1
|
Lara-Guzmán OJ, Arango-González Á, Rivera DA, Muñoz-Durango K, Sierra JA. The colonic polyphenol catabolite dihydroferulic acid (DHFA) regulates macrophages activated by oxidized LDL, 7-ketocholesterol, and LPS switching from pro- to anti-inflammatory mediators. Food Funct 2024; 15:10399-10413. [PMID: 39320081 DOI: 10.1039/d4fo02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE1 appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE1 levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE1 in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE1 and IL-10.
Collapse
Affiliation(s)
- Oscar J Lara-Guzmán
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Ángela Arango-González
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Diego A Rivera
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Katalina Muñoz-Durango
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Jelver A Sierra
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| |
Collapse
|
2
|
Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells 2023; 12:1427. [PMID: 37408263 DOI: 10.3390/cells12101427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Previously established immune-responsive co-culture models with macrophages have limitations due to the dedifferentiation of macrophages in long-term cultures. This study is the first report of a long-term (21-day) triple co-culture of THP-1 macrophages (THP-1m) with Caco-2 intestinal epithelial cells and HT-29-methotrexate (MTX) goblet cells. We demonstrated that high-density seeded THP-1 cells treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h differentiated stably and could be cultured for up to 21 days. THP-1m were identified by their adherent morphology and lysosome expansion. In the triple co-culture immune-responsive model, cytokine secretions during lipopolysaccharide-induced inflammation were confirmed. Tumor necrosis factor-alpha and interleukin 6 levels were elevated in the inflamed state, reaching 824.7 ± 130.0 pg/mL and 609.7 ± 139.5 pg/mL, respectively. Intestinal membrane integrity was maintained with a transepithelial electrical resistance value of 336.4 ± 18.0 Ω·cm2. Overall, our findings suggest that THP-1m can be effectively employed in models of long-term immune responses in both normal and chronic inflammatory states of the intestinal epithelium, making them a valuable tool for future research on the association between the immune system and gut health.
Collapse
Affiliation(s)
- Pornwipa Phuangbubpha
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sanya Thara
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Puretat Saetan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wanwiwa Tumnoi
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Basu S, Choudhury IN, Lee JYP, Chacko A, Ekberg JAK, St John JA. Macrophages Treated with VEGF and PDGF Exert Paracrine Effects on Olfactory Ensheathing Cell Function. Cells 2022; 11:cells11152408. [PMID: 35954252 PMCID: PMC9368560 DOI: 10.3390/cells11152408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Glial cell transplantation using olfactory ensheathing cells (OECs) holds a promising approach for treating spinal cord injury (SCI). However, integration of OECs into the hostile acute secondary injury site requires interaction and response to macrophages. Immunomodulation of macrophages to reduce their impact on OECs may improve the functionality of OECs. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), known for their immunomodulatory and neuroprotective functions, have provided improved outcomes in SCI animal models. Thus, VEGF and PDGF modulation of the SCI microenvironment may be beneficial for OEC transplantation. In this in vitro study, the effect of VEGF and PDGF on macrophages in an inflammatory condition was tested. Combined VEGF + PDGF reduced translocation nuclear factor kappa B p65 in macrophages without altering pro-inflammatory cytokines. Further, the ability of OECs to phagocytose myelin debris was assessed using macrophage-conditioned medium. Conditioned medium from macrophages incubated with PDGF and combined VEGF + PDGF in inflammatory conditions promoted phagocytosis by OECs. The growth factor treated conditioned media also modulated the expression of genes associated with nerve repair and myelin expression in OECs. Overall, these results suggest that the use of growth factors together with OEC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Indra N. Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jia Yu Peppermint Lee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jenny A. K. Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - James A. St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Correspondence:
| |
Collapse
|
4
|
Igel E, Haller A, Wolfkiel PR, Orr-Asman M, Jaeschke A, Hui DY. Distinct pro-inflammatory properties of myeloid cell-derived apolipoprotein E2 and E4 in atherosclerosis promotion. J Biol Chem 2021; 297:101106. [PMID: 34425108 PMCID: PMC8437825 DOI: 10.1016/j.jbc.2021.101106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.
Collapse
Affiliation(s)
- Emily Igel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - April Haller
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patrick R Wolfkiel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa Orr-Asman
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
5
|
Seneviratne A, Cave L, Hyde G, Moestrup SK, Carling D, Mason JC, Haskard DO, Boyle JJ. Metformin directly suppresses atherosclerosis in normoglycaemic mice via haematopoietic adenosine monophosphate-activated protein kinase. Cardiovasc Res 2021; 117:1295-1308. [PMID: 32667970 PMCID: PMC8064441 DOI: 10.1093/cvr/cvaa171] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 06/03/2018] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
AIMS Atherosclerotic vascular disease has an inflammatory pathogenesis. Heme from intraplaque haemorrhage may drive a protective and pro-resolving macrophage M2-like phenotype, Mhem, via AMPK and activating transcription factor 1 (ATF1). The antidiabetic drug metformin may also activate AMPK-dependent signalling. Hypothesis: Metformin systematically induces atheroprotective genes in macrophages via AMPK and ATF1, thereby suppresses atherogenesis. METHODS AND RESULTS Normoglycaemic Ldlr-/- hyperlipidaemic mice were treated with oral metformin, which profoundly suppressed atherosclerotic lesion development (P < 5 × 10-11). Bone marrow transplantation from AMPK-deficient mice demonstrated that metformin-related atheroprotection required haematopoietic AMPK [analysis of variance (ANOVA), P < 0.03]. Metformin at a clinically relevant concentration (10 μM) evoked AMPK-dependent and ATF1-dependent increases in Hmox1, Nr1h2 (Lxrb), Abca1, Apoe, Igf1, and Pdgf, increases in several M2-markers and decreases in Nos2, in murine bone marrow macrophages. Similar effects were seen in human blood-derived macrophages, in which metformin-induced protective genes and M2-like genes, suppressible by si-ATF1-mediated knockdown. Microarray analysis comparing metformin with heme in human macrophages indicated that the transcriptomic effects of metformin were related to those of heme, but not identical. Metformin-induced lesional macrophage expression of p-AMPK, p-ATF1, and downstream M2-like protective effects. CONCLUSION Metformin activates a conserved AMPK-ATF1-M2-like pathway in mouse and human macrophages, and results in highly suppressed atherogenesis in hyperlipidaemic mice via haematopoietic AMPK.
