1
|
Chen Q, Wang W, Fang W, Qin L, Wang J, Huang X, Pan S, Zheng R. Generation of Myeloid-Specific Bmal1 Knockout Mice and Identification of Bmal1-Regulated Ferroptosis in Macrophages. Genesis 2025; 63:e70014. [PMID: 40197722 DOI: 10.1002/dvg.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Circadian clocks have a fundamental role in many physiological processes. Bmal1 (basic helix-loop-helix ARNT like 1) is a central master circadian clock gene. The global Bmal1 knockout mice were shown to have a loss of circadian rhythms, acceleration of aging, and shortened life span. However, global Bmal1 knockout mice did not exactly reflect the Bmal1 function in specific cell or tissue types. To address the importance of circadian rhythms in macrophages, we generated myeloid-specific Bmal1 knockout mice. The efficacy of Bmal1 gene deletion in macrophages was identified at DNA, transcription, protein levels, and function. In contrast to global Bmal1 knockout mice, Bmal1flox/flox and Bmal1mye-/- mice did not exhibit aging phenotypes. However, the deletion of Bmal1 resulted in a loss of rhythmic expression of the circadian genes in macrophages. RNA-Seq revealed that Bmal1 regulated the expression of cell death-related genes in macrophages. Furthermore, these genes have been identified as clock-controlled genes in rhythmic cell models, and Bmal1 controlled the rhythmic expression of these genes in macrophages. Finally, Bmal1 inhibited RSL3-induced ferroptosis in macrophages through Phgdh. In summary, the model of myeloid-specific Bmal1 knockout mice was successfully constructed, providing a tool for the study of the roles of Bmal1 in macrophages and the peripheral circadian clock. Meanwhile, Bmal1 regulates ferroptosis in macrophages.
Collapse
Affiliation(s)
- Qing Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weijun Fang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sha Pan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruijuan Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Fang C, Farnir F, Liu L, Xiao H. Unveiling Genetic Markers for Milk Yield in Xinjiang Donkeys: A Genome-Wide Association Study and Kompetitive Allele-Specific PCR-Based Approach. Int J Mol Sci 2025; 26:2961. [PMID: 40243566 PMCID: PMC11988640 DOI: 10.3390/ijms26072961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Lactation traits are critical economic attributes in domestic animals. This study investigates genetic markers and functional genes associated with lactation traits in Xinjiang donkeys. We analyzed 112 Xinjiang donkeys using 10× whole genome re-sequencing to obtain genome-wide single nucleotide polymorphisms (SNPs). Genome-wide association analyses were conducted using PLINK 2.0 and GEMMA 0.98.5 software, employing mixed linear models to assess several lactation traits: average monthly milk yield (AY), fat percentage (FP), protein percentage (PP), and lactose percentage (LP). A total of 236 SNPs were significantly associated with one or more milk production traits (p < 0.000001). While the two-software identified distinct SNP associations, they consistently detected the same 11, 95, 5, and 103 SNPs for AY, FP, PP, and LP, respectively. Several of these SNPs are located within potential candidate genes, including glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1), FLII actin remodeling protein (FLII), mitochondrial topoisomerase 1 (TOP1MT), thirty-eight-negative kinase 1 (TNK1), polo like kinase 1 (PLK1), notch homolog 1 (NOTCH1), developmentally regulated GTP-binding protein 2 (DRG2), mitochondrial elongation factor 2 (MIEF2), glutamine-fructose-6-phosphate transaminase 2 (GFPT2), and dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2). Additionally, we validated the polymorphism of 16 SNPs (10 genes) using Kompetitive Allele Specific PCR, revealing that TOP1MT_g.9133371T > C, GPIHBP1_g.38365122C > T, DRG2_g.4912631C > A, FLII_g.5046888C > T, and PLK1_g.23585377T > C were significantly correlated with average daily milk yield and total milk yield in the studied donkeys. This study represents the first genome-wide association analysis of markers and milk components in Xinjiang donkeys, offering valuable insights into the genetic mechanisms underlying milk production traits. Further research with larger sample sizes is essential to confirm these findings and identify potential causal genetic variants.
Collapse
Affiliation(s)
- Chao Fang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Faculté de Médecine Vétérinaire, Université de Liège Quartier Vallée, 2 Avenue de Cureghem, 6 (B43) 4000 Liège, Belgium;
| | - Frederic Farnir
- Faculté de Médecine Vétérinaire, Université de Liège Quartier Vallée, 2 Avenue de Cureghem, 6 (B43) 4000 Liège, Belgium;
| | - Lingling Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Haixia Xiao
- Xinjiang Academy of Animal Sciences, Urumqi 830052, China
| |
Collapse
|
3
|
Zhang Y, Liu Y, Zhang M, Li G, Zhu S, Xie K, Xiao B, Li L. Clinical Relevance and Drug Modulation of PPAR Signaling Pathway in Triple-Negative Breast Cancer: A Comprehensive Analysis. PPAR Res 2024; 2024:4164906. [PMID: 39735727 PMCID: PMC11681981 DOI: 10.1155/ppar/4164906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is highly heterogeneous and poses a significant medical challenge due to limited treatment options and poor outcomes. Peroxisome proliferator-activated receptors (PPARs) play a crucial role in regulating metabolism and cell fate. While the association between PPAR signal and human cancers has been a topic of concern, its specific relationship with TNBC remains unclear. Integrated analysis of large published datasets from clinical cohorts and cell lines through databases has proven to be a powerful and essential approach for understanding cancer and uncovering new molecular targets. Here, we conducted a comprehensive study investigating the clinical relevance and drug modulation of the PPAR signaling pathway in TNBC, using data from The Cancer Genome Atlas (TCGA) for TNBC patients and Genomics of Drug Sensitivity in Cancer (GDSC) for TNBC cell lines, along with drug perturbation information from Connectivity Map (CMap). In the TCGA-TNBC cohort, higher PPAR signaling activity was not associated with clinical stage, prognosis, tumor mutational burden, microsatellite instability, homologous recombination deficiency, stemness, or proliferation status. However, it was linked to older age; an elevated rate of piccolo presynaptic cytomatrix protein (PCLO) mutations; and oncogenic signal transduction involving MAPK, Ras, and PI3K-Akt pathways. Additionally, it influenced biological pathways including fatty acid metabolism, AMPK signaling, and ferroptosis. Strikingly, higher PPAR activity appeared to promote the formation of an antitumor immune and microbial microenvironment. In the GDSC-TNBC cells, nevertheless, it seemed to incur chemoresistance. Furthermore, we identified a batch of potential compounds that can regulate the PPAR signaling pathway. Lastly, our experimental validation demonstrated the ability of the histone deacetylase (HDAC) inhibitor chidamide to activate the PPAR signal in TNBC cells. In conclusion, the PPAR signaling pathway likely has pleiotropic biological effects in TNBC. These preliminary but interesting findings enhance our understanding of the role played by PPAR signal and provide new insights into the heterogeneity driven by it in TNBC.
