1
|
Interactions of different lipoproteins with supported phospholipid raft membrane (SPRM) patterns to understand similar in-vivo processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183535. [PMID: 33358851 DOI: 10.1016/j.bbamem.2020.183535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022]
Abstract
To better understand how lipoproteins interact and enter endothelium and participate in cellular processes, we investigated preferential lipid partitioning of triglyceride rich lipoproteins (TGRL), chylomicrons (CM), low density lipoproteins (LDL), very low density lipoproteins (VLDL) and their lipolysis products using supported phospholipid raft membrane (SPRM) patterns. We prepared SPRM patterns with Texas red labeled phospholipid patterns and Marina blue labeled raft patterns and added Atto-520 labeled lipoproteins (TGRL, CM, VLDL, LDL) and their lipolysis products in separate experiments and characterized these interactions using fluorescence microscopy. We observed that VLDL and LDL preferentially interacted with raft patterns. In contrast the TGRL and lipolysed products of TGRL interacted with both the patterns, slightly elevated preference for raft patterns and CM and its lipolysis products showed greater affinity to phospholipid patterns. The clear preference of VLDL and LDL for raft patterns suggests that these lipoproteins associate with cholesterol and sphingomyelin rich lipid micro-domains during their early interactions with endothelial cells, leading to atherosclerosis.
Collapse
|
2
|
Tai LM, Thomas R, Marottoli FM, Koster KP, Kanekiyo T, Morris AWJ, Bu G. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol 2016; 131:709-23. [PMID: 26884068 DOI: 10.1007/s00401-016-1547-z] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/30/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is associated with cognitive decline during aging, is the greatest genetic risk factor for Alzheimer's disease and has links to other neurodegenerative conditions that affect cognition. Increasing evidence indicates that APOE genotypes differentially modulate the function of the cerebrovasculature (CV), with apoE and its receptors expressed by different cell types at the CV interface (astrocytes, pericytes, smooth muscle cells, brain endothelial cells). However, research on the role of apoE in CV dysfunction has not advanced as quickly as other apoE-modulated pathways. This review will assess what aspects of the CV are modulated by APOE genotypes during aging and under disease states, discuss potential mechanisms, and summarize the therapeutic significance of the topic. We propose that APOE4 induces CV dysfunction through direct signaling at the CV, and indirectly via modulation of peripheral and central pathways. Further, that APOE4 predisposes the CV to damage by, and exacerbates the effects of, additional risk factors (such as sex, hypertension, and diabetes). ApoE4-induced detrimental CV changes include reduced cerebral blood flow (CBF), modified neuron-CBF coupling, increased blood-brain barrier leakiness, cerebral amyloid angiopathy, hemorrhages and disrupted transport of nutrients and toxins. The apoE4-induced detrimental changes may be linked to pericyte migration/activation, astrocyte activation, smooth muscle cell damage, basement membrane degradation and alterations in brain endothelial cells.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA.
| | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Alan W J Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
3
|
Ly S, Altman R, Petrlova J, Lin Y, Hilt S, Huser T, Laurence TA, Voss JC. Binding of apolipoprotein E inhibits the oligomer growth of amyloid-β peptide in solution as determined by fluorescence cross-correlation spectroscopy. J Biol Chem 2013; 288:11628-35. [PMID: 23430745 DOI: 10.1074/jbc.m112.411900] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the primary neuropathological hallmarks of Alzheimer disease is the presence of extracellular amyloid plaques resulting from the aggregation of amyloid-β (Aβ) peptides. The intrinsic disorder of the Aβ peptide drives self-association and progressive reordering of the conformation in solution, and this dynamic distribution of Aβ complicates biophysical studies. This property poses a challenge for understanding the interaction of Aβ with apolipoprotein E (apoE). ApoE plays a pivotal role in the aggregation and clearance of Aβ peptides in the brain, and the ε4 allele of APOE is the most significant known genetic modulator of Alzheimer risk. Understanding the interaction between apoE and Aβ will provide insight into the mechanism by which different apoE isoforms determine Alzheimer disease risk. Here we applied alternating laser excitation fluorescence cross-correlation spectroscopy to observe the single molecule interaction of Aβ with apoE in the hydrated state. The diffusion time of freely diffusing Aβ in the absence of apoE shows significant self-aggregation, whereas in the presence of apoE, binding of the protein results in a more stable complex. These results show that apoE slows down the oligomerization of Aβ in solution and provide direct insight into the process by which apoE influences the deposition and clearance of Aβ peptides in the brain. Furthermore, by developing an approach to remove signals arising from very large Aβ aggregates, we show that real-time single particle observations provide access to information regarding the fraction of apoE bound and the stoichiometry of apoE and Aβ in the complex.