Collapse
Affiliation(s)
| | - Luke Cave
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gareth Hyde
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Justin C Mason
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Dorian O Haskard
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
7
|
Oligschlaeger Y, Houben T, Jeurissen MLJ, Bitorina AV, Konings M, Baumgartner S, Plat J, Shiri-Sverdlov R. Exogenously Added Oxyphytosterols Do Not Affect Macrophage-Mediated Inflammatory Responses. Lipids 2018; 53:457-462. [DOI: 10.1002/lipd.12044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Mike L. J. Jeurissen
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Albert V. Bitorina
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Maurice Konings
- Department of Human Biology and Movement Sciences, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Sabine Baumgartner
- Department of Human Biology and Movement Sciences, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Jogchum Plat
- Department of Human Biology and Movement Sciences, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| |
Collapse
|
8
|
Tanaka A, To J, O'Brien B, Donnelly S, Lund M. Selection of reliable reference genes for the normalisation of gene expression levels following time course LPS stimulation of murine bone marrow derived macrophages. BMC Immunol 2017; 18:43. [PMID: 28974200 PMCID: PMC5627409 DOI: 10.1186/s12865-017-0223-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/01/2017] [Indexed: 01/27/2023] Open
Abstract
Background Macrophages are key players in the initiation, perpetuation and regulation of both innate and adaptive immune responses. They largely perform these roles through modulation of the expression of genes, especially those encoding cytokines. Murine bone marrow derived macrophages (BMDMs) are commonly used as a model macrophage population for the study of immune responses to pro-inflammatory stimuli, notably lipopolysaccharide (LPS), which may be pertinent to the human situation. Evaluation of the temporal responses of LPS stimulated macrophages is widely conducted via the measurement of gene expression levels by RT-qPCR. While providing a robust and sensitive measure of gene expression levels, RT-qPCR relies on the normalisation of gene expression data to a stably expressed reference gene. Generally, a normalisation gene(s) is selected from a list of “traditional” reference genes without validation of expression stability under the specific experimental conditions of the study. In the absence of such validation, and given that many studies use only a single reference gene, the reliability of data is questionable. Results The stability of expression levels of eight commonly used reference genes was assessed during the peak (6 h) and resolution (24 h) phases of the BMDM response to LPS. Further, this study identified two additional genes, which have not previously been described as reference genes, and the stability of their expression levels during the same phases of the inflammatory response were validated. Importantly, this study demonstrates that certain “traditional” reference genes are in fact regulated by LPS exposure, and, therefore, are not reliable candidates as their inclusion may compromise the accuracy of data interpretation. Testament to this, this study shows that the normalisation of gene expression data using an unstable reference gene greatly affects the experimental data obtained, and, therefore, the ultimate biological conclusions drawn. Conclusion This study reaffirms the importance of validating reference gene stability for individual experimental conditions. Given that gene expression levels in LPS stimulated macrophages is routinely used to infer biological phenomena that are of relevance to human conditions, verification of reference gene expression stability is crucial. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0223-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akane Tanaka
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Joyce To
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bronwyn O'Brien
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.,The Centre for Health Technologies, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Maria Lund
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
9
|
Zhang Y, Guo F, Li S, Wang F, Meng Z, Zhao J, Liu Z, Wang B, Fan P, Wang C, Wu H. Decreased high density lipoprotein cholesterol is an independent predictor for persistent organ failure, pancreatic necrosis and mortality in acute pancreatitis. Sci Rep 2017; 7:8064. [PMID: 28808236 PMCID: PMC5556036 DOI: 10.1038/s41598-017-06618-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
High density lipoprotein cholesterol (HDL-C) has been reported as a significant indicator of systemic inflammation. The association underlying HDL-C and persistent organ failure (POF), pancreatic necrosis (PNec) and mortality in acute pancreatitis (AP) has not been evaluated. From 2007 to 2016, consecutive AP patients with admission lipid profiles assessment were included in this study. The association of HDL-C value and other lipids with outcomes was explored with Cox proportional regression models, which were adjusted for confounding factors. 1131 consecutive AP patients were clinically eligible. Overall, 17.9% of the patients developed with POF, 27.1% experienced PNec, and 6.7% died during hospitalization. Lower HDL-C median (<1.06 mmol/L) was identified as an independent prognostic factor of the outcomes. Moreover, there was a positive trend for the association across increasing HDL-C quartiles and POF, PNec and mortality after multivariable analysis (p values were <0.001, <0.001 and 0.043, respectively). The AUC of HDL-C for the outcomes were comparable to that of Ranson score for diagnosing POF (0.778 vs. 0.678; P < 0.001), PNec (0.734 vs. 0.701; P = 0.143) and mortality (0.768 vs. 0.745; P = 0.516). Decreased HDL-C value is an independent risk factor for the incidence of POF, PNec and in-hospital mortality in AP.
Collapse
Affiliation(s)
- Yushun Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shoukang Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feiyang Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ping Fan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Rabold K, Netea MG, Adema GJ, Netea-Maier RT. Cellular metabolism of tumor-associated macrophages - functional impact and consequences. FEBS Lett 2017; 591:3022-3041. [PMID: 28771701 DOI: 10.1002/1873-3468.12771] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
Abstract
Macrophages are innate immune cells that play a role not only in host defense against infections, but also in the pathophysiology of autoimmune and autoinflammatory disorders, as well as cancer. An important feature of macrophages is their high plasticity, with high ability to adapt to environmental changes by adjusting their cellular metabolism and immunological phenotype. Macrophages are one of the most abundant innate immune cells within the tumor microenvironment that have been associated with tumor growth, metastasis, angiogenesis and poor prognosis. In the context of cancer, however, so far little is known about metabolic changes in macrophages, which have been shown to determine functional fate of the cells in other diseases. Here, we review the current knowledge regarding the cellular metabolism of tumor-associated macrophages (TAMs) and discuss its implications for cell function. Understanding the regulation of the cellular metabolism of TAMs may reveal novel therapeutic targets for treatment of malignancies.
Collapse
Affiliation(s)
- Katrin Rabold
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Hafiane A, Genest J. ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis. Atherosclerosis 2017; 257:90-99. [DOI: 10.1016/j.atherosclerosis.2017.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/27/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022]
|
12
|
Jeurissen MLJ, Walenbergh SMA, Houben T, Gijbels MJJ, Li J, Hendrikx T, Oligschlaeger Y, van Gorp PJ, Binder CJ, Donners MMPC, Shiri-Sverdlov R. Prevention of oxLDL uptake leads to decreased atherosclerosis in hematopoietic NPC1-deficient Ldlr -/- mice. Atherosclerosis 2016; 255:59-65. [PMID: 27816810 DOI: 10.1016/j.atherosclerosis.2016.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic inflammatory disease of medium and large vessels and is typically characterized by the predominant accumulation of low-density lipoprotein (LDL)-cholesterol inside macrophages that reside in the vessel walls. Previous studies clearly demonstrated an association specifically between the oxidized type of LDL (oxLDL) and atherosclerotic lesion formation. Further observations revealed that these atherosclerotic lesions displayed enlarged, lipid-loaded lysosomes. By increasing natural antibodies against oxLDL, pneumococcal vaccination has been shown to reduce atherosclerosis in LDL receptor knockout (Ldlr-/-) mice. Relevantly, loss of the lysosomal membrane protein Niemann-Pick Type C1 (NPC1) led to lysosomal accumulation of various lipids and promoted atherosclerosis. Yet, the importance of lysosomal oxLDL accumulation inside macrophages, compared to non-modified LDL, in atherosclerosis has never been established. METHODS By transplanting NPC1 bone marrow into lethally irradiated Ldlr-/- mice, a hematopoietic mouse model for lysosomal cholesterol accumulation was created. Through injections with heat-inactivated pneumococci, we aimed to demonstrate the specific contribution of lysosomal oxLDL accumulation inside macrophages in atherosclerosis development. RESULTS While there were no differences in plaque morphology, a reduction in plaque size and plaque inflammation was found in immunized NPC1mut-transplanted mice, compared to non-immunized NPC1mut-transplanted mice. CONCLUSIONS Lysosomal oxLDL accumulation within macrophages contributes to murine atherosclerosis. Future intervention strategies should focus specifically on preventing oxLDL, unlike non-modified LDL, from being internalized into lysosomes. Such an intervention can have an additive effect to current existing treatments against atherosclerosis.