Collapse
Affiliation(s)
- Yanxia Zhang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
- School of Medicine, The South China University of Technology, Guangzhou, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
- School of Public Health, Dali University, Dali, China
| | - Mei Zhang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Guanjie Li
- Thyroid and Breast Specialty of General Surgery Area Five, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Siling Zhu
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
4
|
Jacobs J, Iranpour R, Behrooz AB, da Silva Rosa SC, Ghavami S. The role of BCL2L13 in glioblastoma: turning a need into a target. Biochem Cell Biol 2024; 102:127-134. [PMID: 37988705 DOI: 10.1139/bcb-2023-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive central nervous system cancer. GBM has a high mortality rate, with a median survival time of 12-15 months after diagnosis. A poor prognosis and a shorter life expectancy may result from resistance to standard treatments such as radiation and chemotherapy. Temozolomide has been the mainstay treatment for GBM, but unfortunately, there are high rates of resistance with GBM bypassing apoptosis. A proposed mechanism for bypassing apoptosis is decreased ceramide levels, and previous research has shown that within GBM cells, B cell lymphoma 2-like 13 (BCL2L13) can inhibit ceramide synthase. This review aims to discuss the causes of resistance in GBM cells, followed by a brief description of BCL2L13 and an explanation of its mechanism of action. Further, lipids, specifically ceramide, will be discussed concerning cancer and GBM cells, focusing on ceramide synthase and its role in developing GBM. By gathering all current information on BCL2L13 and ceramide synthase, this review seeks to enable an understanding of these pieces of GBM in the hope of finding an effective treatment for this disease.
Collapse
Affiliation(s)
- Joadi Jacobs
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Rosa Iranpour
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| |
Collapse
|
5
|
Li M, Zhao Y, Li H, Kang S, Deng X, Sheng M. Mechanism of Erianin anti-triple negative breast cancer based on transcriptomics methods and network pharmacology. Aging (Albany NY) 2024; 16:2848-2865. [PMID: 38329441 PMCID: PMC10911376 DOI: 10.18632/aging.205516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive illness that lacks effective targeted treatments. Although Erianin has shown potential antitumor properties, its precise mechanism of action and target in TNBC remain unclear, hampering the development of drugs. The present study investigated the underlying mechanism of action of Erianin in treating TNBC by using transcriptomics and network pharmacology approaches. We evaluated Erianin's bioactivity in TNBC cell lines and xenograft tumor models. The results showed that Erianin significantly inhibited TNBC cell proliferation and impeded tumor growth. A subsequent analysis of transcriptomic and network pharmacological data identified 51 mutual targets. Analysis of protein-protein interactions identified eight hub targets. Furthermore, molecular docking indicated that the PPARA binding energy was the lowest for Erianin among the hub targets, followed by ROCK2, PDGFRB, CCND1, MUC1, and CDK1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the common targets were associated with multiple cancer-related signaling pathways, including focal adhesion, PI3K-Akt signaling pathway, Rap1 signaling pathway, microRNAs in cancer, and human papillomavirus infection. The results of the Western blot and immunohistochemistry experiment further showed that Erianin could suppress PI3K/Akt signaling pathway activation. After co-incubation with SC79, the cell inhibition rate of Erianin was decreased, which further confirmed that Erianin inhibits TNBC progression via the PI3K-AKT signaling pathway. In conclusion, our results indicated that Erianin has the potential to inhibit the proliferation of TNBC by downregulating the PI3K/AKT signaling pathway by transcriptomics and network pharmacology. Therefore, Erianin appears to be a promising compound for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Molecular Genetics of Aging and Tumour, Medical School, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, China
| | - Yuan Zhao
- Kunming University of Science and Technology Affiliated Puer City People’s Hospital, Puer, Yunnan 665000, China
| | - Huimin Li
- Laboratory of Molecular Genetics of Aging and Tumour, Medical School, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, China
| | - Shiyao Kang
- Laboratory of Molecular Genetics of Aging and Tumour, Medical School, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, China
| | - Xuming Deng
- Laboratory of Molecular Genetics of Aging and Tumour, Medical School, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, China
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging and Tumour, Medical School, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, China
| |
Collapse
|
6
|
Abstract
Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States;
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina;
| |
Collapse
|
7
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
8
|
Capelo-Diz A, Lachiondo-Ortega S, Fernández-Ramos D, Cañas-Martín J, Goikoetxea-Usandizaga N, Serrano-Maciá M, González-Rellan MJ, Mosca L, Blazquez-Vicens J, Tinahones-Ruano A, Fondevila MF, Buyan M, Delgado TC, Gutierrez de Juan V, Ayuso-García P, Sánchez-Rueda A, Velasco-Avilés S, Fernández-Susavila H, Riobello-Suárez C, Dziechciarz B, Montiel-Duarte C, Lopitz-Otsoa F, Bizkarguenaga M, Bilbao-García J, Bernardo-Seisdedos G, Senra A, Soriano-Navarro M, Millet O, Díaz-Lagares Á, Crujeiras AB, Bao-Caamano A, Cabrera D, van Liempd S, Tamayo-Carro M, Borzacchiello L, Gomez-Santos B, Buqué X, Sáenz de Urturi D, González-Romero F, Simon J, Rodríguez-Agudo R, Ruiz A, Matute C, Beiroa D, Falcon-Perez JM, Aspichueta P, Rodríguez-Cuesta J, Porcelli M, Pajares MA, Ameneiro C, Fidalgo M, Aransay AM, Lama-Díaz T, Blanco MG, López M, Villa-Bellosta R, Müller TD, Nogueiras R, Woodhoo A, Martínez-Chantar ML, Varela-Rey M. Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting. Cell Metab 2023; 35:1373-1389.e8. [PMID: 37527658 PMCID: PMC10432853 DOI: 10.1016/j.cmet.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.
Collapse
Affiliation(s)
- Alba Capelo-Diz
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - David Fernández-Ramos
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain
| | - Jorge Cañas-Martín
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Maria J González-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Laura Mosca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Joan Blazquez-Vicens
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Alberto Tinahones-Ruano
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain
| | - Mason Buyan
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Virginia Gutierrez de Juan
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Paula Ayuso-García
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Alejandro Sánchez-Rueda
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Sergio Velasco-Avilés
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Héctor Fernández-Susavila
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristina Riobello-Suárez
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Bartlomiej Dziechciarz
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristina Montiel-Duarte
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Jon Bilbao-García
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ana Senra
- CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ángel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, A Coruña 15706, Spain
| | - Ana B Crujeiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain; Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Diana Cabrera
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Sebastiaan van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Miguel Tamayo-Carro
- Nerve Disorders Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Luigi Borzacchiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Xabier Buqué
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Diego Sáenz de Urturi
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Francisco González-Romero
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Jorge Simon
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Asier Ruiz
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Department of Neurosciences, University of Basque Country (UPV/EHU), Centro de investigación Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Department of Neurosciences, University of Basque Country (UPV/EHU), Centro de investigación Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Daniel Beiroa
- Experimental Biomedicine Center (CEBEGA), University of Santiago de Compostela, A Coruña 15706, Spain
| | - Juan M Falcon-Perez
- Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain; Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - Patricia Aspichueta
- Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Juan Rodríguez-Cuesta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - María A Pajares
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Cristina Ameneiro
- Stem Cells and Human Diseases, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Miguel Fidalgo
- Stem Cells and Human Diseases, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Ana M Aransay
- Genome Analysis Plataform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Tomas Lama-Díaz
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain
| | - Miguel G Blanco
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain
| | - Ricardo Villa-Bellosta
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain; Metabolic Homeostasis and Vascular Calcification Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum Munich, and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña 15706, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, A Coruña 15706, Spain; Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain; Nerve Disorders Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain; Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain; Department of Functional Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain.
