1
|
Yang T, Tang S, Feng J, Yan X. Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers. ACS MEASUREMENT SCIENCE AU 2024; 4:213-222. [PMID: 38645577 PMCID: PMC11027206 DOI: 10.1021/acsmeasuresciau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Changes in the levels of lipid sn-positional isomers are associated with perturbation of the physiological environment within the biological system. Consequently, knowing the concentrations of these lipids holds significant importance for unraveling their involvement in disease diagnosis and pathological mechanisms. However, existing methods for lipid quantification often fall short in accuracy due to the structural diversity and isomeric forms of lipids. To address this challenge, we have developed an aziridine-based isobaric tag labeling strategy that allows (i) differentiation and (ii) enhanced relative quantification of lipid sn-positional isomers from distinct samples in a single run. The methodology enabled by aziridination, isobaric tag labeling, and lithiation has been applied to various phospholipids, enabling the determination of the sn-positions of fatty acyl chains and enhanced relative quantification. The analysis of Escherichia coli lipid extracts demonstrated the enhanced determination of the concentration ratios of lipid isomers by measuring the intensity ratios of mass reporters released from sn-positional diagnostic ions. Moreover, we applied the method to the analysis of human colon cancer plasma. Intriguingly, 17 PC lipid sn-positional isomers were identified and quantified simultaneously, and among them, 7 showed significant abundance changes in the colon cancer plasma, which can be used as potential plasma markers for diagnosis of human colon cancer.
Collapse
Affiliation(s)
- Tingyuan Yang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Shuli Tang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Jiaxin Feng
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Yang T, Tang S, Kuo S, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification**. Angew Chem Int Ed Engl 2022; 61:e202207098. [DOI: 10.1002/anie.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tingyuan Yang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Shuli Tang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Syuan‐Ting Kuo
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Dallas Freitas
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Madison Edwards
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Hongying Wang
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Yuxiang Sun
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Xin Yan
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| |
Collapse
|
3
|
Yang T, Tang S, Kuo ST, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shuli Tang
- Texas A&M University Chemistry UNITED STATES
| | | | | | | | - Hongying Wang
- Texas A&M University Department of Nutrition UNITED STATES
| | - Yuxiang Sun
- Texas A&M University Department of Nutrition UNITED STATES
| | - Xin Yan
- Texas A&M University Chemistry 580 Ross St 77840 College Station UNITED STATES
| |
Collapse
|
4
|
Tokuoka SM, Kita Y, Sato M, Shimizu T, Yatomi Y, Oda Y. Development of Tandem Mass Tag Labeling Method for Lipid Molecules Containing Carboxy and Phosphate Groups, and Their Stability in Human Serum. Metabolites 2020; 11:metabo11010019. [PMID: 33396791 PMCID: PMC7824108 DOI: 10.3390/metabo11010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
In clinical lipidomics, it is a challenge to measure a large number of samples and to reproduce the quantitative results. We expanded the range of application of the tandem mass tag (TMT) method, which is widely used in proteomics, to lipidomic fields. There are various types of lipid molecule, for example, eicosanoids have a carboxyl group and phosphatidic acid has a phosphate group. We modified these functional groups simultaneously with TMT. This approach allows for a single analysis by mixing six samples and using one of the six samples as a bridging sample; the quantitative data can be easily normalized even if the number of measurements increases. To accommodate a large number of samples, we utilize a pooled serum sample of 300 individuals as a bridging sample. The stability of these lipid molecules in serum was examined as an analytical validation for the simultaneous TMT labeling. It was found that the stability of these lipid molecules in serum differs greatly depending on the lipid species. These findings reaffirmed the importance of proper sample preparation and storage to obtain reliable data. The TMT labeling method is expected to be a useful method for lipidomics with high-throughput and reliable reproducibility.