Collapse
Affiliation(s)
- Mike L J Jeurissen
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sofie M A Walenbergh
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom Houben
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marion J J Gijbels
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jieyi Li
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Hendrikx
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patrick J van Gorp
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, Vienna, Austria
| | - Marjo M P C Donners
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics and Pathology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Alaarg A, Zheng KH, van der Valk FM, da Silva AE, Versloot M, van Ufford LCQ, Schulte DM, Storm G, Metselaar JM, Stroes ESG, Hamers AAJ. Multiple pathway assessment to predict anti-atherogenic efficacy of drugs targeting macrophages in atherosclerotic plaques. Vascul Pharmacol 2016; 82:51-9. [PMID: 27189780 DOI: 10.1016/j.vph.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Macrophages play a central role in atherosclerosis development and progression, hence, targeting macrophage activity is considered an attractive therapeutic. Recently, we documented nanomedicinal delivery of the anti-inflammatory compound prednisolone to atherosclerotic plaque macrophages in patients, which did however not translate into therapeutic efficacy. This unanticipated finding calls for in-depth screening of drugs intended for targeting plaque macrophages. METHODS AND RESULTS We evaluated the effect of several candidate drugs on macrophage activity, rating overall performance with respect to changes in cytokine release, oxidative stress, lipid handling, endoplasmic reticulum (ER) stress, and proliferation of macrophages. Using this in vitro approach, we observed that the anti-inflammatory effect of prednisolone was counterbalanced by multiple adverse effects on other key pathways. Conversely, pterostilbene, T0901317 and simvastatin had an overall anti-atherogenic effect on multiple pathways, suggesting their potential for liposomal delivery. CONCLUSION This dedicated assay setup provides a framework for high-throughput assessment. Further in vivo studies are warranted to determine the predictive value of this macrophage-based screening approach and its potential value in nanomedicinal drug development for cardiovascular patients.
Collapse
Affiliation(s)
- Amr Alaarg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands; Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands.
| | - Kang He Zheng
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Fleur M van der Valk
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Acarilia Eduardo da Silva
- Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands.
| | - Miranda Versloot
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Linda C Quarles van Ufford
- Medicinal Chemistry & Chemical Biology - Biomolecular Analysis, Department of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | - Dominik M Schulte
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine I, UKSH, 24105 Kiel, Germany.
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands; Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Josbert M Metselaar
- Department of Biomaterials Science and Technology, Targeted Therapeutics section, MIRA Institute, University of Twente, Enschede, The Netherlands; Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany.
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Anouk A J Hamers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Links between atherosclerotic and periodontal disease. Exp Mol Pathol 2016; 100:220-35. [DOI: 10.1016/j.yexmp.2016.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
15
|
Hamers AAJ, van Dam L, Teixeira Duarte JM, Vos M, Marinković G, van Tiel CM, Meijer SL, van Stalborch AM, Huveneers S, te Velde AA, de Jonge WJ, de Vries CJM. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFκB Activity in Macrophages. PLoS One 2015; 10:e0133598. [PMID: 26241646 PMCID: PMC4524678 DOI: 10.1371/journal.pone.0133598] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/29/2015] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn's disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases.
Collapse
MESH Headings
- Animals
- Cell Line
- Colitis/chemically induced
- Colitis/immunology
- Colitis/metabolism
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Colon/metabolism
- Colon/pathology
- Crohn Disease/metabolism
- Crohn Disease/pathology
- Cytokines/biosynthesis
- Cytokines/genetics
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Gene Expression Regulation
- Humans
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- RAW 264.7 Cells
- Trinitrobenzenesulfonic Acid/toxicity
Collapse
Affiliation(s)
- Anouk A. J. Hamers
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura van Dam
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - José M. Teixeira Duarte
- Tytgat Institute, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Goran Marinković
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia M. van Tiel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sybren L. Meijer
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marieke van Stalborch
- Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anje A. te Velde
- Tytgat Institute, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlie J. M. de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Evans JF, Salvador V, George S, Trevino-Gutierrez C, Nunez C. Mouse aorta-derived mesenchymal progenitor cells contribute to and enhance the immune response of macrophage cells under inflammatory conditions. Stem Cell Res Ther 2015; 6:56. [PMID: 25889992 PMCID: PMC4414009 DOI: 10.1186/s13287-015-0071-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/01/2015] [Accepted: 03/31/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction Mesenchymal progenitor cells interact with immune cells and modulate inflammatory responses. The cellular characteristics required for this modulation are under fervent investigation. Upon interaction with macrophage cells, they can contribute to or suppress an inflammatory response. Current studies have focused on mesenchymal progenitors derived from bone marrow, adipose, and placenta. However, the arterial wall contains many mesenchymal progenitor cells, which during vascular disease progression have the potential to interact with macrophage cells. To examine the consequence of vascular-tissue progenitor cell-macrophage cell interactions in an inflammatory environment, we used a recently established mesenchymal progenitor cell line derived from the mouse aorta. Methods Mouse bone marrow-derived macrophage (MΦ) cells and mouse aorta-derived mesenchymal progenitor (mAo) cells were cultured alone or co-cultured directly and indirectly. Cells were treated with oxidized low-density lipoprotein (ox-LDL) or exposed to the inflammatory mediators lipopolysaccharide (LPS) and interferon-gamma (IFNγ) or both. A Toll-like receptor-4 (TLR4)-deficient macrophage cell line was used to determine the role of the mAo cells. To monitor inflammation, nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα) secretions were measured. Results Mesenchymal progenitor cells isolated from aorta and cloned by high proliferative capacity (mAo) can differentiate into multiple mesenchymal lineages and are positive for several commonly used mouse mesenchymal stem cell markers (that is, CD29, CD44, CD105, CD106, and Sca-1) but are negative for CD73 and ecto-5′-nucleotidase. In co-culture with MΦ cells, they increase MΦ oxidized-LDL uptake by 52.2%. In an inflammatory environment, they synergistically and additively contribute to local production of both NO and IL-6. After exposure to ox-LDL, the inflammatory response of MΦ cells to LPS and LPS/IFNγ is muted. However, when lipid-laden MΦ cells are co-cultured with mAo cell progenitors, the muted response is recovered and the contribution by the mAo cell progenitor is dependent upon cell contact. Conclusions The resident mesenchymal progenitor cell is a potential contributor to vascular inflammation when in contact with inflamed and lipid-laden MΦ cells. This interaction represents an additional target in vascular disease treatment. The potential for resident cells to contribute to the local immune response should be considered when designing therapeutics targeting inflammatory vascular disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0071-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jodi F Evans
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY, 11501, USA. .,Stony Brook University School of Medicine, 222 Station Plaza North Suite 501, Mineola, NY, 11501, USA.
| | - Veronica Salvador
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY, 11501, USA.
| | - Sheela George
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY, 11501, USA.
| | - Cristina Trevino-Gutierrez
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY, 11501, USA. .,Molloy College, 1000 Hempstead Avenue, Rockville Centre, NY, 11571, USA.
| | - Catherine Nunez
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY, 11501, USA. .,Molloy College, 1000 Hempstead Avenue, Rockville Centre, NY, 11571, USA.
| |
Collapse
|
17
|
Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol Cell Biol 2015; 93:683-93. [PMID: 25753272 DOI: 10.1038/icb.2015.26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/21/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is the leading cause of cardiovascular disease and is both a metabolic and inflammatory disease. Two models describe early events initiating atherosclerotic plaque formation, whereby foam cells form in response to hyperlipidaemia or inflammation-associated stimuli. Although these models are inextricably linked and not mutually exclusive, identifying the unique contribution of each in different disease settings remains an important question. Circulating monocytes are key mediators of atherogenesis in both models as precursors to lipid-laden foam cells formed in response to either excess lipid deposition in arteries, signalling via pattern-associated molecular patterns or a combination of the two. In this review, we assess the role of monocytes in each model and discuss how key steps in atherogenesis may be targeted to enhance clinical outcomes in patients with chronic inflammatory disease.