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de salud Carlos III, 28029 Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y, Taminishi S, Nishiji T, Taruno A, Fukui M, Arany Z, Matoba S. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun 2023; 14:4084. [PMID: 37443159 PMCID: PMC10344867 DOI: 10.1038/s41467-023-39404-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive disorder with aberrant lipid accumulation and subsequent inflammatory and profibrotic response. Therapeutic efforts at lipid reduction via increasing cytoplasmic lipolysis unfortunately worsens hepatitis due to toxicity of liberated fatty acid. An alternative approach could be lipid reduction through autophagic disposal, i.e., lipophagy. We engineered a synthetic adaptor protein to induce lipophagy, combining a lipid droplet-targeting signal with optimized LC3-interacting domain. Activating hepatocyte lipophagy in vivo strongly mitigated both steatosis and hepatitis in a diet-induced mouse NASH model. Mechanistically, activated lipophagy promoted the excretion of lipid from hepatocytes, thereby suppressing harmful intracellular accumulation of nonesterified fatty acid. A high-content compound screen identified alpelisib and digoxin, clinically-approved compounds, as effective activators of lipophagy. Administration of alpelisib or digoxin in vivo strongly inhibited the transition to steatohepatitis. These data thus identify lipophagy as a promising therapeutic approach to prevent NASH progression.
Collapse
Affiliation(s)
- Yoshito Minami
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusaku Kaneko
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiyuki Nishiji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi, Saitama, 332-0012, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
10
|
Simanurak O, Pekthong D, Somran J, Wangteeraprasert A, Srikummool M, Kaewpaeng N, Parhira S, Srisawang P. Enhanced apoptosis of HCT116 colon cancer cells treated with extracts from Calotropis gigantea stem bark by starvation. Heliyon 2023; 9:e18013. [PMID: 37483695 PMCID: PMC10362240 DOI: 10.1016/j.heliyon.2023.e18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Calotropis gigantea stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 μg/mL) treatment for 24 h under glucose conditions of 4.5 g/L without fetal bovine serum (FBS) supplementation or serum starvation (G+/F-), glucose 0 g/L with 10% FBS or glucose starvation (G-/F+), and glucose 0 g/L with 0% FBS or complete starvation (G-/F-) induced a greater antiproliferative effect in HCT116 cells than therapy in complete medium with glucose 4.5 g/L and 10% FBS (G+/F+). Nonetheless, the anticancer effect of CGDCM at 4 μg/mL under (G-/F-) showed the highest activity compared to other starvation conditions. The three starvation conditions showed a significant reduction in cell viability compared to the control (G+/F+) medium group, while the inhibitory effect on cell viability did not differ significantly among the three starvation conditions. CGDCM at 4 μg/mL in (G-/F-) medium triggered apoptosis by dissipating the mitochondrial membrane potential and arresting cells in the G2/M phase. This investigation demonstrated that a decrease in intracellular ATP and fatty acid levels was associated with enhanced apoptosis by treatment with CGDCM at 4 μg/mL under (G-/F-) conditions. In addition, under (G-/F-), CGDCM at 4 μg/mL increased levels of reactive oxygen species (ROS) and was suggested to primarily trigger apoptosis in HCT116 cells. Thus, C. gigantea extracts may be useful for the future development of alternative, effective cancer treatment regimens.
Collapse
Affiliation(s)
- Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
11
|
Lin X, Yang Q, Zheng D, Tian H, Chen L, Wu J, Ji Z, Chen Y, Li Z. Scientometric analysis of lipid metabolism in breast neoplasm: 2012-2021. Front Physiol 2023; 14:1042603. [PMID: 37179822 PMCID: PMC10168182 DOI: 10.3389/fphys.2023.1042603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: In recent years, more and more studies have proved that lipid metabolism plays an essential role in breast cancer's proliferation and metastasisand also has a specific significance in predicting survival. Methods: This paper collected data from 725 publications related to lipid metabolism in breast neoplasm from 2012 to 2021 through the Web of Science Core Collection database. Bibliometrix, VOSviewer, and CiteSpace were used for the scientometrics analysis of countries, institutions, journals, authors, keywords, etc. Results: The number of documents published showed an increasing trend, with an average annual growth rate of 14.49%. The United States was the most productive country (n = 223, 30.76%). The journals with the largest number of publications are mostly from developed countries. Except for the retrieved topics, "lipid metabolism" (n = 272) and "breast cancer" (n = 175), the keywords that appeared most frequently were "expression" (n = 151), "fatty-acid synthase" (n = 78), "growth" (n = 72), "metabolism" (n = 67) and "cells" (n = 66). Discussion: These findings and summaries help reveal the current research status and clarify the hot spots in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
12
|
Lew SY, Mohd Hisam NS, Phang MWL, Syed Abdul Rahman SN, Poh RYY, Lim SH, Kamaruzzaman MA, Chau SC, Tsui KC, Lim LW, Wong KH. Adenosine Improves Mitochondrial Function and Biogenesis in Friedreich's Ataxia Fibroblasts Following L-Buthionine Sulfoximine-Induced Oxidative Stress. BIOLOGY 2023; 12:biology12040559. [PMID: 37106759 PMCID: PMC10136261 DOI: 10.3390/biology12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Adenosine is a nucleoside that is widely distributed in the central nervous system and acts as a central excitatory and inhibitory neurotransmitter in the brain. The protective role of adenosine in different pathological conditions and neurodegenerative diseases is mainly mediated by adenosine receptors. However, its potential role in mitigating the deleterious effects of oxidative stress in Friedreich's ataxia (FRDA) remains poorly understood. We aimed to investigate the protective effects of adenosine against mitochondrial dysfunction and impaired mitochondrial biogenesis in L-buthionine sulfoximine (BSO)-induced oxidative stress in dermal fibroblasts derived from an FRDA patient. The FRDA fibroblasts were pre-treated with adenosine for 2 h, followed by 12.50 mM BSO to induce oxidative stress. Cells in medium without any treatments or pre-treated with 5 µM idebenone served as the negative and positive controls, respectively. Cell viability, mitochondrial membrane potential (MMP), aconitase activity, adenosine triphosphate (ATP) level, mitochondrial biogenesis, and associated gene expressions were assessed. We observed disruption of mitochondrial function and biogenesis and alteration in gene expression patterns in BSO-treated FRDA fibroblasts. Pre-treatment with adenosine ranging from 0-600 µM restored MMP, promoted ATP production and mitochondrial biogenesis, and modulated the expression of key metabolic genes, namely nuclear respiratory factor 1 (NRF1), transcription factor A, mitochondrial (TFAM), and NFE2-like bZIP transcription factor 2 (NFE2L2). Our study demonstrated that adenosine targeted mitochondrial defects in FRDA, contributing to improved mitochondrial function and biogenesis, leading to cellular iron homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.
Collapse
Affiliation(s)
- Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Rozaida Yuen Ying Poh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother 2023; 161:114420. [PMID: 36812713 DOI: 10.1016/j.biopha.2023.114420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer has been confirmed to have lipid disorders in the tumour microenvironment. Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPARα regulates the expression of genes involved in fatty acid homeostasis and is a major regulator of lipid metabolism. Because of its effects on lipid metabolism, an increasing number of studies have investigated the relationship of PPARα with breast cancer. PPARα has been shown to impact the cell cycle and apoptosis in normal cells and tumoral cells through regulating genes of the lipogenic pathway, fatty acid oxidation, fatty acid activation, and uptake of exogenous fatty acids. Besides, PPARα is involved in the regulation of the tumour microenvironment (anti-inflammation and inhibition of angiogenesis) by modulating different signal pathways such as NF-κB and PI3K/AKT/mTOR. Some synthetic PPARα ligands are used in adjuvant therapy for breast cancer. PPARα agonists are reported to reduce the side effects of chemotherapy and endocrine therapy. In addition, PPARα agonists enhance the curative effects of targeted therapy and radiation therapy. Interestingly, with the emerging role of immunotherapy, attention has been focused on the tumour microenvironment. The dual functions of PPARα agonists in immunotherapy need further research. This review aims to consolidate the operations of PPARα in lipid-related and other ways, as well as discuss the current and potential applications of PPARα agonists in tackling breast cancer.