Collapse
Affiliation(s)
- Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- Department of Lipid Signaling, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- Correspondence: ; Tel.: +81-3-5841-3540
| |
Collapse
|
5
|
Abstract
Outbreaks of trichinellosis caused by Trichinella papuae have been reported in South-East Asia. Mebendazole and thiabendazole are the treatments of choice for trichinellosis; however, both drugs result in significant side effects and are less effective for muscle-stage larvae (L1). An alternative therapeutic agent is needed to improve treatment. Information on lipid composition and metabolic pathways may bridge gaps in our knowledge and lead to new antiparasitics. The T. papuae L1 lipidome was analysed using a mass spectrometry-based approach, and 403 lipid components were identified. Eight lipid classes were found and glycerophospholipids were dominant, corresponding to 63% of total lipids, of which the glycerolipid DG (20:1[11Z]/22:4[7Z,10Z,13Z,16Z]/0:0) (iso2) was the most abundant. Overall, 57% of T. papuae lipids were absent in humans; therefore, lipid metabolism may be dissimilar in the two species. Proteins involved T. papuae lipid metabolism were explored using bioinformatics. We found that 4-hydroxybutyrate coenzyme A transferase, uncharacterized protein (A0A0V1MCB5) and ML-domain-containing protein are not present in humans. T. papuae glycerophospholipid metabolic and phosphatidylinositol dephosphorylation processes contain several proteins that are dissimilar to those in humans. These findings provide insights into T. papuae lipid composition and metabolism, which may facilitate the development of novel trichinellosis treatments.
Collapse
|
6
|
Tokuoka SM, Kita Y, Shimizu T, Oda Y. Isobaric mass tagging and triple quadrupole mass spectrometry to determine lipid biomarker candidates for Alzheimer's disease. PLoS One 2019; 14:e0226073. [PMID: 31821352 PMCID: PMC6903722 DOI: 10.1371/journal.pone.0226073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
The isobaric tagging method widely used in proteomic and lipidomic fields, with the multiple reaction monitoring (MRM) approach using a triple quadrupole mass spectrometer, was applied to identify biomarker candidates from plasma samples for Alzheimer’s disease (AD). We focused on the following phospholipids that have amino groups as the functional group: phosphatidylethanolamine (PE), Lyso-PE, phosphatidylserine, and Lyso-phosphatidylserine. We also investigated fatty acids that have a carboxy group. A sixplex tandem mass tag (TMT) was used for the isobaric tagging method in this study. The TMT reaction had high reproducibility in human plasma. A total of 196 human plasma samples from three AD cohorts were used for the study, and compared to pooled plasma quality control (QC) samples. The described method required only 40 MRM measurements, including the pooled QC samples, for a full comparison of the data. We found that the content of free fatty acids increased in AD samples in all the three cohorts, alkenyl PEs (ePEs) decreased over a one-year interval in AD patients, and ePEs weakly correlated with amyloid peptide (a-beta) 1–42 in cerebrospinal fluid. In conclusion, total free fatty acids in plasma are a risk factor for AD, and ePEs monitor candidates for AD. Therefore, TMT-lipidomics is a powerful approach for the determination of plasma biomarkers because of the high sample throughput.
Collapse
Affiliation(s)
- Suzumi M. Tokuoka
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
| | - Yoshihiro Kita
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
| | - Takao Shimizu
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
| | - Yoshiya Oda
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
- * E-mail:
| |
Collapse
|
7
|
Kim J, Kang D, Lee SK, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification: Application to Lipidomics. Anal Chem 2019; 91:8853-8863. [PMID: 31246424 DOI: 10.1021/acs.analchem.9b00086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel quantitative mass spectrometric method based on partial metabolic deuterium oxide (D2O) labeling, named "Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ)", was developed for relative quantification of lipids on a global scale. To assess the precision and robustness of DOLGOReQ, labeled and unlabeled lipids from HeLa cells were mixed in various ratios based on their cell numbers. Using in-house software developed for automated high-throughput data analysis of DOLGOReQ, the number of detectable mass isotopomers and the degree of deuterium labeling were exploited to filter out low quality quantification results. Quantification of an equimolar mixture of HeLa cell lipids exhibited high reproducibility and accuracy across multiple biological and technical replicates. Two orders of magnitude of effective dynamic range for reasonable relative quantification could be established with HeLa cells mixed from 10:1 to 1:10 ratios between labeled and unlabeled samples. The quantification precision of DOLGOReQ was also illustrated with lipids commonly detected in both positive and negative ion modes. Finally, quantification performance of DOLGOReQ was demonstrated in a biological sample by measuring the relative change in the lipidome of HeLa cells under normal and hypoxia conditions.