Collapse
|
18
|
Koller D, Hackl H, Bogner-Strauß JG, Hermetter A. Effects of oxidized phospholipids on gene expression in RAW 264.7 macrophages: a microarray study. PLoS One 2014; 9:e110486. [PMID: 25333283 PMCID: PMC4204898 DOI: 10.1371/journal.pone.0110486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/10/2014] [Indexed: 01/09/2023] Open
Abstract
Oxidized phospholipids (oxPLs) are components of oxidized LDL (oxLDL). It is known that oxLDL activates expression of a series of atherogenic genes and their oxPLs contribute to their biological activities. In this study we present the effects of 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) on gene expression in RAW 264.7 macrophages using cDNA microarrays. PGPC affected the regulation of 146 genes, whereas POVPC showed only very minor effects. PGPC preferentially influenced expression of genes related to cell death, angiogenesis, cholesterol efflux, procoagulant mechanisms, atherogenesis, inflammation, and cell cycle. Many of these effects are known from studies with oxLDL or oxidized 1-hexadecanoyl-2-eicosatetra-5′,8′,11′,14′-enoyl-sn-glycero-3-phosphocholine (oxPAPC), containing PGPC in addition to other oxPL species. It is known that POVPC efficiently reacts with proteins by Schiff base formation, whereas PGPC only physically interacts with its biological targets. POVPC seems to affect cell physiology to a great extent on the protein level, whereas PGPC gives rise to both the modulation of protein function and regulation on the transcriptional level.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- * E-mail:
| |
Collapse
|
19
|
McIntyre BAS, Kushwah R, Mechael R, Shapovalova Z, Alev C, Bhatia M. Innate immune response of human pluripotent stem cell-derived airway epithelium. Innate Immun 2014; 21:504-11. [PMID: 25261966 DOI: 10.1177/1753425914551074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023] Open
Abstract
The acquisition of innate immune response is requisite to having bona fide differentiation of airway epithelium. Procedures developed to differentiate lung airway from human pluripotent stem cells (hPSCs) have demonstrated anecdotal evidence for innate immune response, but an in-depth exploration of response levels is lacking. Herein, using an established method of airway epithelial generation from hPSCs, we show that hPSC-derived epithelial cells are able to up-regulate expression of TNFα, IL8 and IL1β in response to challenge with bacterial endotoxin LPS, but lack response from genes associated with innate immune response in other cell types. Further, stimulation of cells with TNF-α resulted in auto-induction of TNFα transcript, as well as cytokine responses of IL8 and IL1β. The demonstration of innate immune induction in hPSC-derived airway epithelia gives further strength to the functionality of in vitro protocols aimed at generating differentiated airway cells that can potentially be used in a translational setting. Finally, we propose that innate immune challenge of airway epithelium from human pluripotent stem cell sources be used as a robust validation of functional in vitro differentiation.
Collapse
Affiliation(s)
- Brendan A S McIntyre
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| | - Rahul Kushwah
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| | - Rami Mechael
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Zoya Shapovalova
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| | - Cantas Alev
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology (CDB), Kobe, Hyogo, Japan
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| |
Collapse
|
20
|
Bartuzi P, Wijshake T, Dekker DC, Fedoseienko A, Kloosterhuis NJ, Youssef SA, Li H, Shiri-Sverdlov R, Kuivenhoven JA, de Bruin A, Burstein E, Hofker MH, van de Sluis B. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2257-65. [PMID: 25072958 DOI: 10.1016/j.bbadis.2014.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-κB plays a critical role in the inflammatory response and it has been implicated in various diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-κB activation may protect tissues from stress, a prolonged NF-κB activation can have a detrimental effect on tissue homeostasis and therefore accurate termination is crucial. Copper Metabolism MURR1 Domain-containing 1 (COMMD1), a protein with functions in multiple pathways, has been shown to suppress NF-κB activity. However, its action in controlling liver inflammation has not yet been investigated. To determine the cell-type-specific contribution of Commd1 to liver inflammation, we used hepatocyte and myeloid-specific Commd1-deficient mice. We also used a mouse model of NAFLD to study low-grade chronic liver inflammation: we fed the mice a high fat, high cholesterol (HFC) diet, which results in hepatic lipid accumulation accompanied by liver inflammation. Depletion of hepatocyte Commd1 resulted in elevated levels of the NF-κB transactivation subunit p65 (RelA) but, surprisingly, the level of liver inflammation was not aggravated. In contrast, deficiency of myeloid Commd1 exacerbated diet-induced liver inflammation. Unexpectedly we observed that hepatic and myeloid Commd1 deficiency in the mice both augmented hepatic lipid accumulation. The elevated levels of proinflammatory cytokines in myeloid Commd1-deficient mice might be responsible for the increased level of steatosis. This increase was not seen in hepatocyte Commd1-deficient mice, in which increased lipid accumulation appeared to be independent of inflammation. Our mouse models demonstrate a cell-type-specific role for Commd1 in suppressing liver inflammation and in the progression of NAFLD.
Collapse
Affiliation(s)
- Paulina Bartuzi
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tobias Wijshake
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Daphne C Dekker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alina Fedoseienko
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Niels J Kloosterhuis
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sameh A Youssef
- Dutch Molecular Pathology Center, Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Haiying Li
- University of Texas Southwestern Medical Center, Departments of Internal Medicine and Molecular Biology, Dallas, TX 75390-9151, USA
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Jan-Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Ezra Burstein
- University of Texas Southwestern Medical Center, Departments of Internal Medicine and Molecular Biology, Dallas, TX 75390-9151, USA
| | - Marten H Hofker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bart van de Sluis
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
21
|
Zeng Q, Song R, Ao L, Xu D, Venardos N, Fullerton DA, Meng X. Augmented osteogenic responses in human aortic valve cells exposed to oxLDL and TLR4 agonist: a mechanistic role of Notch1 and NF-κB interaction. PLoS One 2014; 9:e95400. [PMID: 24810405 PMCID: PMC4014478 DOI: 10.1371/journal.pone.0095400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Aortic valve calcification causes the progression of calcific aortic valve disease (CAVD). Stimulation of aortic valve interstitial cells (AVICs) with lipopolysaccharide (LPS) up-regulates the expression of osteogenic mediators, and NF-κB plays a central role in mediating AVIC osteogenic responses to Toll-like receptor 4 (TLR4) stimulation. Diseased aortic valves exhibit greater levels of oxidized low-density lipoprotein (oxLDL). This study tested the hypothesis that oxLDL augments the osteogenic responses in human AVICs through modulation of NF-κB and Notch1 activation. AVICs isolated from normal human aortic valves were treated with LPS (0.1 µg/ml), oxLDL (20 µg/ml) or LPS plus oxLDL for 48 h. OxLDL alone increased cellular bone morphogenetic protein-2 (BMP-2) levels while it had no effect on alkaline phosphatase (ALP) levels. Cells exposed to LPS plus oxLDL produced higher levels of BMP-2 and ALP than cells exposed to LPS alone. Further, LPS plus oxLDL induced greater NF-κB activation, and inhibition of NF-κB markedly reduced the expression of BMP-2 and ALP in cells treated with LPS plus oxLDL. OxLDL also induced Notch1 activation and resulted in augmented Notch1 activation when it was combined with LPS. Inhibition of Notch1 cleavage attenuated NF-κB activation induced by LPS plus oxLDL, and inhibition of NF-κB suppressed the expression of BMP-2 and ALP induced by the synergistic effect of Jagged1 and LPS. These findings demonstrate that oxLDL up-regulates BMP-2 expression in human AVICs and synergizes with LPS to elicit augmented AVIC osteogenic responses. OxLDL exerts its effect through modulation of the Notch1-NF-κB signaling cascade. Thus, oxLDL may play a role in the mechanism underlying CAVD progression.