Collapse
Affiliation(s)
- Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Jiayu Liu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Ying Jiang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
14
|
Basak M, Das K, Mahata T, Sengar AS, Verma SK, Biswas S, Bhadra K, Stewart A, Maity B. RGS7-ATF3-Tip60 Complex Promotes Hepatic Steatosis and Fibrosis by Directly Inducing TNFα. Antioxid Redox Signal 2023; 38:137-159. [PMID: 35521658 DOI: 10.1089/ars.2021.0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aims: The pathophysiological mechanism(s) underlying non-alcoholic fatty liver disease (NAFLD) have yet to be fully delineated and only a single drug, peroxisome proliferator-activated receptor (PPAR) α/γ agonist saroglitazar, has been approved. Here, we sought to investigate the role of Regulator of G Protein Signaling 7 (RGS7) in hyperlipidemia-dependent hepatic dysfunction. Results: RGS7 is elevated in the livers of NAFLD patients, particularly those with severe hepatic damage, pronounced insulin resistance, and high inflammation. In the liver, RGS7 forms a unique complex with transcription factor ATF3 and histone acetyltransferase Tip60, which is implicated in NAFLD. The removal of domains is necessary for ATF3/Tip60 binding compromises RGS7-dependent reactive oxygen species generation and cell death. Hepatic RGS7 knockdown (KD) prevented ATF3/Tip60 induction, and it provided protection against fibrotic remodeling and inflammation in high-fat diet-fed mice translating to improvements in liver function. Hyperlipidemia-dependent oxidative stress and metabolic dysfunction were largely reversed in RGS7 KD mice. Interestingly, saroglitazar failed to prevent RGS7/ATF3 upregulation but it did partially restore Tip60 levels. RGS7 drives the release of particularly tumor necrosis factor α (TNFα) from isolated hepatocytes, stellate cells and its depletion reverses steatosis, oxidative stress by direct TNFα exposure. Conversely, RGS7 overexpression in the liver is sufficient to trigger oxidative stress in hepatocytes that can be mitigated via TNFα inhibition. Innovation: We discovered a novel non-canonical function for an R7RGS protein, which usually functions to regulate G protein coupled receptor (GPCR) signaling. This is the first demonstration for a functional role of RGS7 outside the retina and central nervous system. Conclusion: RGS7 represents a potential novel target for the amelioration of NAFLD. Antioxid. Redox Signal. 38, 137-159.
Collapse
Affiliation(s)
| | - Kiran Das
- Centre of Biomedical Research, Lucknow, India
| | | | | | | | - Sayan Biswas
- Department of Forensic Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Kalyani, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida, USA
| | | |
Collapse
|
15
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
16
|
Chen C, Lin CJ, Li SY, Hu X, Shao ZM. Identification of a novel signature with prognostic value in triple-negative breast cancer through clinico-transcriptomic analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1095. [PMID: 36388802 PMCID: PMC9652523 DOI: 10.21037/atm-22-1931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
Background Although perceived as a highly aggressive disease, triple-negative breast cancer (TNBC) constitutes heterogeneous features with various outcomes. In this study, we aimed to establish a prognostic signature for patients with TNBC to improve risk stratification. Methods Gene expression data were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were detected pairwise between TNBC and other subtypes of samples. Then, TNBC-correlated modules were determined using coexpression network analysis. A gene signature was established based on the prognostic genes in the intersection between DEGs and selected gene modules using least absolute shrinkage and selection operator (LASSO) Cox regression. Finally, a clinico-transcriptomic signature was developed to predict overall survival (OS). Model performance was quantified, and the bootstrap resampling method was used for validation. Results The gene signature included 6 messenger RNAs (mRNAs) and a clinical score indicating an increased likelihood of death when used as continuous or categorical predictors. A nomogram was built by integrating the pathological stage and gene signature to predict 2-, 3-, and 5-year OS. The addition of pathological stage increased the concordance index (C-index) compared with pathological stage alone and the gene signature alone. Bootstrap resampling revealed a stable performance of the nomogram. Conclusions A 6-mRNA signature was established to inform prognosis for patients with TNBC. Its combination with pathological stage can contribute to improving performance and provide additional supporting evidence for clinical decision-making.
Collapse
Affiliation(s)
- Chao Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China;,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China;,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Yuan Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China;,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China;,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China;,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China;,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Qiu H, Song E, Hu Y, Li T, Ku KC, Wang C, Cheung BMY, Cheong LY, Wang Q, Wu X, Hoo RLC, Wang Y, Xu A. Hepatocyte-Secreted Autotaxin Exacerbates Nonalcoholic Fatty Liver Disease Through Autocrine Inhibition of the PPARα/FGF21 Axis. Cell Mol Gastroenterol Hepatol 2022; 14:1003-1023. [PMID: 35931383 PMCID: PMC9490100 DOI: 10.1016/j.jcmgh.2022.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS The prevalence of nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions globally as a result of the rapid increase in obesity. However, there is no Food and Drug Administration-approved pharmacotherapy available for NAFLD. This study investigated the role of autotaxin, a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidic acid (LPA), in the pathogenesis of NAFLD and to explore whether genetic or pharmacologic interventions targeting autotaxin ameliorate NAFLD. METHODS The clinical association of autotaxin with the severity of NAFLD was analyzed in 125 liver biopsy-proven NAFLD patients. C57BL/6N mice or fibroblast growth factor 21 (FGF21)-null mice were fed a high-fat diet or a choline-deficient diet to investigate the role of the autotaxin-FGF21 axis in NAFLD development by hepatic knockdown and antibody neutralization. Huh7 cells were used to investigate the autocrine effects of autotaxin. RESULTS Serum autotaxin levels were associated positively with histologic scores and NAFLD severity. Hepatocytes, but not adipocytes, were the major contributor to increased circulating autotaxin in both patients and mouse models with NAFLD. In mice, knocking-down hepatic autotaxin or treatment with a neutralizing antibody against autotaxin significantly reduced high-fat diet-induced NAFLD and high fat- and choline-deficient diet-induced nonalcoholic steatohepatitis and fibrosis, accompanied by a marked increase of serum FGF21. Mechanistically, autotaxin inhibited the transcriptional activity of peroxisome proliferator-activated receptor α through LPA-induced activation of extracellular signal-regulated kinas, thereby leading to suppression of hepatic FGF21 production. The therapeutic benefit of anti-autotaxin neutralizing antibody against NAFLD was abrogated in FGF21-null mice. CONCLUSIONS Liver-secreted autotaxin acts in an autocrine manner to exacerbate NAFLD through LPA-induced suppression of the peroxisome proliferator-activated receptor α-FGF21 axis and is a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Han Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tengfei Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Ching Ku
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernard M Y Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Bartolacci C, Andreani C, Vale G, Berto S, Melegari M, Crouch AC, Baluya DL, Kemble G, Hodges K, Starrett J, Politi K, Starnes SL, Lorenzini D, Raso MG, Solis Soto LM, Behrens C, Kadara H, Gao B, Wistuba II, Minna JD, McDonald JG, Scaglioni PP. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat Commun 2022; 13:4327. [PMID: 35882862 PMCID: PMC9325712 DOI: 10.1038/s41467-022-31963-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.
