1
|
Zhang G, Hu Y, Yang Q, Pu N, Li G, Zhang J, Tong Z, Masson E, Cooper DN, Chen JM, Li W. Frameshift coding sequence variants in the LPL gene: identification of two novel events and exploration of the genotype-phenotype relationship for variants reported to date. Lipids Health Dis 2023; 22:128. [PMID: 37568214 PMCID: PMC10422730 DOI: 10.1186/s12944-023-01898-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Lipoprotein lipase (LPL) is the rate-limiting enzyme for triglyceride hydrolysis. Homozygous or compound heterozygous LPL variants cause autosomal recessive familial chylomicronemia syndrome (FCS), whereas simple heterozygous LPL variants are associated with hypertriglyceridemia (HTG) and HTG-related disorders. LPL frameshift coding sequence variants usually cause complete functional loss of the affected allele, thereby allowing exploration of the impact of different levels of LPL function in human disease. METHODS All exons and flanking intronic regions of LPL were Sanger sequenced in patients with HTG-related acute pancreatitis (HTG-AP) or HTG-AP in pregnancy. Previously reported LPL frameshift coding sequence variants were collated from the Human Gene Mutation Database and through PubMed keyword searching. Original reports were manually evaluated for the following information: zygosity status of the variant, plasma LPL activity of the variant carrier, disease referred for genetic analysis, patient's age at genetic analysis, and patient's disease history. SpliceAI was employed to predict the potential impact of collated variants on splicing. RESULTS Two novel rare variants were identified, and 53 known LPL frameshift coding sequence variants were collated. Of the 51 variants informative for zygosity, 30 were simple heterozygotes, 12 were homozygotes, and 9 were compound heterozygotes. Careful evaluation of the 55 variants with respect to their clinical and genetic data generated several interesting findings. First, we conclude that 6-7% residual LPL function could significantly delay the age of onset of FCS and reduce the prevalence of FCS-associated syndromes. Second, whereas a large majority of LPL frameshift coding sequence variants completely disrupt gene function through their "frameshift" nature, a small fraction of these variants may act wholly or partly as "in-frame" variants, leading to the generation of protein products with some residual LPL function. Third, we identified two candidate LPL frameshift coding sequence variants that may retain residual function based on genotype-phenotype correlation or SpliceAI-predicted data. CONCLUSIONS This study reported two novel LPL variants and yielded new insights into the genotype-phenotype relationship as it pertains to LPL frameshift coding sequence variants.
Collapse
Affiliation(s)
- Guofu Zhang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuepeng Hu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Yang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Pu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gang Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingzhu Zhang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
- Service de Génétique Médicale Et de Biologie de La Reproduction, CHRU Brest, 29200, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.
| | - Weiqin Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Critical Care Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Phenotypic and Genetic Evidence for a More Prominent Role of Blood Glucose than Cholesterol in Atherosclerosis of Hyperlipidemic Mice. Cells 2022; 11:cells11172669. [PMID: 36078077 PMCID: PMC9455034 DOI: 10.3390/cells11172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia and type 2 diabetes (T2D) are major risk factors for atherosclerosis. Apoe-deficient (Apoe−/−) mice on certain genetic backgrounds develop hyperlipidemia, atherosclerosis, and T2D when fed a Western diet. Here, we sought to dissect phenotypic and genetic relationships of blood lipids and glucose with atherosclerotic plaque formation when the vasculature is exposed to high levels of cholesterol and glucose. Male F2 mice were generated from LP/J and BALB/cJ Apoe−/− mice and fed a Western diet for 12 weeks. Three significant QTL Ath51, Ath52 and Ath53 on chromosomes (Chr) 3 and 15 were mapped for atherosclerotic lesions. Ath52 on proximal Chr15 overlapped with QTL for plasma glucose, non-HDL cholesterol, and triglyceride. Atherosclerotic lesion sizes showed significant correlations with fasting, non-fasting glucose, non-fasting triglyceride, and body weight but no correlation with HDL, non-HDL cholesterol, and fasting triglyceride levels. Ath52 for atherosclerosis was down-graded from significant to suggestive level after adjustment for fasting, non-fasting glucose, and non-fasting triglyceride but minimally affected by HDL, non-HDL cholesterol, and fasting triglyceride. Adjustment for body weight suppressed Ath52 but elevated Ath53 on distal Chr15. These results demonstrate phenotypic and genetic connections of blood glucose and triglyceride with atherosclerosis, and suggest a more prominent role for blood glucose than cholesterol in atherosclerotic plaque formation of hyperlipidemic mice.