Collapse
Affiliation(s)
- Sonny Ly
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Postprandial apoE isoform and conformational changes associated with VLDL lipolysis products modulate monocyte inflammation. PLoS One 2012; 7:e50513. [PMID: 23209766 PMCID: PMC3509065 DOI: 10.1371/journal.pone.0050513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Objective Postprandial hyperlipemia, characterized by increased circulating very low-density lipoproteins (VLDL) and circulating lipopolysaccharide (LPS), has been proposed as a mechanism of vascular injury. Our goal was to examine the interactions between postprandial lipoproteins, LPS, and apoE3 and apoE4 on monocyte activation. Methods and Results We showed that apoE3 complexed to phospholipid vesicles attenuates LPS-induced THP-1 monocyte cytokine expression, while apoE4 increases expression. ELISA revealed that apoE3 binds to LPS with higher affinity than apoE4. Electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels placed on specific amino acids of apoE3 showed that LPS interferes with conformational changes normally associated with lipid binding. Specifically, compared to apoE4, apoE bearing the E3-like R112→Ser mutation displays increased self association when exposed to LPS, consistent with a stronger apoE3-LPS interaction. Additionally, lipolysis of fasting VLDL from normal human donors attenuated LPS-induced TNFα secretion from monocytes to a greater extent than postprandial VLDL, an effect partially reversed by blocking apoE. This effect was reproduced using fasting VLDL lipolysis products from e3/e3 donors, but not from e4/e4 subjects, suggesting that apoE3 on fasting VLDL prevents LPS-induced inflammation more readily than apoE4. Conclusion Postprandial apoE isoform and conformational changes associated with VLDL dramatically modulate vascular inflammation.
Collapse
|
5
|
Wang L, Shearer GC, Budamagunta MS, Voss JC, Molfino A, Kaysen GA. Proteinuria decreases tissue lipoprotein receptor levels resulting in altered lipoprotein structure and increasing lipid levels. Kidney Int 2012; 82:990-9. [PMID: 22785171 DOI: 10.1038/ki.2012.244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rats with nephrotic syndrome (NS) have a fivefold increase in lipids and a similar decrease in triglyceride-rich lipoprotein (TRL) clearance. Lipoprotein lipase (LPL) is reduced both in NS and in the Nagase analbuminemic rat. These rats have nearly normal triglyceride levels and TRL clearance, suggesting that reduction in LPL alone is insufficient to cause increased TRL levels. Apolipoprotein E (apoE) was decreased in lipoprotein fractions in NS, but not in analbuminemia. Here we tested whether decreased apoE binding to lipoproteins in NS contributes to hyperlipidemia by decreasing their affinity for lipoprotein receptors. Plasma apoE was increased 60% in both NS and analbuminemia compared with control (CTRL) as a result of a 60% decreased apoE clearance. Very-low-density lipoprotein and high-density lipoprotein in NS had significantly less apoE per mole of phospholipid compared with analbuminemia or CTRL and significantly greater lipid content; however, apoE binding did not differ by lipoprotein class or group. There was a significant reduction of receptors for lipoproteins in nearly all tissues in NS compared with CTRL and analbuminemia. Thus, apoE within lipoprotein fractions was reduced by dilution resulting from expansion of the lipid fraction due to decreased lipolysis and not to differing affinity for apoE. Decreased lipoprotein receptors result from proteinuria and contribute to hyperlipidemia in NS.