Collapse
Affiliation(s)
- Qingchun Zeng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Song
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Neil Venardos
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
| | - David A. Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Non-alcoholic steatohepatitis and hepatocellular carcinoma: implications for lycopene intervention. Nutrients 2013; 6:124-62. [PMID: 24379011 PMCID: PMC3916853 DOI: 10.3390/nu6010124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023] Open
Abstract
Increased prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the consequences of the current obesity epidemic. NAFLD is a major form of chronic liver disease that is highly prevalent in obese and overweight adults and children. Nonalcoholic steatohepatitis (NASH) is the severe form of NAFLD, and uncontrolled inflammation as displayed in NASH has been identified as one of the key events in enhancing hepatic carcinogenesis. Lycopene is a non-provitamin A carotenoid and the pigment principally responsible for the characteristic deep-red color of ripe tomato and tomato products, as well as some fruits and vegetables. Lycopene's innate antioxidant and anti-inflammatory properties have generated research interests on its capacity to protect against human diseases that are associated with oxidative stress and inflammation. In addition, differential mechanisms of lycopene metabolism including endogenous cleavage by carotenoid cleavage oxygenases (BCOs), generate lycopene metabolites that may also have significant impact on human disease development. However, it remains to be elucidated as to whether lycopene or its metabolites apolycopenoids have protective effects against obesity-related complications including inflammation and tumorigenesis. This article summarizes the in vivo experiments that elucidated molecular mechanisms associated with obesity-related hepatic inflammation and carcinogenesis. This review also provides an overview of lycopene metabolism, and the molecular pathways involved in the potential beneficial properties of lycopene and apolycopenoids. More research is clearly needed to fully unravel the importance of BCOs in tomato carotenoid metabolism and the consequence on human health and diseases.
Collapse
|
23
|
de Munter W, Blom AB, Helsen MM, Walgreen B, van der Kraan PM, Joosten LAB, van den Berg WB, van Lent PLEM. Cholesterol accumulation caused by low density lipoprotein receptor deficiency or a cholesterol-rich diet results in ectopic bone formation during experimental osteoarthritis. Arthritis Res Ther 2013; 15:R178. [PMID: 24286458 PMCID: PMC3978425 DOI: 10.1186/ar4367] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/10/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction Osteoarthritis (OA) is associated with the metabolic syndrome, however the underlying mechanisms remain unclear. We investigated whether low density lipoprotein (LDL) accumulation leads to increased LDL uptake by synovial macrophages and affects synovial activation, cartilage destruction and enthesophyte/osteophyte formation during experimental OA in mice. Methods LDL receptor deficient (LDLr−/−) mice and wild type (WT) controls received a cholesterol-rich or control diet for 120 days. Experimental OA was induced by intra-articular injection of collagenase twelve weeks after start of the diet. OA knee joints and synovial wash-outs were analyzed for OA-related changes. Murine bone marrow derived macrophages were stimulated with oxidized LDL (oxLDL), whereupon growth factor presence and gene expression were analyzed. Results A cholesterol-rich diet increased apolipoprotein B (ApoB) accumulation in synovial macrophages. Although increased LDL levels did not enhance thickening of the synovial lining, S100A8 expression within macrophages was increased in WT mice after receiving a cholesterol-rich diet, reflecting an elevated activation status. Both a cholesterol-rich diet and LDLr deficiency had no effect on cartilage damage; in contrast, ectopic bone formation was increased within joint ligaments (fold increase 6.7 and 6.1, respectively). Moreover, increased osteophyte size was found at the margins of the tibial plateau (4.4 fold increase after a cholesterol-rich diet and 5.3 fold increase in LDLr−/− mice). Synovial wash-outs of LDLr−/− mice and supernatants of macrophages stimulated with oxLDL led to increased transforming growth factor-beta (TGF-β) signaling compared to controls. Conclusions LDL accumulation within synovial lining cells leads to increased activation of synovium and osteophyte formation in experimental OA. OxLDL uptake by macrophages activates growth factors of the TGF-superfamily.
Collapse
|
24
|
Kushiyama A, Sakoda H, Oue N, Okubo M, Nakatsu Y, Ono H, Fukushima T, Kamata H, Nishimura F, Kikuchi T, Fujishiro M, Nishiyama K, Aburatani H, Kushiyama S, Iizuka M, Taki N, Encinas J, Sentani K, Ogonuki N, Ogura A, Kawazu S, Yasui W, Higashi Y, Kurihara H, Katagiri H, Asano T. Resistin-Like Molecule β Is Abundantly Expressed in Foam Cells and Is Involved in Atherosclerosis Development. Arterioscler Thromb Vasc Biol 2013; 33:1986-93. [DOI: 10.1161/atvbaha.113.301546] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Akifumi Kushiyama
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Hideyuki Sakoda
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Naohide Oue
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Masamichi Okubo
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Yusuke Nakatsu
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Haruya Ono
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Toshiaki Fukushima
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Hideaki Kamata
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Fusanori Nishimura
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Takako Kikuchi
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Midori Fujishiro
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Koichi Nishiyama
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Hiroyuki Aburatani
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Sakura Kushiyama
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Masaki Iizuka
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Naoyuki Taki
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Jeffrey Encinas
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Kazuhiro Sentani
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Narumi Ogonuki
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Atsuo Ogura
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Shoji Kawazu
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Wataru Yasui
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Yukihito Higashi
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Hiroki Kurihara
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Hideki Katagiri
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| | - Tomoichiro Asano
- From the Department of Internal Medicine, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan (A.K., T.K., S.K.); Department of Internal Medicine, Graduate School of Medicine (H.S., M.F.), Department of Physiological Chemistry and Metabolism, Graduate School of Medicine (K.N., S.K., H.K.), and Research Center for Advanced Science and Technology (H.A.), University of Tokyo, Tokyo, Japan; Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences,
| |
Collapse
|
25
|
Walenbergh SMA, Koek GH, Bieghs V, Shiri-Sverdlov R. Non-alcoholic steatohepatitis: the role of oxidized low-density lipoproteins. J Hepatol 2013. [PMID: 23183522 DOI: 10.1016/j.jhep.2012.11.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). The transition from simple steatosis towards NASH represents a key step in pathogenesis, as it will set the stage for further severe liver damage. Yet, the pathogenesis behind hepatic inflammation is still poorly understood. It is of relevance to better understand the underlying mechanisms involved in NASH in order to apply new knowledge to potential novel therapeutic approaches. In the current review, we propose oxidized cholesterol as a novel risk factor for NASH. Here, we summarize mouse and human studies that provide possible mechanisms for the involvement of oxidized low-density lipoproteins in NASH and consequent potential novel diagnostic tools and treatment strategies for hepatic inflammation.
