilarová M, Maixner J, Vávrová K. Effects of ( R)- and ( S)-α-Hydroxylation of Acyl Chains in Sphingosine, Dihydrosphingosine, and Phytosphingosine Ceramides on Phase Behavior and Permeability of Skin Lipid Models. Int J Mol Sci 2021; 22:ijms22147468. [PMID: 34299088 PMCID: PMC8303283 DOI: 10.3390/ijms22147468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Ceramides (Cers) with α-hydroxylated acyl chains comprise about a third of all extractable skin Cers and are required for permeability barrier homeostasis. We have probed here the effects of Cer hydroxylation on their behavior in lipid models comprising the major SC lipids, Cer/free fatty acids (C 16-C 24)/cholesterol, and a minor component, cholesteryl sulfate. Namely, Cers with (R)-α-hydroxy lignoceroyl chains attached to sphingosine (Cer AS), dihydrosphingosine (Cer AdS), and phytosphingosine (Cer AP) were compared to their unnatural (S)-diastereomers and to Cers with non-hydroxylated lignoceroyl chains attached to sphingosine (Cer NS), dihydrosphingosine (Cer NdS), and phytosphingosine (Cer NP). By comparing several biophysical parameters (lamellar organization by X-ray diffraction, chain order, lateral packing, phase transitions, and lipid mixing by infrared spectroscopy using deuterated lipids) and the permeabilities of these models (water loss and two permeability markers), we conclude that there is no general or common consequence of Cer α-hydroxylation. Instead, we found a rich mix of effects, highly dependent on the sphingoid base chain, configuration at the α-carbon, and permeability marker used. We found that the model membranes with unnatural Cer (S)-AS have fewer orthorhombically packed lipid chains than those based on the (R)-diastereomer. In addition, physiological (R)-configuration decreases the permeability of membranes, with Cer (R)-AdS to theophylline, and increases the lipid chain order in model systems with natural Cer (R)-AP. Thus, each Cer subclass makes a distinct contribution to the structural organization and function of the skin lipid barrier.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.P.); (L.O.); (M.Š.); (K.V.)
- Correspondence: ; Tel.: +420-495-067-340
| | - Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.P.); (L.O.); (M.Š.); (K.V.)
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.P.); (L.O.); (M.Š.); (K.V.)
| | - Michaela Šilarová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.P.); (L.O.); (M.Š.); (K.V.)
| | - Jaroslav Maixner
- Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.P.); (L.O.); (M.Š.); (K.V.)
| |
Collapse
|
17
|
Nováčková A, Sagrafena I, Pullmannová P, Paraskevopoulos G, Dwivedi A, Mazumder A, Růžičková K, Slepička P, Zbytovská J, Vávrová K. Acidic pH Is Required for the Multilamellar Assembly of Skin Barrier Lipids In Vitro. J Invest Dermatol 2021; 141:1915-1921.e4. [PMID: 33675786 DOI: 10.1016/j.jid.2021.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
Lipid membrane remodeling belongs to the most fundamental processes in the body. The skin barrier lipids, which are ceramide dominant and highly rigid, must attain an unusual multilamellar nanostructure with long periodicity to restrict water loss and prevent the entry of potentially harmful environmental factors. Our data suggest that the skin acid mantle, apart from regulating enzyme activities and keeping away pathogens, may also be a prerequisite for the multilamellar assembly of the skin barrier lipids. Atomic force microscopy on monolayers composed of synthetic or human stratum corneum lipids showed multilayer formation (approximately 10-nm step height) in an acidic but not in a neutral environment. X-ray diffraction, Fourier transform infrared spectroscopy, and permeability studies showed markedly altered lipid nanostructure and increased water loss at neutral pH compared with that at acidic pH. These findings are consistent with the data on the altered organization of skin lipids and increased transepidermal water loss under conditions such as inadequate skin acidification, for example, in neonates, the elderly, and patients with atopic dermatitis.