Collapse
Affiliation(s)
- Limin Wang
- Department of Veteran's Affairs, Northern California Health Care System, Mather, California, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Mizuguchi C, Hata M, Dhanasekaran P, Nickel M, Phillips MC, Lund-Katz S, Saito H. Fluorescence analysis of the lipid binding-induced conformational change of apolipoprotein E4. Biochemistry 2012; 51:5580-8. [PMID: 22730894 DOI: 10.1021/bi300672s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Schwartz EA, Reaven PD. Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:858-66. [DOI: 10.1016/j.bbalip.2011.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/23/2023]
|
8
|
Petrlova J, Hong HS, Bricarello D, Harishchandra G, Lorigan G, Jin LW, Voss JC. A differential association of Apolipoprotein E isoforms with the amyloid-β oligomer in solution. Proteins 2011; 79:402-16. [PMID: 21069870 PMCID: PMC3016465 DOI: 10.1002/prot.22891] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The molecular pathogenesis of disorders arising from protein misfolding and aggregation is difficult to elucidate, involving a complex ensemble of intermediates, whose toxicity depends upon their state of progression along distinct processing pathways. To address the complex misfolding and aggregation that initiates the toxic cascade resulting in Alzheimer's disease (AD), we have developed a 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid spin-labeled amyloid-β (Aβ) peptide to observe its isoform-dependent interaction with the apoE protein. Although most individuals carry the E3 isoform of apoE, ∼15% of humans carry the E4 isoform, which is recognized as the most significant genetic determinant for Alzheimer's. ApoE is consistently associated with the amyloid plaque marker for AD. A vital question centers on the influence of the two predominant isoforms, E3 and E4, on Aβ peptide processing and hence Aβ toxicity. We used electron paramagnetic resonance (EPR) spectroscopy of incorporated spin labels to investigate the interaction of apoE with the toxic oligomeric species of Aβ in solution. EPR spectra of the spin-labeled side chain report on side chain and backbone dynamics as well as the spatial proximity of spins in an assembly. Our results indicate oligomer binding involves the C-terminal domain of apoE, with apoE3 reporting a much greater response through this conformational marker. Coupled with SPR binding measurements, apoE3 displays a higher affinity and capacity for the toxic Aβ oligomer. These findings support the hypothesis that apoE polymorphism and Alzheimer's risk can largely be attributed to the reduced ability of apoE4 to function as a clearance vehicle for the toxic form of Aβ.
Collapse
Affiliation(s)
- Jitka Petrlova
- Department of Biochemistry & Molecular Medicine, University of California Davis, CA, USA
| | - Hyun-Seok Hong
- M.I.N.D. Institute and Department of Pathology & Laboratory Medicine, University of California Davis, CA, USA
| | - Daniel Bricarello
- Department of Applied Science, University of California Davis, CA, USA
| | | | - Gary Lorigan
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, USA
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology & Laboratory Medicine, University of California Davis, CA, USA
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis, CA, USA
| |
Collapse
|
9
|
Singh P, Di Napoli M, Singh M. Letter by Singh et al regarding article, "Apolipoprotein E polymorphisms and postprandial triglyceridemia before and after fenofibrate treatment in the GOLDN study". CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:e5-e6. [PMID: 21325156 DOI: 10.1161/circgenetics.110.958660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
10
|
Abstract
AD (Alzheimer's disease) is a progressive neurodegenerative disease of unknown origin. Despite questions as to the underlying cause(s) of this disease, shared risk factors for both AD and atherosclerotic cardiovascular disease indicate that vascular mechanisms may critically contribute to the development and progression of both AD and atherosclerosis. An increased risk of developing AD is linked to the presence of the apoE4 (apolipoprotein E4) allele, which is also strongly associated with increased risk of developing atherosclerotic cardiovascular disease. Recent studies also indicate that cardiovascular risk factors, including elevated blood cholesterol and triacylglycerol (triglyceride), increase the likelihood of AD and vascular dementia. Lipids and lipoproteins in the circulation interact intimately with the cerebrovasculature, and may have important effects on its constituent brain microvascular endothelial cells and the adjoining astrocytes, which are components of the neurovascular unit. The present review will examine the potential mechanisms for understanding the contributions of vascular factors, including lipids, lipoproteins and cerebrovascular Abeta (amyloid beta), to AD, and suggest therapeutic strategies for the attenuation of this devastating disease process. Specifically, we will focus on the actions of apoE, TGRLs (triacylglycerol-rich lipoproteins) and TGRL lipolysis products on injury of the neurovascular unit and increases in blood-brain barrier permeability.