Collapse
Affiliation(s)
- Sofie M A Walenbergh
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Tzieply N, Kuhn AM, Morbitzer D, Namgaladze D, Heeg A, Schaefer L, von Knethen A, Jensen LE, Brüne B. OxLDL inhibits LPS-induced IFNβ expression by Pellino3- and IRAK1/4-dependent modification of TANK. Cell Signal 2012; 24:1141-9. [DOI: 10.1016/j.cellsig.2012.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/29/2012] [Indexed: 10/14/2022]
|
27
|
Mogilenko DA, Kudriavtsev IV, Trulioff AS, Shavva VS, Dizhe EB, Missyul BV, Zhakhov AV, Ischenko AM, Perevozchikov AP, Orlov SV. Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. J Biol Chem 2011; 287:5954-68. [PMID: 22194611 DOI: 10.1074/jbc.m111.289322] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Complement C3 is a pivotal component of three cascades of complement activation. C3 is expressed in human atherosclerotic lesions and is involved in atherogenesis. However, the mechanism of C3 accumulation in atherosclerotic lesions is not well elucidated. We show that acetylated low density lipoprotein and oxidized low density lipoprotein (oxLDL) increase C3 gene expression and protein secretion by human macrophages. Modified LDL (mLDL)-mediated activation of C3 expression mainly depends on liver X receptor (LXR) and partly on Toll-like receptor 4 (TLR4), whereas C3 secretion is increased due to TLR4 activation by mLDL. LXR agonist TO901317 stimulates C3 gene expression in human monocyte-macrophage cells but not in human hepatoma (HepG2) cells. We find LXR-responsive element inside of the promoter region of the human C3 gene, which binds to LXRβ in macrophages but not in HepG2 cells. We show that C3 expression and secretion is decreased in IL-4-treated (M2) and increased in IFNγ/LPS-stimulated (M1) human macrophages as compared with resting macrophages. LXR agonist TO901317 potentiates LPS-induced C3 gene expression and protein secretion in macrophages, whereas oxLDL differently modulates LPS-mediated regulation of C3 in M1 or M2 macrophages. Treatment of human macrophages with anaphylatoxin C3a results in stimulation of C3 transcription and secretion as well as increased oxLDL accumulation and augmented oxLDL-mediated up-regulation of the C3 gene. These data provide a novel mechanism of C3 gene regulation in macrophages and suggest new aspects of cross-talk between mLDL, C3, C3a, and TLR4 during development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg 197376, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Banerjee S, Halder K, Bose A, Bhattacharya P, Gupta G, Karmahapatra S, Das S, Chaudhuri S, Bhattacharyya Majumdar S, Majumdar S. TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages. Carcinogenesis 2011; 32:1789-97. [PMID: 21926109 DOI: 10.1093/carcin/bgr208] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor-associated macrophages (TAM) are severely compromised for the induction of proinflammatory mediators following toll-like receptor (TLR) activation. Here, we reported that the defective TLR response in TAM was due to the malfunctioning of the myeloid differentiation primary response gene 88 (MyD88)-dependent signaling cascade in concert with downregulation of tumor necrosis factor receptor-associated factor (TRAF) 6 and interleukin-1 receptor-associated kinase (IRAK) 1. However, the expression of toll-interleukin1 receptor domain-containing adapter-inducing interferon beta (TRIF) and TRAF 3, which act via the TRIF-dependent pathway of TLR signaling, were found to be unaffected in TAM. Although, TRIF-mediated signal inducers, lipopolysaccharide or poly (I:C), induced high level of extracellular signal-regulated kinase (ERK)-1/2 mitogen-activated protein kinase (MAPK) phosphorylation, but they were failed to induce significant p38MAPK phosphorylation in TAM. Consequently, ERK-1/2-dependent histone phosphorylation at the IL-10 promoter elicited enhanced interleukin (IL)-10 production by TAM. Whereas, the lack of transcription favorable histone phosphorylation at the IL-12 promoter was accompanied with a very low amount of IL-12 expression in TAM. Moreover, ERK-1/2 MAPK activation resulted in enhanced IRAK M induction in TAM, a specific inhibitor of MyD88 pathway. Therefore, for the first time, we decipher an unexplored TLR signaling in TAM where ERK-1/2 activation in a MyD88-independent pathway results in transcription favorable histone modification at the IL-10 promoter region to enhance IL-10-mediated immunosuppression. Additionally, by enhancing IRAK M induction, it also polarizes TAM toward a more immunosuppressive form.
Collapse
Affiliation(s)
- Sayantan Banerjee
- Division of Molecular Medcine, Bose Institute, P1/12 C.I.T. scheme VIIM, Kolkata 700054, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nergiz-Unal R, Lamers MME, Van Kruchten R, Luiken JJ, Cosemans JMEM, Glatz JFC, Kuijpers MJE, Heemskerk JWM. Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein. J Thromb Haemost 2011; 9:1835-46. [PMID: 21696539 DOI: 10.1111/j.1538-7836.2011.04416.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Platelets abundantly express glycoprotein CD36 with thrombospondin-1 (TSP1) and oxidized low-density lipoprotein (oxLDL) as proposed ligands. How these agents promote platelet activation is still poorly understood. METHODS AND RESULTS Both TSP1 and oxLDL caused limited activation of platelets in suspension. However, immobilized TSP1 and oxLDL, but not LDL, strongly supported platelet adhesion and spreading with a major role of CD36. Platelet spreading was accompanied by potent Ca(2+) rises, and resulted in exposure of P-selectin and integrin activation, all in a CD36-dependent manner with additional contributions of α(IIb) β(3) and ADP receptor stimulation. Signaling responses via CD36 involved activation of the protein tyrosine kinase Syk. In whole blood perfusion, co-coating of TSP1 or oxLDL with collagen enhanced thrombus formation at high-shear flow conditions, with increased expression on platelets of activated α(IIb) β(3), P-selectin and phosphatidylserine, again in a CD36-dependent way. CONCLUSIONS Immobilized TSP1 and oxLDL activate platelets partly via CD36 through a Syk kinase-dependent Ca(2+) signaling mechanism, which enhances collagen-dependent thrombus formation under flow. These findings provide novel insight into the role of CD36 in hemostasis.
Collapse
Affiliation(s)
- R Nergiz-Unal
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Groppo R, Richter JD. CPEB control of NF-kappaB nuclear localization and interleukin-6 production mediates cellular senescence. Mol Cell Biol 2011; 31:2707-14. [PMID: 21536657 PMCID: PMC3133380 DOI: 10.1128/mcb.05133-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/19/2011] [Indexed: 12/17/2022] Open
Abstract
CPEB is a sequence-specific translational regulatory RNA binding protein that mediates cellular senescence in primary mouse and human cells. CPEB knockout mouse embryo fibroblasts (MEFs) bypass senescence and synthesize large amounts of interleukin-6 (IL-6) and many other cytokines, which is not the case with either wild-type MEFs immortalized by prolonged culture or p53-deficient MEFs. CPEB regulates the production of IL-6 at both the translational and transcriptional levels; in CPEB-depleted cells, aberrant IL-6 transcription is mediated by improper NF-κB p65 phosphorylation and nuclear localization. Although IL-6 strengthens the senescence of wild-type cells, it has no effect on CPEB-deficient cells, even though they produce prodigious amounts of the cytokine. IL-6-promoted entry into senescence requires p53; CPEB knockout MEFs, however, synthesize only ∼50% of the p53 of wild-type MEFs, which is insufficient to respond to IL-6. Thus, CPEB deficiency not only increases IL-6 production but also renders the cell incapable of a senescence-promoting response.