Collapse
Affiliation(s)
- Caterina Bartolacci
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Cristina Andreani
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Gonçalo Vale
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stefano Berto
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Margherita Melegari
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Anna Colleen Crouch
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Tissue Imaging and Proteomics Laboratory, Washington State University, Pullman, WA, 99164, USA
| | | | - Kurt Hodges
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | | | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Sandra L Starnes
- Department of Surgery, Division of Thoracic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Daniele Lorenzini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, via Venezian 1, 20133, Milan, Italy
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic H&N Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA.
| |
Collapse
|
19
|
Wang N, Gu Y, Li L, Chi J, Liu X, Xiong Y, Zhong C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes for Breast Cancer. J Inflamm Res 2022; 15:3477-3499. [PMID: 35726216 PMCID: PMC9206459 DOI: 10.2147/jir.s357144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The changes of lipid metabolism have been implicated in the development of many tumors, but its role in breast invasive carcinoma (BRCA) remains to be fully established. Here, we attempted to ascertain the prognostic value of lipid metabolism-related genes in BRCA. Methods We obtained RNA expression data and clinical information for BRCA and normal samples from public databases and downloaded a lipid metabolism-related gene set. Ingenuity Pathway Analysis (IPA) was applied to identify the potential pathways and functions of Differentially Expressed Genes (DEGs) related to lipid metabolism. Subsequently, univariate and multivariate Cox regression analyses were utilized to construct the prognostic gene signature. Functional enrichment analysis of prognostic genes was achieved by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, clinical follow-up results were employed to assess the prognostic potency. Potential compounds targeting prognostic genes were screened by Connectivity Map (CMap) database and a prognostic gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Furthermore, we separately validated the selected marker genes in BRCA samples and human breast cancer cell lines (MCF-7, MDA-MB-231). Results IPA and functional enrichment analysis demonstrated that the 162 lipid metabolism-related DEGs we obtained were involved in many lipid metabolism and BRCA pathological signatures. The prognostic classifier we constructed comprising SDC1 and SORBS1 can serve as an independent prognostic marker for BRCA. CMap filtered 37 potential compounds against prognostic genes, of which 16 compounds could target both two prognostic genes were identified by CTD. The functions of the two prognostic genes in breast cancer cells were verified by cell function experiments. Conclusion Within this study, we identified a novel prognostic classifier based on two lipid metabolism-related genes: SDC1 and SORBS1. This result highlighted a new perspective on the metabolic exploration of BRCA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
20
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
21
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Cytoplasmic fatty acid-binding proteins in metabolic diseases and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:143-174. [PMID: 36088074 DOI: 10.1016/bs.apcsb.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytoplasmic fatty acid-binding proteins (FABPs) are multipurpose proteins that can modulate lipid fluxes, trafficking, signaling, and metabolism. FABPs regulate metabolic and inflammatory pathways, its inhibition can improve type 2 diabetes mellitus and atherosclerosis. In addition, FABPs are involved in obesity, metabolic disease, cardiac dysfunction, and cancers. FABPs are promising tissue biomarkers in solid tumors for diagnostic and/or prognostic targets for novel therapeutic strategies. The signaling responsive elements of FABPs and determinants of FABP-mediated functions may be exploited in preventing or treating these diseases.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
23
|
Chang X, Xing P. Identification of a novel lipid metabolism-related gene signature within the tumour immune microenvironment for breast cancer. Lipids Health Dis 2022; 21:43. [PMID: 35562758 PMCID: PMC9103058 DOI: 10.1186/s12944-022-01651-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Systemic factors can strongly affect how tumour cells behave, grow, and communicate with other cells in breast cancer. Lipid metabolic reprogramming is a systemic process that tumour cells undergo; however, the formation and dynamics of lipids associated with the tumour immune microenvironment (TIME) remain unclear. The investigation of the sophisticated bidirectional crosstalk of tumour cells with cancer metabolism, gene expression, and TIME could have the potential to identify novel biomarkers for diagnosis, prognosis, and immunotherapy. This study aimed to construct a prognostic signature to detect the bicrosstalk between the lipid metabolic system and the TIME of breast cancer. Methods To detect the expression of LRGs and execute GO/KEGG analysis, the R program was chosen. Considering the clinical information and pathological features, a prognostic gene signature was constructed by LASSO Cox regression analysis. TMB, MSI, and immune infiltration analyses were performed, and consensus cluster analysis of LRGs was also performed. Results These 16 lipid metabolism-related genes (LRGs) were mainly involved in the process of lipid metabolism and fatty acid binding in breast cancer. Prognosis analysis identified the prognostic value of FABP7(Fatty acid binding protein 7) and NDUFAB1(NADH:ubiquinone oxidoreductase subunit AB1) in breast cancer patients. The prognostic gene signature constructed with FABP7 and NDUFAB1 was significantly related to immune cell infiltration and could predict the overall survival rate with above average correctness of breast cancer patients. FABP7 and NDUFAB1 were proven to have relevance in immune cell infiltration and tumour mutation burden (TMB). Consensus cluster analysis identified that the upregulated mRNAs were mostly related to the oncogenesis process, while the downregulated mRNAs were associated with immune-related signalling pathways. Conclusion A comprehensive analysis was performed to evaluate the lipid metabolic system and identified a signature constructed by two prognostic genes for immunotherapies in breast cancer. The results also revealed evidence of vulnerabilities in the interplay between the lipid metabolic system and the TIME in breast cancer. Further data with clinical studies and experiments are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01651-9.
Collapse
Affiliation(s)
- Xu Chang
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Affiliated Hospital of China Medical University, No.77 PuHe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Affiliated Hospital of China Medical University, No.77 PuHe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
24
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
25
|
MicroRNA hsa-miR-657 promotes retinoblastoma malignancy by inhibiting peroxisome proliferator-activated receptor alpha expression. Anticancer Drugs 2022; 33:478-488. [PMID: 35324527 DOI: 10.1097/cad.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinoblastoma is a familial inherited embryonic neuroretinal malignancy with a low survival rate and poor prognosis. Our study aimed to evaluate the potential interaction between microRNA miR-657 and the peroxisome proliferator-activated receptor alpha (PPARA) in retinoblastoma. Expression of miR-657 and PPARA was analyzed in retinoblastoma tissues and cells using RT-qPCR. Cell proliferation, apoptosis, and migration were measured in retinoblastoma cell lines, and xenografting experiments were performed using nude mice. Our study showed that miR-657 expression was markedly increased, whereas that of PPARA was markedly decreased in retinoblastoma. Additionally, PPARA knockdown enhanced the development of retinoblastoma. miR-657 enhanced the retinoblastoma tumorigenesis by directly inhibiting PPARA expression, suggesting that PPARA targeting by miR-657 facilitates retinoblastoma development by enhancing cell growth. This study provides novel insights into the miR-657- and PPARA-mediated mechanisms underlying retinoblastoma progression and suggests that the interaction between miR-657 and PPARA may serve as an effective target for therapeutic intervention.
Collapse
|
26
|
Yamada M, Suzuki J, Sato S, Zenimaru Y, Saito R, Konoshita T, Kraemer FB, Ishizuka T. Hormone-sensitive lipase protects adipose triglyceride lipase-deficient mice from lethal lipotoxic cardiomyopathy. J Lipid Res 2022; 63:100194. [PMID: 35283217 PMCID: PMC9062333 DOI: 10.1016/j.jlr.2022.100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
|
27
|
Veeriah V, Lee SH, Levine F. Long-term oral administration of an HNF4α agonist prevents weight gain and hepatic steatosis by promoting increased mitochondrial mass and function. Cell Death Dis 2022; 13:89. [PMID: 35087037 PMCID: PMC8795379 DOI: 10.1038/s41419-022-04521-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
We report here that the potent HNF4α agonist N-trans-caffeoyltyramine (NCT) promotes weight loss by inducing an increase in mitochondrial mass and function, including fatty acid oxidation. Previously, we found in a short term trial in obese mice that NCT promoted reversal of hepatic steatosis through a mechanism involving the stimulation of lipophagy by dihydroceramides. NCT led to increased dihydroceramide levels by inhibiting dihydroceramide conversion to ceramides. Here, we were able to administer NCT orally, permitting longer term administration. Mice fed NCT mixed with high fat diet exhibited decreased weight. Examination of RNA-seq data revealed an increase in PPARGC1A, a central regulator of mitochondrial biogenesis. In addition to the decreased hepatic steatosis that we found previously, mice fed a high fat diet containing NCT mice weighed substantially less than control mice fed high fat diet alone. They had increased mitochondrial mass, exhibited increased fatty acid oxidation, and had an increased level of NAD. Markers of liver inflammation such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), which are important in the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis were decreased by NCT. There was no evidence of any toxicity from NCT consumption. These results indicate that HNF4α is an important regulator of mitochondrial mass and function and support that use of HNF4α to treat disorders of fatty acid excess, potentially including obesity, NAFLD, and NASH.