Collapse
|
3
|
Ldlr-Deficient Mice with an Atherosclerosis-Resistant Background Develop Severe Hyperglycemia and Type 2 Diabetes on a Western-Type Diet. Biomedicines 2022; 10:biomedicines10061429. [PMID: 35740449 PMCID: PMC9220196 DOI: 10.3390/biomedicines10061429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
Apoe-/- and Ldlr-/- mice are two animal models extensively used for atherosclerosis research. We previously reported that Apoe-/- mice on certain genetic backgrounds, including C3H/HeJ (C3H), develop type 2 diabetes when fed a Western diet. We sought to characterize diabetes-related traits in C3H-Ldlr-/- mice through comparing with C3H-Apoe-/- mice. On a chow diet, Ldlr-/- mice had lower plasma total and non-HDL cholesterol levels but higher HDL levels than Apoe-/- mice. Fasting plasma glucose was much lower in Ldlr-/- than Apoe-/- mice (male: 122.5 ± 5.9 vs. 229.4 ± 17.5 mg/dL; female: 144.1 ± 12.4 vs. 232.7 ± 6.4 mg/dL). When fed a Western diet, Ldlr-/- and Apoe-/- mice developed severe hypercholesterolemia and also hyperglycemia with fasting plasma glucose levels exceeding 250 mg/dL. Both knockouts had similar non-HDL cholesterol and triglyceride levels, and their fasting glucose levels were also similar. Male Ldlr-/- mice exhibited greater glucose tolerance and insulin sensitivity compared to their Apoe-/- counterpart. Female mice showed similar glucose tolerance and insulin sensitivity though Ldlr-/- mice had higher non-fasting glucose levels. Male Ldlr-/- and Apoe-/- mice developed moderate obesity on the Western diet, but female mice did not. These results indicate that the Western diet and ensuing hyperlipidemia lead to the development of type 2 diabetes, irrespective of underlying genetic causes.
Collapse
|
4
|
An K, Guo P, Zhang H, Zhu W, Cao W, Shi J, Wang S. Decreased Plasma Level of Lipoprotein Lipase Predicted Verbal Disfluency in Chinese Type 2 Diabetes Mellitus Patients with Early Cognitive Deficits. Curr Alzheimer Res 2021; 18:656-666. [PMID: 34551696 DOI: 10.2174/1567205018666210922105850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipoprotein Lipase (LPL) is the rate-limiting enzyme catalyzing the hydrolysis of triglycerides and contributes to the amyloid-β formation, which shows promise as a pathological factor of cognitive decline in Type 2 Diabetes Mellitus (T2DM). This study aimed to investigate the pathogenetic roles of LPL and rs328 polymorphism in Mild Cognitive Impairment (MCI) in patients with T2DM. METHODS Chinese patients with T2DM were recruited and divided into two groups based on the Montreal Cognitive Assessment score. Demographic data were collected, LPL was measured and neuropsychological test results were examined. RESULTS Seventy-nine patients with diabetes and MCI had significantly decreased plasma LPL levels (p = 0.007) when compared with health-cognition controls (n = 91). Correlation analysis revealed that LPL was positively correlated with clock drawing test (r = 0.158, p = 0.043) and logical memory test (r = 0.162, p = 0.037), while lipoprotein a (r = -0.214, p = 0.006) was inversely associated with LPL. Logistic regression analysis further demonstrated that LPL concentration was an independent factor for diabetic MCI (p = 0.036). No significant differences were observed in the distributions of rs328 variants between patients with MCI and the controls. Moreover, no remarkable association was found among plasma LPL levels, cognitive performances, and lipid levels between the genotypic subgroups. The trail making test A was increased in the GC group when compared with the CC genotype in the control group. CONCLUSION Decreased plasma level of LPL could probably predict early cognitive deficits, especially verbal disfluency.