Collapse
Affiliation(s)
- Anna Nováčková
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Irene Sagrafena
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Pullmannová
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | - Anupma Dwivedi
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Anisha Mazumder
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Karolína Růžičková
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petr Slepička
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jarmila Zbytovská
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic; Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Uche LE, Gooris GS, Bouwstra JA, Beddoes CM. High concentration of the ester-linked ω-hydroxy ceramide increases the permeability in skin lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183487. [PMID: 33068546 DOI: 10.1016/j.bbamem.2020.183487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
The ester-linked ω-hydroxy acyl chain linked to a sphingosine base referred to as CER EOS is essential for the skin barrier lipid organization. While the majority of the skin lipids form a dense, crystalline structure, associated with low permeability, the unsaturated moiety of CER EOS, (either the linoleate or the oleate chain) exists in a liquid phase at the skin's physiological temperature. Thus, the relationship between CER EOS and barrier function is not entirely comprehended. We studied the permeability and lipid organization in skin lipid models, gradually increasing in CER EOS concentration, mixed with non-hydroxy sphingosine-based ceramide (CER NS) in an equimolar ratio of CERs, cholesterol, and free fatty acids (FFAs) mimicking the ratio in the native skin. A significant increase in the orthorhombic-hexagonal phase transition temperature was recorded when CER EOS concentration was raised to 70 mol% of the total CER content and higher, rendering a higher fraction of lipids in the orthorhombic phase at the expense of the hexagonal phase at physiological temperature. The model's permeability did not differ when CER EOS concentration ranged between 10 and 30% but increased significantly at 70% and higher. Using CER EOS with a perdeuterated oleate chain, it was shown that the fraction of lipids in a liquid phase increased with CER EOS concentration, while the neighboring CERs and FFAs remained in a crystalline state. The increased fraction of the liquid phase therefore, had a stronger effect on permeability than the increased fraction of lipids forming an orthorhombic phase.
Collapse
Affiliation(s)
- Lorretta E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Gerrit S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands.
| | - Charlotte M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| |
Collapse
|
19
|
Kováčik A, Pullmannová P, Pavlíková L, Maixner J, Vávrová K. Behavior of 1-Deoxy-, 3-Deoxy- and N-Methyl-Ceramides in Skin Barrier Lipid Models. Sci Rep 2020; 10:3832. [PMID: 32123227 PMCID: PMC7051948 DOI: 10.1038/s41598-020-60754-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
Ceramides (Cer) are essential components of the skin permeability barrier. To probe the role of Cer polar head groups involved in the interfacial hydrogen bonding, the N-lignoceroyl sphingosine polar head was modified by removing the hydroxyls in C-1 (1-deoxy-Cer) or C-3 positions (3-deoxy-Cer) and by N-methylation of amide group (N-Me-Cer). Multilamellar skin lipid models were prepared as equimolar mixtures of Cer, lignoceric acid and cholesterol, with 5 wt% cholesteryl sulfate. In the 1-deoxy-Cer-based models, the lipid species were separated into highly ordered domains (as found by X-ray diffraction and infrared spectroscopy) resulting in similar water loss but 4–5-fold higher permeability to model substances compared to control with natural Cer. In contrast, 3-deoxy-Cer did not change lipid chain order but promoted the formation of a well-organized structure with a 10.8 nm repeat period. Yet both lipid models comprising deoxy-Cer had similar permeabilities to all markers. N-Methylation of Cer decreased lipid chain order, led to phase separation, and improved cholesterol miscibility in the lipid membranes, resulting in 3-fold increased water loss and 10-fold increased permeability to model compounds compared to control. Thus, the C-1 and C-3 hydroxyls and amide group, which are common to all Cer subclasses, considerably affect lipid miscibility and chain order, formation of periodical nanostructures, and permeability of the skin barrier lipid models.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Ludmila Pavlíková
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- University of Chemistry and Technology in Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
20
|
Opálka L, Kováčik A, Pullmannová P, Maixner J, Vávrová K. Effects of omega- O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models. J Lipid Res 2019; 61:219-228. [PMID: 31857390 DOI: 10.1194/jlr.ra119000420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Indexed: 11/20/2022] Open
Abstract
Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.
Collapse
Affiliation(s)
- Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Andrej Kováčik
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Petra Pullmannová
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| | - Jaroslav Maixner
- Hradec Králové, Czech Republic. University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Prague, Czech Republic
| |
Collapse
|