Collapse
|
28
|
Mahata T, Sengar AS, Basak M, Das K, Pramanick A, Verma SK, Singh PK, Biswas S, Sarkar S, Saha S, Chatterjee S, Das M, Stewart A, Maity B. Hepatic Regulator of G Protein Signaling 6 (RGS6) drives non-alcoholic fatty liver disease by promoting oxidative stress and ATM-dependent cell death. Redox Biol 2021; 46:102105. [PMID: 34534913 PMCID: PMC8446788 DOI: 10.1016/j.redox.2021.102105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022] Open
Abstract
The pathophysiological mechanism(s) driving non-alcoholic fatty liver disease, the most prevalent chronic liver disease globally, have yet to be fully elucidated. Here, we identify regulator of G protein signaling 6 (RGS6), up-regulated in the livers of NAFLD patients, as a critical mediator of hepatic steatosis, fibrosis, inflammation, and cell death. Human patients with high hepatic RGS6 expression exhibited a corresponding high inflammatory burden, pronounced insulin resistance, and poor liver function. In mice, liver-specific RGS6 knockdown largely ameliorated high fat diet (HFD)-driven oxidative stress, fibrotic remodeling, inflammation, lipid deposition and cell death. RGS6 depletion allowed for maintenance of mitochondrial integrity restoring redox balance, improving fatty acid oxidation, and preventing loss of insulin receptor sensitivity in hepatocytes. RGS6 is both induced by ROS and increases ROS generation acting as a key amplification node to exacerbate oxidative stress. In liver, RGS6 forms a direct complex with ATM kinase supported by key aspartate residues in the RGS domain and is both necessary and sufficient to drive hyperlipidemia-dependent ATM phosphorylation. pATM and markers of DNA damage (γH2AX) were also elevated in livers from NAFLD patients particularly in samples with high RGS6 protein content. Unsurprisingly, RGS6 knockdown prevented ATM phosphorylation in livers from HFD-fed mice. Further, RGS6 mutants lacking the capacity for ATM binding fail to facilitate palmitic acid-dependent hepatocyte apoptosis underscoring the importance of the RGS6-ATM complex in hyperlipidemia-dependent cell death. Inhibition of RGS6, then, may provide a viable means to prevent or reverse liver damage by mitigating oxidative liver damage.
Collapse
Affiliation(s)
- Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Abhishek Singh Sengar
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Arnab Pramanick
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sumit Kumar Verma
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Praveen Kumar Singh
- Department of Surgery, Millers School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sayan Biswas
- Department of Forensic Medicine, College of Medicine and Sagore Dutta Hospital, B.T. Road, Kamarhati, Kolkata, West Bengal, 700058, India
| | - Subhasish Sarkar
- Department of Surgery, College of Medicine and Sagore Dutta Hospital, B.T. Road, Kamarhati, Kolkata, West Bengal, 700058, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University and Vascular Biology Laboratory, AU-KBC Research Centre, MIT Campus, Chennai, 600044, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
29
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
30
|
Zhang LS, Xiong QP, Perez SP, Liu C, Wei J, Le C, Zhang L, Harada BT, Dai Q, Feng X, Hao Z, Wang Y, Dong X, Hu L, Wang ED, Pan T, Klungland A, Liu RJ, He C. ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nat Cell Biol 2021; 23:684-691. [PMID: 34253897 PMCID: PMC8716185 DOI: 10.1038/s41556-021-00709-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Members of the mammalian AlkB family are known to mediate nucleic acid demethylation1,2. ALKBH7, a mammalian AlkB homologue, localizes in mitochondria and affects metabolism3, but its function and mechanism of action are unknown. Here we report an approach to site-specifically detect N1-methyladenosine (m1A), N3-methylcytidine (m3C), N1-methylguanosine (m1G) and N2,N2-dimethylguanosine (m22G) modifications simultaneously within all cellular RNAs, and discovered that human ALKBH7 demethylates m22G and m1A within mitochondrial Ile and Leu1 pre-tRNA regions, respectively, in nascent polycistronic mitochondrial RNA4-6. We further show that ALKBH7 regulates the processing and structural dynamics of polycistronic mitochondrial RNAs. Depletion of ALKBH7 leads to increased polycistronic mitochondrial RNA processing, reduced steady-state mitochondria-encoded tRNA levels and protein translation, and notably decreased mitochondrial activity. Thus, we identify ALKBH7 as an RNA demethylase that controls nascent mitochondrial RNA processing and mitochondrial activity.
Collapse
Affiliation(s)
- Li-Sheng Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Qing-Ping Xiong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Sonia Peña Perez
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chang Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Cassy Le
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Linda Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Bryan T. Harada
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Xinran Feng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Ziyang Hao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuru Wang
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xueyang Dong
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Lulu Hu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ru-Juan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Liu C, Zhou X, Pan Y, Liu Y, Zhang Y. Pyruvate carboxylase promotes thyroid cancer aggressiveness through fatty acid synthesis. BMC Cancer 2021; 21:722. [PMID: 34158007 PMCID: PMC8220755 DOI: 10.1186/s12885-021-08499-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pyruvate carboxylase (PC) is an important anaplerotic enzyme in the tricarboxylic acid cycle (TCA) in cancer cells. Although PC overexpression has been observed in thyroid cancer (TC), the mechanisms involved in the carcinogenic effects of PC are still unclear. Methods Bioinformatics analysis and clinical specimens were used to analyze the relationship of PC expression with clinicopathological variables in TC. Fatty acid synthesis was monitored by LC/MS, Nile red staining, and triglyceride analysis. Mitochondrial oxygen consumption was evaluated by the Seahorse XF Mito Cell Stress Test. The correlation of PC with FASN and SREBP1c was assessed by qRT-PCR and IHC in 38 human TC tissues. Western blotting was used to evaluate the protein expression of PC, FASN, and SREBP1c and members of the AKT/mTOR and EMT pathways in TC cell lines. Wound-healing, CCK-8, and Transwell assays and a nude mouse xenograft model were used to verify the regulatory effects of PC and SREBP1c on thyroid tumor cell proliferation, migration and invasion. Results We demonstrated that PC increased fatty acid synthesis, which then promoted TC progression and metastasis. Analysis of GEO data showed that the overexpression of PC in papillary thyroid cancer (PTC) was associated with PTC invasion and the fatty acid synthesis pathway. Analysis of clinical tissue specimens from PTC patients revealed that PC was more highly expressed in specimens from PTC patients with lymph node metastasis than in those from patients without metastasis. Multiple genes in the fatty acid synthesis signaling pathway, including FASN and SREBP1c, were downregulated in PC-knockdown TC cells compared to control cells. Lipid levels were also decreased in the PC-knockdown TC cells. Moreover, the ability of cells to grow, invade, and metastasize was also suppressed upon PC knockdown, suggesting that PC-mediated lipogenesis activation increases the aggressiveness of TC cells. In addition, PC was found to activate the AKT/mTOR pathway, thus improving FASN-mediated de novo lipogenesis in TC cells by upregulating SREBP1c expression. Studies in a nude mouse xenograft model showed that PC knockdown decreased tumor weight, but this effect was attenuated by forced expression of SREBP1c. Conclusions Our results demonstrate that PC is strongly involved in the tumor aggressiveness of TC via its stimulation of fatty acid synthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08499-9.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
32
|
Fenofibrate Exerts Antitumor Effects in Colon Cancer via Regulation of DNMT1 and CDKN2A. PPAR Res 2021; 2021:6663782. [PMID: 33959155 PMCID: PMC8075693 DOI: 10.1155/2021/6663782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARA) is the molecular target of fibrates commonly used to treat dyslipidemia and diabetes. Recently, the potential role of PPARA in other pathological conditions, such as cancers, has been recognized. Here, using bioinformatics analysis, we found that PPARA was expressed at relatively low levels in pancancers, and Kaplan-Meier analyses revealed that high PPARA protein expression was correlated with better survival of patients with colon cancer. In vitro experiments showed that fenofibrate regulated cell cycle distribution, promoted apoptosis, and suppressed cell proliferation and epithelial mesenchymal transition by activating PPARA. PPARA activation inhibited DNMT1 activity and abolished methylation-mediated CDKN2A repression. Downregulation of cyclin-CDK complexes led to the restoration of CDKN2A, which caused cell cycle arrest in the G1 phase via regulation of the CDKN2A/RB/E2F pathway. Finally, we demonstrated that fenofibrate administration inhibited tumor growth and DNMT1 activity in vivo. The PPARA agonist, fenofibrate, might serve as an applicable agent for epigenetic therapy of colon cancer patients.