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology , Korea Research Institute of Standards and Science , Daejeon 34113 , Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology , College of Medicine, Konyang University , Daejeon 35365 , Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
8
|
Wangler MF, Hubert L, Donti TR, Ventura MJ, Miller MJ, Braverman N, Gawron K, Bose M, Moser AB, Jones RO, Rizzo WB, Sutton VR, Sun Q, Kennedy AD, Elsea SH. A metabolomic map of Zellweger spectrum disorders reveals novel disease biomarkers. Genet Med 2018; 20:1274-1283. [PMID: 29419819 PMCID: PMC7605708 DOI: 10.1038/gim.2017.262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Peroxisome biogenesis disorders-Zellweger spectrum disorders (PBD-ZSD) are metabolic diseases with multisystem manifestations. Individuals with PBD-ZSD exhibit impaired peroxisomal biochemical functions and have abnormal levels of peroxisomal metabolites, but the broader metabolic impact of peroxisomal dysfunction and the utility of metabolomic methods is unknown. METHODS We studied 19 individuals with clinically and molecularly characterized PBD-ZSD. We performed both quantitative peroxisomal biochemical diagnostic studies in parallel with untargeted small molecule metabolomic profiling in plasma samples with detection of >650 named compounds. RESULTS The cohort represented intermediate to mild PBD-ZSD subjects with peroxisomal biochemical alterations on targeted analysis. Untargeted metabolomic profiling of these samples revealed elevations in pipecolic acid and long-chain lysophosphatidylcholines, as well as an unanticipated reduction in multiple sphingomyelin species. These sphingomyelin reductions observed were consistent across the PBD-ZSD samples and were rare in a population of >1,000 clinical samples. Interestingly, the pattern or "PBD-ZSD metabolome" was more pronounced in younger subjects suggesting studies earlier in life reveal larger biochemical changes. CONCLUSION Untargeted metabolomics is effective in detecting mild to intermediate cases of PBD-ZSD. Surprisingly, dramatic reductions in plasma sphingomyelin are a consistent feature of the PBD-ZSD metabolome. The use of metabolomics in PBD-ZSD can provide insight into novel biomarkers of disease.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
- Texas Children's Hospital, Houston, Texas, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.
- Developmental Biology Program, Baylor College of Medicine, Houston, Texas, USA.
| | - Leroy Hubert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Taraka R Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Marcus J Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Nancy Braverman
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Kelly Gawron
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Mousumi Bose
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Ann B Moser
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard O Jones
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
9
|
Cai T, Yang F. Phospholipid and Phospholipidomics in Health and Diseases. LIPIDOMICS IN HEALTH & DISEASE 2018. [DOI: 10.1007/978-981-13-0620-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Lee JC, Byeon SK, Moon MH. Relative Quantification of Phospholipids Based on Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry: Enhancement in Cardiolipin Profiling. Anal Chem 2017; 89:4969-4977. [PMID: 28399627 DOI: 10.1021/acs.analchem.7b00297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, lipid analysis based on isotope-labeled methlylation (ILM) was performed by nanoflow ultrahigh performance liquid chromatography-eletrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS) for enhanced detection and quantification of targeted phospholipids. ILM depends on methylation of phosphate groups by (trimethylsilyl)diazomethane, and the ILM based quantitation with reversed phase nUPLC-ESI-MS/MS provides advantages in PL profiling such as enhanced detectability of methylated PLs owing to increased hydrophobicity and substantial increase in resolution due to the increase of retention. Efficacy of ILM in nUPLC-ESI-MS/MS analysis was evaluated in the selected reaction monitoring (SRM) method by varying the mixing ratio of H-/D-methylated PL standards, which resulted in the successful quantification of 24 species, including phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylglycerol (PG), ceramide-1-phosphate (Cer1P), phosphoinositides, and cardiolipin (CL), with ∼6.6% variation in the calculated ratio of H-/D-methylated PLs. The method was applied to the lipid extracts from a DU145 cell line after D-allose treatment, resulting in the quantification of 83 PLs of which results were not statistically different from those obtained by conventional quantification methods. Morever, detection and quantification of CLs and PAs were evidenced to be highly effective when used with the ILM method as 43 CLs and 20 PAs from cellular lipid extracts were analyzed while only 18 CLs and 12 PAs were identified when conventional methods were carried out. This proves the ILM combined with LC-MS to be a promising method for analysis of the aforementioned classes of lipids. Overall, the study highlighted the applicability of targeted quantification by the ILM method in lipidomic analysis and demonstrated an improvement in the detection of less abundant anionic PLs.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seul Kee Byeon
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
11
|
Cai T, Shu Q, Liu P, Niu L, Guo X, Ding X, Xue P, Xie Z, Wang J, Zhu N, Wu P, Niu L, Yang F. Characterization and relative quantification of phospholipids based on methylation and stable isotopic labeling. J Lipid Res 2016; 57:388-97. [PMID: 26733148 DOI: 10.1194/jlr.m063024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/20/2022] Open
Abstract
Phospholipids (PLs), one of the lipid categories, are not only the primary building blocks of cellular membranes, but also can be split to produce products that function as second messengers in signal transduction and play a pivotal role in numerous cellular processes, including cell growth, survival, and motility. Here, we present an integrated novel method that combines a fast and robust TMS-diazomethane-based phosphate derivatization and isotopic labeling strategy, which enables simultaneous profiling and relative quantification of PLs from biological samples. Our results showed that phosphate methylation allows fast and sensitive identification of the six major PL classes, including their lysophospholipid counterparts, under positive ionization mode. The isotopic labeling of endogenous PLs was achieved by deuterated diazomethane, which was generated through acid-catalyzed hydrogen/deuterium (H/D) exchange and methanolysis of TMS-diazomethane during the process of phosphate derivatization. The measured H/D ratios of unlabeled and labeled PLs, which were mixed in known proportions, indicated that the isotopic labeling strategy is capable of providing relative quantitation with adequate accuracy, reproducibility, and a coefficient of variation of 9.1%, on average. This novel method offers unique advantages over existing approaches and presents a powerful tool for research of PL metabolism and signaling.
Collapse
Affiliation(s)
- Tanxi Cai
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingbo Shu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peibin Liu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojing Guo
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Ding
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Xue
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Nali Zhu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Wu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization. Anal Chim Acta 2016; 902:142-153. [DOI: 10.1016/j.aca.2015.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
|
13
|
Bruheim P, Kvitvang HFN, Villas-Boas SG. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling. J Chromatogr A 2013; 1296:196-203. [DOI: 10.1016/j.chroma.2013.03.072] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022]
|
14
|
Mochizuki T, Taniguchi S, Tsutsui H, Min JZ, Inoue K, Todoroki K, Toyo’oka T. Relative quantification of enantiomers of chiral amines by high-throughput LC–ESI-MS/MS using isotopic variants of light and heavy l-pyroglutamic acids as the derivatization reagents. Anal Chim Acta 2013; 773:76-82. [DOI: 10.1016/j.aca.2013.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/07/2013] [Accepted: 02/16/2013] [Indexed: 11/27/2022]
|
15
|
Toyo’oka T. LC–MS determination of bioactive molecules based upon stable isotope-coded derivatization method. J Pharm Biomed Anal 2012; 69:174-84. [DOI: 10.1016/j.jpba.2012.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
|
16
|
Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. MASS SPECTROMETRY REVIEWS 2012; 31:134-78. [PMID: 21755525 PMCID: PMC3259006 DOI: 10.1002/mas.20342] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 05/05/2023]
Abstract
Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell's lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems.