Collapse
Affiliation(s)
- Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Peng Guo
- Changlu Street Community Health Service Center, No. 68 Bai Yu Road, Nanjing, 211512, China
| | - Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009, China
| |
Collapse
|
5
|
Ren X, Chen N, Chen Y, Liu W, Hu Y. TRB3 stimulates SIRT1 degradation and induces insulin resistance by lipotoxicity via COP1. Exp Cell Res 2019; 382:111428. [PMID: 31125554 DOI: 10.1016/j.yexcr.2019.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
Abstract
Fatty acid-induced lipotoxicity plays an important role in the pathogenesis of diabetes mellitus. Our previous studies have documented that lipotoxicity contributes to the onset and development of diabetes via insulin resistance and/or compromised function of the pancreatic β-cells. However, the underlying molecular mechanisms associating lipotoxicity with insulin resistance remain to be fully elucidated. In this study, we explored the role of TRB3-COP1-SIRT1 in lipotoxicity leading to insulin resistance in hepatocytes. High fat diet (HFD)-fed mice and hepG2 cells stimulated with palmitate were utilized as models of lipid metabolism disorders. We analyzed the interactions of SIRT1 and COP1 with each other and with TRB3 using co-immunoprecipitation, western blotting. SIRT1 ubiquitination was also explored. Animal and cell experiments showed that lipotoxicity induced SIRT1 down-regulation at the protein level without altering the mRNA level, whereas, lipotoxicity led to up-regulation of TRB3 and COP1 at both the gene and protein levels. Mechanistic analysis indicated that COP1 functioned as an E3 Ub-ligase of SIRT1, responsible for its proteasomal degradation under lipotoxic conditions. TRB3 recruited COP1 to SIRT1 to promote its ubiquitination. Our data indicated for the first time that TRB3-COP1-SIRT1 pathway played an important role in lipotoxicity leading to insulin resistance in hepatocytes, and suggested that COP1 could be a potential therapeutic choice for the treatment of diabetes mellitus, with lipotoxicity being the important pathomechanism.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ningxin Chen
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yawen Chen
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Wei Liu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Yaomin Hu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
Clinical and functional studies of two novel variants in the LPL gene in subjects with severe hypertriglyceridemia. Clin Chim Acta 2018; 487:22-27. [PMID: 30179614 DOI: 10.1016/j.cca.2018.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Two novel variants (p.Arg270Gly and p.Asp308Glyfs*3) in the LPL gene have recently been identified in subjects with hypertriglyceridemia (HTG). In this study, we investigated clinical and genetic features of their families and examined the functional significance of these two variants in vitro. METHODS Clinical and genetic data were collected. Site-directed mutagenesis and transient expression in cld cells were performed. Lipoprotein lipase (LPL) mass and activity were measured. RESULTS In vitro studies showed that LPL mass and activity in the media of cells transfected with the p.Arg270Gly variant were significantly reduced. In the cell lysates, however, LPL mass was preserved but LPL activity was reduced, suggesting that the LPL defect was in the secretion and activity. For the p.Asp308Glyfs*3 variant, LPL mass in the cell lysate was relatively preserved compared to that of the wild-type, while LPL mass in the media was decreased albeit not significantly. LPL activities in the cell lysate and in the media of cells transfected with this variant were significantly reduced, suggesting that the p.Asp308Glyfs*3 variant might affect the activity, and possibly, secretion of LPL. CONCLUSIONS These novel variants in the LPL gene were likely pathogenic with the defect in secretion and/or activity.