Collapse
|
33
|
Horie T, Nakao T, Miyasaka Y, Nishino T, Matsumura S, Nakazeki F, Ide Y, Kimura M, Tsuji S, Rodriguez RR, Watanabe T, Yamasaki T, Xu S, Otani C, Miyagawa S, Matsushita K, Sowa N, Omori A, Tanaka J, Nishimura C, Nishiga M, Kuwabara Y, Baba O, Watanabe S, Nishi H, Nakashima Y, Picciotto MR, Inoue H, Watanabe D, Nakamura K, Sasaki T, Kimura T, Ono K. microRNA-33 maintains adaptive thermogenesis via enhanced sympathetic nerve activity. Nat Commun 2021; 12:843. [PMID: 33594062 PMCID: PMC7886914 DOI: 10.1038/s41467-021-21107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33−/− mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-β-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/fDBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress. Adaptive thermogenesis is regulated by central neuronal circuits. Here, the authors show that microRNA-33 in the brain contributes to the maintenance of brown adipose tissue thermogenesis and whole-body energy balance via enhanced sympathetic nerve tone, and regulating the expression of GABAa receptor subunits.
Collapse
Affiliation(s)
- Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yui Miyasaka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenobu Matsumura
- Laboratory of Physiological Functions of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Randolph Ruiz Rodriguez
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimitsu Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Yamasaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sijia Xu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chiharu Otani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sawa Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Matsushita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Sowa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Omori
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jin Tanaka
- Laboratory of Physiological Functions of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chika Nishimura
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marina R Picciotto
- Department of Psychiatry and Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
34
|
Feng J, Ren J, Yang Q, Liao L, Cui L, Gong Y, Sun S. Metabolic gene signature for predicting breast cancer recurrence using transcriptome analysis. Future Oncol 2021; 17:71-80. [PMID: 33397130 DOI: 10.2217/fon-2020-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The study aimed at identifying a metabolic gene signature for stratifying the risk of recurrence in breast cancer. Materials & methods: The data of patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The limma package was used to identify differentially expressed metabolic genes, and a metabolic gene signature was constructed. Results: A five-gene metabolic signature was established that demonstrated satisfactory accuracy and predictive power in both training and validation cohorts. Also, a nomogram for predicting recurrence-free survival was established using a combination of the metabolism gene risk score and the clinicopathological features. Conclusions: The proposed metabolic gene signature and nomogram have a significant prognostic value and may improve the recurrence risk stratification for breast cancer patients.
Collapse
Affiliation(s)
- Juan Feng
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qingfeng Yang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Lingxia Liao
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Le Cui
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Shengrong Sun
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
35
|
Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P. PPAR-α Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:599995. [PMID: 33833983 PMCID: PMC8021859 DOI: 10.3389/fonc.2021.599995] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. PPAR modulators may hold great potential for the management of cancer patients. Indeed, PPARs are critical sensors and regulators of lipid, and they are able to promote eNOS activation, regulate immunity and inflammation response, and affect proliferation and differentiation of cancer cells. Cancer, a name given to a group of diseases, is characterized by multiple distinctive biological behaviors, including angiogenesis, abnormal cell proliferation, aerobic glycolysis, inflammation, etc. In the last decade, emerging evidence has shown that PPAR-α, a nuclear hormone receptor, can modulate carcinogenesis via exerting effects on one or several characteristic pathological behaviors of cancer. Therefore, the multi-functional PPAR modulators have substantial promise in various types of cancer therapies. This review aims to consolidate the functions of PPAR-α, as well as discuss the current and potential applications of PPAR-α agonists and antagonists in tackling cancer.
Collapse
Affiliation(s)
- Yan Tan
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiange Chi
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
- Zehuan Liao
| | - Peng Wei
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei
| |
Collapse
|
36
|
Kwong SC, Abd Jamil AH, Rhodes A, Taib NA, Chung I. Fatty acid binding protein 7 mediates linoleic acid-induced cell death in triple negative breast cancer cells by modulating 13-HODE. Biochimie 2020; 179:23-31. [PMID: 32931863 DOI: 10.1016/j.biochi.2020.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Abstract
Different fatty acids have distinct effects on the survival of breast cancer cells, which could be mediated by fatty acid binding proteins (FABPs), a family of lipid chaperones. Due to the diverse structures of the members of FABP family, each FABP demonstrates distinct binding affinities to different fatty acids. Of note, FABP7 is predominantly expressed in triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer. Yet, the role of FABP7 in modulating the effects of fatty acids on TNBC survival was unclear. In contrast to the high expression of FABP7 in human TNBC tumours, FABP7 protein was undetectable in TNBC cell lines. Hence, a FABP7 overexpression model was used for this study, in which the transduced TNBC cell lines (MDA-MB-231 and Hs578T) were treated with various mono- and polyunsaturated fatty acids. Oleic acid (OA), docosahexaenoic acid (DHA) and arachidonic acid (AA) inhibited TNBC cell growth at high concentrations, with no differences resulted from FABP7 overexpression. Interestingly, overexpression of FABP7 augmented linoleic acid-induced cell death in MDA-MB-231 cells. The increased cell death may be explained by a decrease in 13-HODE, a pro-tumorigenic oxidation product of linoleic acid. The phenotype was, however, attenuated with a rescue treatment using 25 nM 13-HODE. The decrease in 13-HODE was potentially due to fatty acid partitioning modulated by FABP7, as demonstrated by a 3-fold increase in fatty acid oxidation. Our findings suggest that linoleic acid could be a potential therapeutic strategy for FABP7-overexpressing TNBC patients.