Collapse
Affiliation(s)
- Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
17
|
Berry KAZ, Li B, Reynolds SD, Barkley RM, Gijón MA, Hankin JA, Henson PM, Murphy RC. MALDI imaging MS of phospholipids in the mouse lung. J Lipid Res 2011; 52:1551-60. [PMID: 21508254 DOI: 10.1194/jlr.m015750] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lipid mediators are important in lung biochemistry and are derived from the enzymatic oxidation of arachidonic and docosahexaenoic acids, which are PUFAs that are present in phospholipids in cell membranes. In this study, MALDI imaging MS was used to determine the localization of arachidonate- and docosahexaenoate-containing phospholipids in mouse lung. These PUFA-containing phospholipids were determined to be uniquely abundant at the lining of small and large airways, which were unequivocally identified by immunohistochemistry. In addition, it was found that the blood vessels present in the lung were characterized by sphingomyelin molecular species, and lung surfactant phospholipids appeared evenly distributed throughout the lung parenchyma, indicating alveolar localization. This technique revealed unexpected high concentrations of arachidonate- and docosahexaenoate-containing phospholipids lining the airways in pulmonary tissue, which could serve as precursors of lipid mediators affecting airways biology.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Department of Pharmacology, University of Colorado Denver, 12801 East 17 Avenue, Mail Stop 8303, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nabetani T, Makino A, Hullin-Matsuda F, Hirakawa TA, Takeoka S, Okino N, Ito M, Kobayashi T, Hirabayashi Y. Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). J Lipid Res 2011; 52:1294-1302. [PMID: 21487068 DOI: 10.1194/jlr.d014621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ceramides play a crucial role in divergent signaling events, including differentiation, senescence, proliferation, and apoptosis. Ceramides are a minor lipid component in terms of content; thus, highly sensitive detection is required for accurate quantification. The recently developed isobaric tags for relative and absolute quantitation (iTRAQ) method enables a precise comparison of both protein and aminophospholipids. However, iTRAQ tagging had not been applied to the determination of sphingolipids. Here we report a method for the simultaneous measurement of multiple ceramide and monohexosylceramide samples using iTRAQ tags. Samples were hydrolyzed with sphingolipid ceramide N-deacylase (SCDase) to expose the free amino group of the sphingolipids, to which the N-hydroxysuccinimide group of iTRAQ reagent was conjugated. The reaction was performed in the presence of a cleavable detergent, 3-[3-(1,1-bisalkyloxyethyl)pyridine-1-yl]propane-1-sulfonate (PPS) to both improve the hydrolysis and ensure the accuracy of the mass spectrometry analysis performed after iTRAQ labeling. This method was successfully applied to the profiling of ceramides and monohexosylceramides in sphingomyelinase-treated Madin Darby canine kidney (MDCK) cells and apoptotic Jurkat cells.
Collapse
Affiliation(s)
- Takuji Nabetani
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Asami Makino
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France
| | - Taka-Aki Hirakawa
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France.
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Huang YQ, Liu JQ, Gong H, Yang J, Li Y, Feng YQ. Use of isotope mass probes for metabolic analysis of the jasmonate biosynthetic pathway. Analyst 2011; 136:1515-22. [DOI: 10.1039/c0an00736f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Milne SB, Tallman KA, Serwa R, Rouzer CA, Armstrong MD, Marnett LJ, Lukehart CM, Porter NA, Brown HA. Capture and release of alkyne-derivatized glycerophospholipids using cobalt chemistry. Nat Chem Biol 2010; 6:205-207. [PMID: 20098428 PMCID: PMC2822082 DOI: 10.1038/nchembio.311] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/18/2009] [Indexed: 11/09/2022]
Abstract
Alkyne-modified phospholipids can be unambiguously identified and differentiated from native species in complex mixtures by formation of dicobalthexacarbonyl complexes. This reaction is specific for alkynes and is unaffected by other glycerophospholipid-related moieties. Enrichment of cells with alkyne-derivatized fatty acids or glycerophospholipids followed by solid-phase sequestration and release is a promising new method for unequivocally monitoring individual glycerophospholipids following incorporation into cells. This technique also facilitates lipidomic analysis of substrates and products.