Collapse
|
7
|
Lun Y, Sun X, Wang P, Chi J, Hou X, Wang Y. Severe hypertriglyceridemia due to two novel loss-of-function lipoprotein lipase gene mutations (C310R/E396V) in a Chinese family associated with recurrent acute pancreatitis. Oncotarget 2017; 8:47741-47754. [PMID: 28548960 PMCID: PMC5564601 DOI: 10.18632/oncotarget.17762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Lipoprotein lipase (LPL) is widely expressed in skeletal muscles, cardiac muscles as well as adipose tissue and involved in the catabolism of triglyceride. Herein we have systematically characterized two novel loss-of-function mutations in LPL from a Chinese family in which afflicted members were manifested by severe hypertriglyceridemia and recurrent pancreatitis. DNA sequencing revealed that the proband was a heterozygote carrying a novel c.T928C (p.C310R) mutation in exon 6 of the LPL gene. Another member of the family was detected to be a compound heterozygote who along with the c.T928C mutation also carried a novel missense mutation c.A1187T (p.E396V) in exon 8 of the LPL gene. Furthermore, COS-1 cells were transfected with lentiviruses containing the mutant LPL genes. While C310R markedly reduced the overall LPL protein level, COS-1 cells carrying E396V or double mutations contained similar overall LPL protein levels to the wild-type. The specific activity of the LPL mutants remained at comparable magnitude to the wild-type. However, few LPL were detected in the culture medium for the mutants, suggesting that both mutations caused aberrant triglyceride catabolism. More specifically, E396V and double mutations dampened the transport of LPL to the cell surface, while for the C310R mutation, reducing LPL protein level might be involved. By characterizing these two novel LPL mutations, this study has expanded our understanding on the pathogenesis of familial hypertriglyceridemia (FHTG).
Collapse
Affiliation(s)
- Yu Lun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Wang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xu Hou
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Ren X, Chen Z, Zheng S, Han T, Li Y, Liu W, Hu Y. Association between Triglyceride to HDL-C Ratio (TG/HDL-C) and Insulin Resistance in Chinese Patients with Newly Diagnosed Type 2 Diabetes Mellitus. PLoS One 2016; 11:e0154345. [PMID: 27115999 PMCID: PMC4846162 DOI: 10.1371/journal.pone.0154345] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 04/06/2016] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To explore the association between the triglyceride to HDL-C ratio (TG/HDL-C) and insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus. METHODS Patients with newly diagnosed type 2 diabetes mellitus (272 men and 288 women) were enrolled and divided into three groups according to TG/HDL-C tertiles. Insulin resistance was defined by homeostatic model assessment of insulin resistance (HOMA-IR). Demographic information and clinical characteristics were obtained. Spearman's correlation was used to estimate the association between TG/HDL-C and other variables. Multiple logistic regression analyses were adopted to obtain probabilities of insulin resistance. A receiver operating characteristic analysis was conducted to evaluate the ability of TG/HDL-C to discriminate insulin resistance. RESULTS TG/HDL-C was associated with insulin resistance in Chinese patients with newly diagnosed T2DM (Spearman's correlation coefficient = 0.21, P < 0.01). Patients in the higher tertiles of TG/HDL-C had significantly higher HOMA-IR values than patients in the lower tertiles [T1: 2.68(1.74-3.70); T2: 2.96(2.29-4.56); T3: 3.09(2.30-4.99)]. Multiple logistic regression analysis showed that TG/HDL-C was significantly associated with HOMA-IR, and patients in the higher TG/HDL-C tertile had a higher OR than those in the lower TG/HDL-C tertile, after adjusting for multiple covariates including indices for central obesity [T1: 1; T2: 4.02(1.86-8.71); T3: 4.30(1.99-9.29)]. Following stratification of waist circumference into quartiles, the effect of TG/HDL-C on insulin resistance remained significant irrespective of waist circumference. CONCLUSIONS TG/HDL-C was associated with insulin resistance independent of waist circumference. Whether it could be a surrogate marker for insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus still needs to be confirmed by more researches.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng.ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuang Zheng
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Han
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yangxue Li
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Liu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaomin Hu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
Shi W, Wang Q, Choi W, Li J. Mapping and Congenic Dissection of Genetic Loci Contributing to Hyperglycemia and Dyslipidemia in Mice. PLoS One 2016; 11:e0148462. [PMID: 26859786 PMCID: PMC4747551 DOI: 10.1371/journal.pone.0148462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Patients with dyslipidemia have an increased risk of developing type 2 diabetes, and diabetic patients often have dyslipidemia. Potential genetic connections of fasting plasma glucose with plasma lipid profile were evaluated using hyperlipidemic mice. Methods 225 male F2 mice were generated from BALB/cJ (BALB) and SM/J(SM) Apoe-deficient (Apoe−/−) mice and fed a Western diet for 5 weeks. Fasting plasma glucose and lipid levels of F2 mice were measured before and after 5 weeks of Western diet and quantitative trait locus (QTL) analysis was performed using data collected from these two time points. 144 SNP(single nucleotide polymorphism) markers across the entire genome were typed. Results One major QTL (logarithm of odds ratio (LOD): 6.46) peaked at 12.7 cM on chromosome 9,Bglu16, and 3 suggestive QTLs on chromosomes 15, 18 and X were identified for fasting glucose, and over 10 loci identified for lipid traits. Bglu16 was adjacent to a major QTL, Hdlq17, for high-density lipoprotein (HDL) cholesterol (LOD: 6.31, peak: 19.1 cM). A congenic strain with a donor chromosomal region harboring Bglu16 and Hdlq17 on the Apoe−/− background showed elevations in plasma glucose and HDL levels. Fasting glucose levels were significantly correlated with non-HDL cholesterol and triglyceride levels, especially on the Western diet, but only marginally correlated with HDL levels in F2 mice. Conclusions We have demonstrated a correlative relationship between fasting glucose and plasma lipids in a segregating F2 population under hyperlipidemic conditions, and this correlation is partially due to genetic linkage between the two disorders.