Collapse
Affiliation(s)
- Soke Chee Kwong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anthony Rhodes
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nur Aishah Taib
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Blücher C, Iberl S, Schwagarus N, Müller S, Liebisch G, Höring M, Hidrobo MS, Ecker J, Spindler N, Dietrich A, Burkhardt R, Stadler SC. Secreted Factors from Adipose Tissue Reprogram Tumor Lipid Metabolism and Induce Motility by Modulating PPARα/ANGPTL4 and FAK. Mol Cancer Res 2020; 18:1849-1862. [DOI: 10.1158/1541-7786.mcr-19-1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022]
|
38
|
Xu D, Shen L, Zhou L, Sha W, Yang J, Lu G. Upregulation of FABP7 inhibits acute kidney injury-induced TCMK-1 cell apoptosis via activating the PPAR gamma signalling pathway. Mol Omics 2020; 16:533-542. [PMID: 33315023 DOI: 10.1039/d0mo00056f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a frequently seen critical disorder in the clinic. The current research aimed to examine the role of hydroxyacid oxidase 2 (FABP7) in AKI-induced cell apoptosis. A total of 289 overlapping genes were used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and to construct a protein-protein interaction (PPI) network using the DAVID database and Cytoscape software. The 10 hub genes of the PPI network were screened out using the cytohubba plug-in of Cytoscape software. FABP7 represented both the differentially expressed gene (DEG) from the GSE44925 and GSE62732 datasets and the top hub gene of the PPI network. The results of the PAS assay showed that FABP7 knockout in vivo aggravated lipopolysaccharide (LPS)-induced AKI. Meanwhile, LPS inhibited cell viability and the expression of FABP7, PPARγ, PPARα, PTEN and p27kip1, and increased the TNF-α level, and cleaved caspase-3/-9 expression and the phosphorylation of PTEN in vitro. FABP7 overexpression reversed the effects of LPS on inhibiting cell viability and proliferation, promoting cell apoptosis, increasing the expression of FABP7, PPARγ, PTEN and p27kip1, and reducing cleaved caspase-3/-9 expression and the phosphorylation of PTEN, but had no influence on PPARα expression. The PPARγ signal pathway inhibitors blocked the protective effect of FABP7 overexpression in LPS-treated TCMK-1 cells, while the PPARγ signal pathway activator inhibited the harmful effect of FABP7 inhibition in LPS-treated TCMK-1 cells. In conclusion, FABP7 overexpression inhibited the AKI-induced cell apoptosis and promoted the proliferation through activating the PPARγ signal pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Deyu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, Jiangsu Province 215006, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
39
|
Cheng X, Geng F, Pan M, Wu X, Zhong Y, Wang C, Tian Z, Cheng C, Zhang R, Puduvalli V, Horbinski C, Mo X, Han X, Chakravarti A, Guo D. Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress. Cell Metab 2020; 32:229-242.e8. [PMID: 32559414 PMCID: PMC7415721 DOI: 10.1016/j.cmet.2020.06.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM), a mostly lethal brain tumor, acquires large amounts of free fatty acids (FAs) to promote cell growth. But how the cancer avoids lipotoxicity is unknown. Here, we identify that GBM upregulates diacylglycerol-acyltransferase 1 (DGAT1) to store excess FAs into triglycerides and lipid droplets. Inhibiting DGAT1 disrupted lipid homeostasis and resulted in excessive FAs moving into mitochondria for oxidation, leading to the generation of high levels of reactive oxygen species (ROS), mitochondrial damage, cytochrome c release, and apoptosis. Adding N-acetyl-cysteine or inhibiting FA shuttling into mitochondria decreased ROS and cell death induced by DGAT1 inhibition. We show in xenograft models that targeting DGAT1 blocked lipid droplet formation, induced tumor cell apoptosis, and markedly suppressed GBM growth. Together, our study demonstrates that DGAT1 upregulation protects GBM from oxidative damage and maintains lipid homeostasis by facilitating storage of excess FAs. Targeting DGAT1 could be a promising therapeutic approach for GBM.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiaoning Wu
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhihua Tian
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Rui Zhang
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Vinay Puduvalli
- Division of Neuro-Oncology, Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Craig Horbinski
- Departments of Pathology and Neurosurgery, Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - Xiaokui Mo
- Biostatistic Center and Department of Bioinformatics, College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Wu J, Liu XJ, Hu JN, Liao XH, Lin FF. Transcriptomics and Prognosis Analysis to Identify Critical Biomarkers in Invasive Breast Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820957011. [PMID: 33176622 PMCID: PMC7672771 DOI: 10.1177/1533033820957011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Invasive breast cancer (BRCA) is one of the prevalent types of invasive tumors with high mortality worldwide. Due to the lack of effective treatment to control the recurrence of distant metastases, the prognosis of BRCA is still very unsatisfactory. We aimed to find some biomarkers by bioinformatics analysis for survival prediction. METHODS Differentially expressed genes (DEGs) were screened out based on tumor group and normal group. Then, the weighted gene correlation network analysis (WGCNA) was employed to identify the clinically associated gene sets. Meanwhile, the enrichment analyses were performed for the functional annotation of the critical genes. The Kaplan Meier analysis calculated the essential genes' prognostic value. RESULTS After threshold screening, 1655 DEGs were obtained for subsequent analysis. 51 out of 1655 DEGs were significantly associated with BRCA patients' estrogen receptor status via WGCNA. Three genes (FABP7, CXCL3, and LOC284578) out of the 51 genes were associated with overall survival, and 3 genes were relapse-free survival associated. Finally, we obtained 5 essential prognostic associated genes (FABP7, CXCL3, LOC284578, CAPN6, and NRG2), which could be used as prognostic factors for BRCA. CONCLUSION Our findings obtained a gene module associated with BRCA clinical trait and several key genes that acted as essential components in the prognostic of cancer, which may improve its treatment.
Collapse
Affiliation(s)
- Jun Wu
- Pathology Department, The People’s Hospital of Lishui, Zhejiang, China
| | - Xiao-Jun Liu
- External Liaison Office, The Central Hospital of Lishui City, Zhejiang, China
| | - Jia-Nan Hu
- The Oncology Department, The People’s Hospital of Lishui, Zhejiang, China
| | - Xu-Hui Liao
- Pathology Department, The People’s Hospital of Lishui, Zhejiang, China
| | - Fei-Fei Lin
- Department of Clinical laboratory, The People’s Hospital of Lishui, Zhejiang, China
| |
Collapse
|
41
|
Sun X, Wang M, Wang M, Yu X, Guo J, Sun T, Li X, Yao L, Dong H, Xu Y. Birth order and multiple sclerosis. Acta Neurol Scand 1982; 10:428. [PMID: 32296646 PMCID: PMC7136496 DOI: 10.3389/fonc.2020.00428] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023]
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, in which cancer cells exhibit distinct metabolic phenotypes to fuel their proliferation and progression. The significant advancements made in the area of metabolic reprogramming make possible new strategies for overcoming malignant cancer, including triple-negative breast cancer. Triple-negative breast cancer (TNBC) is associated with high histologic grade, aggressive phenotype, and poor prognosis. Even though triple-negative breast cancer patients benefit from standard chemotherapy, they still face high recurrence rates and are more likely to develop resistance to chemotherapeutic drugs. Therefore, there is an urgent need to explore vulnerabilities of triple-negative breast cancer and develop novel therapeutic drugs to improve clinical outcomes for triple-negative breast cancer patients. Metabolic reprogramming may provide promising therapeutic targets for the treatment of triple-negative breast cancer. In this paper, we primarily discuss how triple-negative breast cancer cells reprogram their metabolic phenotype and that of stromal cells in the microenvironment to survive under nutrient-poor conditions. Considering that metastasis and chemoresistance are the main contributors to mortality in triple-negative breast cancer patients, we also focus on the role of metabolic adaption in mediating metastasis and chemoresistance of triple-negative breast cancer tumors.
Collapse
|