Collapse
Affiliation(s)
- Robin Altman
- Department of Internal Medicine, University of California-Davis, 451 East Health Sciences Drive, Davis, CA 95616, U.S.A.
| | | |
Collapse
|
11
|
Carvalho-Wells AL, Jackson KG, Gill R, Olano-Martin E, Lovegrove JA, Williams CM, Minihane AM. Interactions between age and apoE genotype on fasting and postprandial triglycerides levels. Atherosclerosis 2010; 212:481-7. [PMID: 20643407 DOI: 10.1016/j.atherosclerosis.2010.06.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/03/2010] [Accepted: 06/18/2010] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The influences of genetic determinants on the magnitude of postprandial lipaemia are presently unclear. Here the impact of the common apolipoprotein (apo)E epsilon mutation on the postprandial triglyceride (TG) response is determined, along with an assessment of genotype penetrance according to age, body mass index and gender. METHODS AND RESULTS Healthy adults (n=251) underwent a postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min, 49 g fat) and lunch (330 min, 29 g fat) until 480 min after the test breakfast. There was a significant impact of apoE genotype on fasting total cholesterol (TC), (P=0.027), LDL-cholesterol (LDL-C), (P=0.008), and %LDL(3) (P=0.001), with higher and lower levels in the E4 and E2 carriers respectively relative to the E3/E3 genotype. Reflective of a higher fasting TG (P=0.001), a significantly higher area under the curve for the postprandial TG response (TG AUC) was evident in the E4 carriers relative to the E3/E3 group (P=0.038). In the group as a whole, a significant age×genotype interaction was observed for fasting TC (P=0.021). In the participants>50 years there was a significant impact of genotype on TC (P=0.005), LDL-C (P=0.001) and TAG AUC (P=0.028). CONCLUSIONS It is possible that an exaggerated postprandial lipaemia contributes to the increased coronary heart disease risk associated with carriers of the E4 allele; an effect which is more evident in older adults.
Collapse
Affiliation(s)
- Andrew L Carvalho-Wells
- Department of Food and Nutritional Sciences and Institute of Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6AP, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
Tetali SD, Budamagunta MS, Simion C, den Hartigh LJ, Kálai T, Hideg K, Hatters DM, Weisgraber KH, Voss JC, Rutledge JC. VLDL lipolysis products increase VLDL fluidity and convert apolipoprotein E4 into a more expanded conformation. J Lipid Res 2009; 51:1273-83. [PMID: 19965582 DOI: 10.1194/jlr.m000406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Our previous work indicated that apolipoprotein (apo) E4 assumes a more expanded conformation in the postprandial period. The postprandial state is characterized by increased VLDL lipolysis. In this article, we tested the hypothesis that VLDL lipolysis products increase VLDL particle fluidity, which mediates expansion of apoE4 on the VLDL particle. Plasma from healthy subjects was collected before and after a moderately high-fat meal and incubated with nitroxyl-spin labeled apoE. ApoE conformation was examined by electron paramagnetic resonance spectroscopy using targeted spin probes on cysteines introduced in the N-terminal (S76C) and C-terminal (A241C) domains. Further, we synthesized a novel nitroxyl spin-labeled cholesterol analog, which gave insight into lipoprotein particle fluidity. Our data revealed that the order of lipoprotein fluidity was HDL approximately LDL<VLDL<VLDL+lipoprotein lipase. Moreover, the conformation of apoE4 depended on the lipoprotein fraction: VLDL-associated apoE4 had a more linear conformation than apoE4 associated with LDL or HDL. Further, by changing VLDL fluidity, VLDL lipolysis products significantly altered apoE4 into a more expanded conformation. Our studies indicate that after every meal, VLDL fluidity is increased causing apoE4 associated with VLDL to assume a more expanded conformation, potentially enhancing the pathogenicity of apoE4 in vascular tissue.
Collapse
Affiliation(s)
- Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|