Collapse
|
21
|
Lamos SM, Shortreed MR, Frey BL, Belshaw PJ, Smith LM. Relative quantification of carboxylic acid metabolites by liquid chromatography-mass spectrometry using isotopic variants of cholamine. Anal Chem 2007; 79:5143-9. [PMID: 17563114 PMCID: PMC2538948 DOI: 10.1021/ac062416m] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Labeling reagents that differ only in their isotopic composition offer a powerful approach to achieve relative quantification between samples by ESI-MS. Heavy and light isotopic forms of cholamine, which contain a positively charged quaternary ammonium group, were synthesized and tested as new labeling reagents for the relative quantification of carboxylic acid-containing metabolites, specifically fatty acids. The positive charge on cholamine ensures that the labeled product is also positively charged under all LC-MS conditions, regardless of mobile-phase pH. This leads to high ionization efficiency and correspondingly high detection sensitivity, demonstrated here for the analysis of fatty acids in positive ion mode ESI-MS after reversed-phase separation under acidic conditions. Good accuracy and precision were obtained by mixing heavy- and light-labeled hydrolyzed egg lipid extracts in different known ratios. The relative quantification results for 10 observed fatty acids had an average absolute error of 4.6% and an average coefficient of variation (CV) of 2.6%. The labeling strategy yielded a median CV of 6% when employed for fatty acid analysis of eggs from chickens fed various dietary supplements.
Collapse
Affiliation(s)
| | | | | | | | - Lloyd M. Smith
- * To whom correspondence should be addressed. Phone: (608) 262-9207. Fax: (608) 265-6780. E-mail: . Internet: http://www.chem.wisc.edu/~smith
| |
Collapse
|
22
|
Surviladze Z, Harrison KA, Murphy RC, Wilson BS. FcϵRI and Thy-1 domains have unique protein and lipid compositions. J Lipid Res 2007; 48:1325-35. [PMID: 17387221 DOI: 10.1194/jlr.m600485-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Receptor activation leads to the dynamic remodeling of the plasma membrane. Previous work using immunoelectron microscopy showed that aggregated high-affinity receptor for immunoglobulin E (FcRI) and aggregated Thy-1, a glycerophosphoinositol (GPI)-anchored protein, have distinct membrane distributions. We now report lipidomics analysis of FcRI- and Thy-1-enriched vesicles obtained by magnetic bead isolation in the absence of detergent. Protein analyses show that FcRI domains are enriched in receptors and associated signaling molecules, whereas Thy-1 domains are devoid of FcRI subunits. Positive and negative ion electrospray mass spectrometry demonstrated that both domains retained a complex mixture of phospholipid classes and molecular species, predominantly glycerophosphocholine, glycerophosphoethanolamine (GPE), and sphingomyelin as well as glycerophosphoserine and GPI lipids. Analysis of total acyl groups showed that < 50% of fatty acids in these domains are fully saturated, inconsistent with the recruitment of aggregated receptors or GPI-anchored proteins to liquid ordered domains. However, further analysis showed that FcRI domains contain two times more sphingomyelin and a high ratio of cholesterol to total fatty acid content compared with Thy 1-enriched domains. Remarkably, plasmenyl glycerophosphoethanolamine phospholipids (plasmalogen GPE) were also 2.5-3 times more abundant in FcRI domains than in the Thy-1 microdomains, whereas most diacyl GPE molecular species were equally abundant in the two domains.
Collapse
Affiliation(s)
- Zurab Surviladze
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Electrospray ionization mass spectrometry is becoming an established tool for the investigation of lipids. As the methods for lipid analysis become more mature and their throughput increases, computer algorithms for the interpretation of such data will become a necessity. Toward this end, an algorithm dedicated to the analysis of Fourier transform mass spectral data from lipid extracts has been developed. The algorithm, Fatty Acid Analysis Tool, termed FAAT, has been successfully used to investigate complex lipid extracts containing thousands of components, from various species of mycobacteria including M. tuberculosis and M. abscessus. FAAT is rapid, generally taking tens of seconds to interpret multiple spectra, and accessible to most users as it is implemented in Microsoft Excel Visual Basic Software. In the reduction of data, FAAT begins by scaling spectra (i.e., to account for dilution factors), identifying monoisotopic ions, and assigning isotope packets. Unique features of FAAT include the following: (1) overlapping saturated and unsaturated lipid species can be distinguished, (2) known ions are assigned from a user-defined library including species that possess methylene heterogeneity, (3) and isotopic shifts from stable isotope labeling experiments are identified and assigned (up to a user-defined maximum). In addition, abundance differences between samples grown under normal and stressed conditions can be determined. In the analysis of mycobacterial lipid extracts, FAAT has successfully identified isotopic shifts from incorporation of 15N in M. abscessus. Additionally, FAAT has been used to successfully determine differences in lipid abundances between M. tuberculosis wild-type and mutant strains.