Collapse
Affiliation(s)
- Rachel Groppo
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
31
|
Lei L, Li H, Yan F, Li Y, Xiao Y. Porphyromonas gingivalis lipopolysaccharide alters atherosclerotic-related gene expression in oxidized low-density-lipoprotein-induced macrophages and foam cells. J Periodontal Res 2011; 46:427-37. [PMID: 21418223 DOI: 10.1111/j.1600-0765.2011.01356.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE The molecular mechanism linking atherosclerosis formation and periodontal pathogens is not clear, although a positive correlation between periodontal infections and cardiovascular diseases has been reported. The aim of this study was to determine whether stimulation with Porphyromonas gingivalis lipopolysaccharide (LPS) affected the expression of atherosclerosis-related genes, during and after the formation of foam cells. MATERIAL AND METHODS Macrophages from human THP-1 monocytes were treated with oxidized low-density lipoprotein (oxLDL) to induce the formation of foam cells. P. gingivalis LPS was added to cultures of either oxLDL-induced macrophages or foam cells. The expression of atherosclerosis-related genes was assayed by quantitative real-time PCR, and the production of granulocyte-macrophage colony-stimulating factor, monocyte chemotactic protein-1, interleukin (IL)-1β, IL-10 and IL-12 proteins was determined using ELISA. Nuclear translocation of nuclear factor-kappaB (NF-κB) P(65) was detected by immunocytochemistry, and western blotting was used to evaluate inhibitory kappa B-α (IκΒ-α) degradation to confirm activation of the NF-κB pathway. RESULTS P. gingivalis LPS stimulated atherosclerosis-related gene expression in foam cells and increased the oxLDL-induced expression of chemokines, adhesion molecules, growth factors, apoptotic genes and nuclear receptors in macrophages. Transcription of the proinflammatory cytokines IL1β and IL12 was elevated in response to LPS in both macrophages and foam cells, whereas transcription of the anti-inflammatory cytokine, IL10, was not affected. Increased activation of the NF-κB pathway was also observed in macrophages costimulated with LPS + oxLDL. CONCLUSION P. gingivalis LPS appears to be an important factor in the development of atherosclerosis by stimulation of atherosclerosis-related gene expression in both macrophages and foam cells via activation of the NF-κB pathway.
Collapse
Affiliation(s)
- L Lei
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | | | | | | | | |
Collapse
|
32
|
Aukrust P, Sandberg WJ, Otterdal K, Vinge LE, Gullestad L, Yndestad A, Halvorsen B, Ueland T. Tumor necrosis factor superfamily molecules in acute coronary syndromes. Ann Med 2011; 43:90-103. [PMID: 21039303 DOI: 10.3109/07853890.2010.523711] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence suggests that inflammatory pathways play an essential role in all stages of atherogenesis. Inflammatory processes are not only involved in plaque progression, but seem also to play a critical role in plaque rupture. Members of the tumor necrosis factor (TNF) superfamiliy are potent regulators of inflammation and cell survival and consist of 20 ligands that signal through 29 different receptors. Several lines of evidence suggest that TNF-related molecules are involved in the development of acute coronary syndromes (ACS). Most, convincing evidence exists for CD40 ligand-CD40 interaction, but several other members of the TNF superfamily seem also to be involved in this immune-mediated promotion of plaque instability, including LIGHT, receptor activator of nuclear factor κB ligand, and TNF-α. These plaque destabilization pathways involve the bidirectional interaction between platelets and endothelial cells/monocytes, activation of vascular smooth muscle cells, and co-stimulatory effects on T cells, promoting inflammation, thrombus formation, matrix degradation, and apoptosis. TNF-related pathways could contribute to the non-resolving inflammation that characterizes atherosclerosis, representing pathogenic loops that are operating during plaque rupture and the development of ACS. These TNF-related molecules could also represent attractive new targets for therapy in this disorder.
Collapse
Affiliation(s)
- Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
van Tits LJH, Stienstra R, van Lent PL, Netea MG, Joosten LAB, Stalenhoef AFH. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis 2010; 214:345-9. [PMID: 21167486 DOI: 10.1016/j.atherosclerosis.2010.11.018] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 11/16/2010] [Accepted: 11/21/2010] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Macrophages are key players in atherogenesis because of their properties to form foam cells that produce a large variety of pro-inflammatory mediators. We addressed the potency of phenotypic different macrophages to accumulate oxidized LDL. METHODS AND RESULTS Surprisingly, anti-inflammatory M2 macrophages but not pro-inflammatory M1 macrophages rapidly accumulated oxidized LDL. Simultaneously, expression of Krüppel-like factor 2, a nuclear transcription factor known to suppress inflammation in endothelial cells and monocytes, decreased and the functional phenotype of M2 macrophages shifted towards a pro-inflammatory profile, characterized by higher production of IL-6, IL-8 and MCP-1 and lower expression of IL-10 upon stimulation with LPS. In contrast, Krüppel-like factor 2 expression and the phenotype of M1 macrophages remained largely unchanged upon oxidized LDL exposure. Downregulation of Krüppel-like factor 2 expression of M2 macrophages using siRNA technology led to a significant increase of LPS-induced MCP-1 secretion. CONCLUSIONS We show that (1) anti-inflammatory M2 macrophages are more susceptible to foam cell formation than pro-inflammatory M1 macrophages, (2) exposure to oxidized LDL renders M2 macrophages pro-inflammatory, and (3) Krüppel-like factor 2 is involved in the enhanced secretion of MCP-1 by M2 macrophages loaded with oxidized LDL. The phenotype switch of M2 macrophages from an anti- to a pro-inflammatory profile may play an important role in pathogenesis of atherosclerosis, and could represent a novel therapeutic target.
Collapse
Affiliation(s)
- L J H van Tits
- Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Ma L, Dong F, Denis M, Feng Y, Wang MD, Zha X. Ht31, a protein kinase A anchoring inhibitor, induces robust cholesterol efflux and reverses macrophage foam cell formation through ATP-binding cassette transporter A1. J Biol Chem 2010; 286:3370-8. [PMID: 21106522 DOI: 10.1074/jbc.m110.173666] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage foam cell is the predominant cell type in atherosclerotic lesions. Removal of excess cholesterol from macrophages thus offers effective protection against atherosclerosis. Here we report that a protein kinase A (PKA)-anchoring inhibitor, st-Ht31, induces robust cholesterol/phospholipid efflux, and ATP-binding cassette transporter A1 (ABCA1) greatly facilitates this process. Remarkably, we found that st-Ht31 completely reverses foam cell formation, and this process is ABCA1-dependent. The reversal is also accompanied by the restoration of well modulated inflammatory response to LPS. There is no detectable toxicity associated with st-Ht31, even when cells export up to 20% cellular cholesterol per hour. Using FRET-based PKA biosensors in live cells, we provide evidence that st-Ht31 drives cholesterol efflux by elevating PKA activity specifically in the cytoplasm. Furthermore, ABCA1 facilitates st-Ht31 uptake. This allows st-Ht31 to effectively remove cholesterol from ABCA1-expressing cells. We speculate that de-anchoring of PKA offers a novel therapeutic strategy to remove excess cholesterol from lipid-laden lesion macrophages.