Collapse
Affiliation(s)
- Weibin Shi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America.,Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qian Wang
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Wonseok Choi
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jing Li
- Departments of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
10
|
Rodrigues R, Artieda M, Tejedor D, Martínez A, Konstantinova P, Petry H, Meyer C, Corzo D, Sundgreen C, Klor HU, Gouni-Berthold I, Westphal S, Steinhagen-Thiessen E, Julius U, Winkler K, Stroes E, Vogt A, Hardt P, Prophet H, Otte B, Nordestgaard BG, Deeb SS, Brunzell JD. Pathogenic classification of LPL gene variants reported to be associated with LPL deficiency. J Clin Lipidol 2015; 10:394-409. [PMID: 27055971 DOI: 10.1016/j.jacl.2015.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lipoprotein lipase (LPL) deficiency is a serious lipid disorder of severe hypertriglyceridemia (SHTG) with chylomicronemia. A large number of variants in the LPL gene have been reported but their influence on LPL activity and SHTG has not been completely analyzed. Gaining insight into the deleterious effect of the mutations is clinically essential. METHODS We used gene sequencing followed by in-vivo/in-vitro and in-silico tools for classification. We classified 125 rare LPL mutations in 33 subjects thought to have LPL deficiency and in 314 subjects selected for very SHTG. RESULTS Of the 33 patients thought to have LPL deficiency, only 13 were homozygous or compound heterozygous for deleterious mutations in the LPL gene. Among the 314 very SHTG patients, 3 were compound heterozygous for pathogenic mutants. In a third group of 51,467 subjects, from a general population, carriers of common variants, Asp9Asn and Asn291Ser, were associated with mild increase in triglyceride levels (11%-35%). CONCLUSION In total, 39% of patients clinically diagnosed as LPL deficient had 2 deleterious variants. Three patients selected for very SHTG had LPL deficiency. The deleterious mutations associated with LPL deficiency will assist in the diagnosis and selection of patients as candidates for the presently approved LPL gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hans U Klor
- Director of the German HITRIG, Third Medical Department and Policlinic, Giessen University Hospital, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Sabine Westphal
- Institute of Clinical Chemistry, Lipid Clinic, Magdeburg, Germany
| | | | - Ulrich Julius
- Universitätsklinikum Carl Gustav Carus an der Technischen Universität, Medizinische Klinik III, Dresden, Germany
| | - Karl Winkler
- Institute of Clinical Chemistry and Laboratory Medicine and Lipid Outpatient Clinic, University Hospital Freiburg, Freiburg, Germany
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Vogt
- LMU Klinikum der Universität München, Medizinische Klinik und Poliklinik 4, München, Germany
| | - Phillip Hardt
- Gießen and Marburg University Hospital, Giessen, Germany
| | | | - Britta Otte
- Universitätsklinikum Münster, Medizinische Klinik D, Med. Clinic, Münster, Münster, Germany
| | - Borge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samir S Deeb
- Department of Medicine (Division of Medical Genetics), University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - John D Brunzell
- Department of Medicine (Division of Metabolism, Endocrinology and Nutrition), University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Wang Q, Grainger AT, Manichaikul A, Farber E, Onengut-Gumuscu S, Shi W. Genetic linkage of hyperglycemia and dyslipidemia in an intercross between BALB/cJ and SM/J Apoe-deficient mouse strains. BMC Genet 2015; 16:133. [PMID: 26555648 PMCID: PMC4641414 DOI: 10.1186/s12863-015-0292-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individuals with dyslipidemia often develop type 2 diabetes, and diabetic patients often have dyslipidemia. It remains to be determined whether there are genetic connections between the 2 disorders. METHODS A female F2 cohort, generated from BALB/cJ (BALB) and SM/J (SM) Apoe-deficient (Apoe(-/-)) strains, was started on a Western diet at 6 weeks of age and maintained on the diet for 12 weeks. Fasting plasma glucose and lipid levels were measured before and after 12 weeks of Western diet. 144 genetic markers across the entire genome were used for quantitative trait locus (QTL) analysis. RESULTS One significant QTL on chromosome 9, named Bglu17 [26.4 cM, logarithm of odds ratio (LOD): 5.4], and 3 suggestive QTLs were identified for fasting glucose levels. The suggestive QTL near the proximal end of chromosome 9 (2.4 cM, LOD: 3.12) was replicated at both time points and named Bglu16. Bglu17 coincided with a significant QTL for HDL (high-density lipoprotein) and a suggestive QTL for non-HDL cholesterol levels. Plasma glucose levels were inversely correlated with HDL but positively correlated with non-HDL cholesterol levels in F2 mice on either chow or Western diet. A significant correlation between fasting glucose and triglyceride levels was also observed on the Western diet. Haplotype analysis revealed that "lipid genes" Sik3, Apoa1, and Apoc3 were probable candidates for Bglu17. CONCLUSIONS We have identified multiple QTLs for fasting glucose and lipid levels. The colocalization of QTLs for both phenotypes and the sharing of potential candidate genes demonstrate genetic connections between dyslipidemia and type 2 diabetes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| | - Andrew T Grainger
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA. .,University of Virginia, Charlottesville, VA, USA.
| | - Ani Manichaikul
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Emily Farber
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Suna Onengut-Gumuscu
- Center for Public Health and Genomics, University of Virginia, Charlottesville, VA, USA.
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA. .,University of Virginia, Snyder Bldg Rm 266, 480 Ray C. Hunt Dr., P.O. Box 801339, Fontaine Research Park, Charlottesville, VA, 22908, USA.
| |
Collapse
|
12
|
Zheng S, Zhou H, Han T, Li Y, Zhang Y, Liu W, Hu Y. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride. BMC Endocr Disord 2015; 15:21. [PMID: 25924608 PMCID: PMC4423127 DOI: 10.1186/s12902-015-0018-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To explore clinical characteristics and beta cell function in Chinese patients with newly diagnosed drug naive type 2 diabetes mellitus (T2DM) with different levels of serum triglyceride (TG). METHODS Patients with newly diagnosed T2DM (n = 624) were enrolled and divided into different groups according to levels of serum TG. All patients underwent oral glucose tolerance tests and insulin releasing tests. Demographic data, lipid profiles, glucose levels, and insulin profiles were compared between different groups. Basic insulin secretion function index (homeostasis model assessment for beta cell function index, HOMA-β), modified beta cell function index (MBCI), glucose disposition indices (DI), and early insulin secretion function index (insulinogenic index, IGI) were used to evaluate the beta cell function. RESULTS Patients of newly diagnosed T2DM with hypertriglyceridemia were younger, fatter and had worse lipid profiles, glucose profiles, and high insulin levels than those with normal TG. There is no difference in early phase insulin secretion among groups of newly diagnosed T2DM patients with different TG levels. The basal beta cell function (HOMA-β and MBCI) initially increased along rising TG levels and then decreased as the TG levels rose further. The insulin sensitivity was relatively high in patients with a low level of TG and low with a high level of TG. CONCLUSIONS Hypertriglyceridemia influences clinical characteristics and β cell function of Chinese patients with newly diagnosed T2DM. A better management of dyslipidemia may, to some extent, reduce the effect of lipotoxicity, thereby improving glucose homeostasis in patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, NO.160, Pujian Road, Shanghai, 200127, China.