Collapse
Affiliation(s)
- Michael D Leavell
- Genome and Biomedical Sciences Facility, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
24
|
Sommer U, Herscovitz H, Welty FK, Costello CE. LC-MS-based method for the qualitative and quantitative analysis of complex lipid mixtures. J Lipid Res 2006; 47:804-14. [PMID: 16443931 DOI: 10.1194/jlr.m500506-jlr200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A simple and robust LC-MS-based methodology for the investigation of lipid mixtures is described, and its application to the analysis of human lipoprotein-associated lipids is demonstrated. After an optional initial fractionation on Silica 60, normal-phase HPLC-MS on a YMC PVA-Sil column is used first for class separation, followed by reversed-phase LC-MS or LC-tandem mass spectrometry using an Atlantis dC18 capillary column, and/or nanospray MS, to fully characterize the individual lipids. The methodology is applied here for the analysis of human apolipoprotein B-associated lipids. This approach allows for the determination of even low percentages of lipids of each molecular species and showed clear differences between lipids associated with apolipoprotein B-100-LDL isolated from a normal individual and those associated with a truncated version, apolipoprotein B-67-containing lipoproteins, isolated from a homozygote patient with familial hypobetalipoproteinemia. The methods described should be easily adaptable to most modern MS instrumentation.
Collapse
Affiliation(s)
- Ulf Sommer
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
25
|
Zemski Berry KA, Murphy RC. Analysis of polyunsaturated aminophospholipid molecular species using isotope-tagged derivatives and tandem mass spectrometry/mass spectrometry/mass spectrometry. Anal Biochem 2005; 349:118-28. [PMID: 16384548 DOI: 10.1016/j.ab.2005.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/09/2005] [Accepted: 11/11/2005] [Indexed: 11/21/2022]
Abstract
When aminophospholipids with only saturated and monounsaturated fatty acids esterified to the glycerol backbone were labeled with isotopically enriched N-methylpiperazine acetic acid N-hydroxysuccinimide ester reagents, it was found that they could be readily detected as N-methylpiperazine-amide-tagged aminophospholipids using a precursor scan of the stable isotope reporter ion (m/z 114-117) formed by tandem mass spectrometry/mass spectrometry. However, it was found in the current study that these precursor ion scans are not useful in determining the changes of aminophospholipids with polyunsaturated fatty acids (PUFAs) esterified to the glycerol backbone due to the presence of interfering ions in the reporter ion region. Therefore, a method was developed using tandem mass spectrometry/mass spectrometry/mass spectrometry (MS(3)) to obtain reporter ion ratios that were not distorted by interfering ions present in the collision-induced dissociation spectra of nontagged aminophospholipids with PUFAs. This new MS(3) method for N-methylpiperazine- amide-tagged aminophospholipids was used to examine the fate of diacyl, ether, or plasmalogen glycerophosphoethanolamine (GPEtn) species after exposure of human polymorphonuclear leukocytes to A23187 and granulocyte macrophage-colony-stimulating factor/formyl-methionyl-leucyl-phenylalanine stimuli, which can induce eicosanoid biosynthesis, to follow those GPEtn molecular species which were the source of arachidonic acid released. Upon stimulation of the human polymorphonuclear leukocyte, it was found that the abundant arachidonoyl GPEtn plasmalogen molecular species were uniquely reduced in relative content compared to ether or diacyl species and this subclass of GPEtn may be a source of the arachidonic acid converted to leukotrienes by the 5-lipoxygenase pathway activated in this cell.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8303, 12801 E. 17th Ave., P.O. Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|