Collapse
Affiliation(s)
- Loretta Ma
- Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Isoda T, Tsutsumi T, Yamazaki K, Nishihara T. Measurement of plaque-forming macrophages activated by lipopolysaccharide in a micro-channel chip. J Periodontal Res 2009; 44:609-15. [DOI: 10.1111/j.1600-0765.2008.01167.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Krishnan R, Kremen M, Hu JH, Emery I, Farris SD, Slezicki KI, Chu T, Du L, Dichek HL, Dichek DA. Level of macrophage uPA expression is an important determinant of atherosclerotic lesion growth in Apoe-/- mice. Arterioscler Thromb Vasc Biol 2009; 29:1737-44. [PMID: 19729604 DOI: 10.1161/atvbaha.109.195529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Enhanced plasminogen activation, mediated by overexpression of urokinase-type plasminogen activator (uPA), accelerates atherosclerosis in apolipoprotein E-null mice. However, the mechanisms through which uPA acts remain unclear. In addition, although elevated uPA expression can accelerate murine atherosclerosis, there is not yet any evidence that decreased uPA expression would retard atherosclerosis. METHODS AND RESULTS We used a bone marrow transplant (BMT) approach and apolipoprotein E-deficient (Apoe(-/-)) mice to investigate cellular mechanisms of uPA-accelerated atherosclerosis, aortic dilation, and sudden death. We also used BMT to determine whether postnatal loss of uPA expression in macrophages retards atherosclerosis. BMT from uPA-overexpressing mice yielded recipients with macrophage-specific uPA overexpression; whereas BMT from uPA knockout mice yielded recipients with macrophage-specific loss of uPA expression. Recipients of uPA-overexpressing BM acquired all the vascular phenotypes (accelerated atherosclerosis, aortic medial destruction and dilation, severe coronary stenoses) as well as the sudden death phenotype of uPA-overexpressing mice. Moreover, fat-fed 37-week-old recipients of uPA-null BM had significantly less atherosclerosis than recipients of uPA wild-type marrow (40% less aortic surface lesion area; P=0.03). CONCLUSIONS The level of uPA expression by macrophages-over a broad range-is an important determinant of atherosclerotic lesion growth in Apoe(-/-) mice.
Collapse
Affiliation(s)
- Ranjini Krishnan
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Terra X, Fernández-Larrea J, Pujadas G, Ardèvol A, Bladé C, Salvadó J, Arola L, Blay M. Inhibitory effects of grape seed procyanidins on foam cell formation in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2588-2594. [PMID: 19292475 DOI: 10.1021/jf803450a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human and animal studies have demonstrated that procyanidin-rich diets reduce the risk of cardiovascular diseases and atherosclerosis. Some beneficial effects have been attributed to the well-known antioxidant activity of procyanidins. This study investigated another potential corrective role of procyanidins in cholesterol flux and inflammation in macrophage-derived foam cells. RAW 264.7 macrophages were cultured with moderately oxidized LDL (oxLDL), minimally oxidized LDL (moxLDL), or LPS (0.5 microg/mL) and oxLDL (LPS + oxLDL) to induce foam cells. Then, cells were treated with procyanidins derived from grape seed (PE, 45 microg/mL) for the last 12 h of incubation with the different lipoproteins (25 microg/mL). After lipid extraction, it was determined that total and esterified cholesterol and triglyceride accumulations in foam cells were increased by lipoprotein treatment but reduced by PE incubation. To asses the effect of PE on gene expression, the relative mRNA levels of CD36, ABCA1, iNOS, COX-2, and IkappaBalpha were determined by RT-PCR. It was shown that PE reduced the oxLDL scavenger receptor expression (CD36) and enhanced ATP-binding cassette A1 (ABCA1) expression, a key regulator of macrophage cholesterol efflux. PE also down-regulated inflammatory-related genes such as inducible nitric oxide synthase (iNOS) and kappa beta inhibitor-alpha (IkappaBalpha) without modifying COX-2 expression. In conclusion, evidence is provided that procyanidins may attenuate the development of foam cell formation by reducing cholesterol accumulation and modulating the expression of key genes in cholesterol flux and inflammation.
Collapse
Affiliation(s)
- Ximena Terra
- Department of Biochemistry and Biotechnology, Unitat d'Enologia del Centre de Referencia en Tecnologia dels Aliments de la Generalitat de Catalunya, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Curfs DMJ, Ghesquiere SAI, Vergouwe MN, van der Made I, Gijbels MJJ, Greaves DR, Verbeek JS, Hofker MH, de Winther MPJ. Macrophage secretory phospholipase A2 group X enhances anti-inflammatory responses, promotes lipid accumulation, and contributes to aberrant lung pathology. J Biol Chem 2008; 283:21640-8. [PMID: 18511424 DOI: 10.1074/jbc.m710584200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secreted phospholipase A2 group X (sPLA(2)-X) is one of the most potent enzymes of the phospholipase A(2) lipolytic enzyme superfamily. Its high catalytic activity toward phosphatidylcholine (PC), the major phospholipid of cell membranes and low-density lipoproteins (LDL), has implicated sPLA(2)-X in chronic inflammatory conditions such as atherogenesis. We studied the role of sPLA(2)-X enzyme activity in vitro and in vivo, by generating sPLA(2)-X-overexpressing macrophages and transgenic macrophage-specific sPLA(2)-X mice. Our results show that sPLA(2)-X expression inhibits macrophage activation and inflammatory responses upon stimulation, characterized by reduced cell adhesion and nitric oxide production, a decrease in tumor necrosis factor (TNF), and an increase in interleukin (IL)-10. These effects were mediated by an increase in IL-6, and enhanced production of prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta12,14-prostaglandin J(2) (PGJ(2)). Moreover, we found that overexpression of active sPLA(2)-X in macrophages strongly increases foam cell formation upon incubation with native LDL but also oxidized LDL (oxLDL), which is mediated by enhanced expression of scavenger receptor CD36. Transgenic sPLA(2)-X mice died neonatally because of severe lung pathology characterized by interstitial pneumonia with massive granulocyte and surfactant-laden macrophage infiltration. We conclude that overexpression of the active sPLA(2)-X enzyme results in enhanced foam cell formation but reduced activation and inflammatory responses in macrophages in vitro. Interestingly, enhanced sPLA(2)-X activity in macrophages in vivo leads to fatal pulmonary defects, suggesting a crucial role for sPLA(2)-X in inflammatory lung disease.
Collapse
Affiliation(s)
- Daniëlle M J Curfs
- Departments of Molecular Genetics and Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hutchins PM, Barkley RM, Murphy RC. Separation of cellular nonpolar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J Lipid Res 2008; 49:804-13. [PMID: 18223242 DOI: 10.1194/jlr.m700521-jlr200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutral lipids are an important class of hydrophobic compounds found in all cells that play critical roles from energy storage to signal transduction. Several distinct structural families make up this class, and within each family there are numbers of individual molecular species. A solvent extraction protocol has been developed to efficiently isolate neutral lipids without complete extraction of more polar phospholipids. Normal-phase HPLC was used for the separation of cholesteryl esters (CEs), monoalkylether diacylglycerols, triacylglycerols, and diacylglycerols in a single HPLC run from this extract. Furthermore, minor lipids such as ubiquinone-9 could be detected in RAW 264.7 cells. Molecular species that make up each neutral lipid class can be analyzed both qualitatively and quantitatively by on-line LC-MS and LC-MS/MS strategies. The quantitation of >20 CE molecular species revealed that challenging RAW 264.7 cells with a Toll-like receptor 4 agonist caused a >20-fold increase in the content of CEs within cells, particularly those CE molecular species that contained saturated (14:0, 16:0, and 18:1) fatty acyl groups. Longer chain CE molecular species did not change in response to the activation of these cells.
Collapse
Affiliation(s)
- Patrick M Hutchins
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045-6511, USA
| | | | | |
Collapse
|
40
|
Tiwari R, Singh V, Barthwal M. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28:483-544. [DOI: 10.1002/med.20118] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|