| | - Huan Zhou
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, NO.160, Pujian Road, Shanghai, 200127, China.
| | - Tingting Han
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, NO.160, Pujian Road, Shanghai, 200127, China.
| | - Yangxue Li
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, NO.160, Pujian Road, Shanghai, 200127, China.
| | - Yao Zhang
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, NO.160, Pujian Road, Shanghai, 200127, China.
| | - Wei Liu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, NO.160, Pujian Road, Shanghai, 200127, China.
| | - Yaomin Hu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, NO.160, Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
13
|
Li YX, Han TT, Liu Y, Zheng S, Zhang Y, Liu W, Hu YM. Insulin resistance caused by lipotoxicity is related to oxidative stress and endoplasmic reticulum stress in LPL gene knockout heterozygous mice. Atherosclerosis 2015; 239:276-82. [PMID: 25635326 DOI: 10.1016/j.atherosclerosis.2015.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To investigate the correlation of hypertriglyceridemia with abnormal glucose metabolism and insulin resistance. METHODS Lipid and glucose metabolism, whole-body and tissue-specific insulin sensitivity, genes and proteins related with oxidative stress and endoplasmic reticulum (ER) stress were compared between LPL+/- and control mice at different weeks of age. RESULTS 16-50-week LPL+/- mice had increased body weight compared with their respective controls. Fat mass in visceral adipose tissue (VAT) of 16 and 28-week LPL+/- mice were twice more than their control littermates, and 50-week LPL+/- mice showed the same trend of increase. Plasma lipids were higher in 16-50-week LPL+/- mice. 28- and 50-week LPL+/- mice had elevated tissue lipid accumulation (liver, skeletal muscle, pancreas) and impaired glucose tolerance, while 16-week LPL+/- mice showed no differences. Homeostasis model assessment of insulin resistance for 28 and 50-week LPL+/- mice were twofold greater, whereas that for 16-week LPL+/- mice had no change. Insulin-stimulated phosphorylated Akt (Ser473) in VAT of 28-week LPL+/- mice decreased by 80.6% (p = 0.001), and that in liver and skeletal muscle decreased by 62.4% (P < 0.001) and 51.8% (p = 0.005) respectively. Then we found that plasma malondialdehyde and reactive oxygen species levels in liver and skeletal muscle of LPL+/- mice were elevated. Increased ER stress biomarkers were also detected in liver and VAT of 28-week LPL+/- mice. CONCLUSIONS Systemic LPL deletion results in impaired glucose tolerance, whole-body and tissue-specific insulin resistance, which is associated with tissue lipid deposition in various insulin target tissues. Furthermore, the activation of oxidative stress and ER stress may play an important role in the development of tissue-specific and systemic insulin resistance.
Collapse
Affiliation(s)
- Yang-Xue Li
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Ting-Ting Han
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Yang Liu
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China.
| | - Shuang Zheng
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Yao Zhang
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Wei Liu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Yao-Min Hu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
14
|
Hong KW, Jeong SW, Chung M, Cho SB. Association between Expression Quantitative Trait Loci and Metabolic Traits in Two Korean Populations. PLoS One 2014; 9:e114128. [PMID: 25493549 PMCID: PMC4262412 DOI: 10.1371/journal.pone.0114128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Most genome-wide association studies consider genes that are located closest to single nucleotide polymorphisms (SNPs) that are highly significant for those studies. However, the significance of the associations between SNPs and candidate genes has not been fully determined. An alternative approach that used SNPs in expression quantitative trait loci (eQTL) was reported previously for Crohn's disease; it was shown that eQTL-based preselection for follow-up studies was a useful approach for identifying risk loci from the results of moderately sized GWAS. In this study, we propose an approach that uses eQTL SNPs to support the functional relationships between an SNP and a candidate gene in a genome-wide association study. The genome-wide SNP genotypes and 10 biochemical measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were obtained from the Korean Association Resource (KARE) consortium. The eQTL SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP data from the ENCODE projects and two recent eQTL reports. A total of 25,658 eQTL SNPs were tested for their association with the 10 metabolic traits in 2 Korean populations (Ansung and Ansan). The proportion of phenotypic variance explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely to be associated with the metabolic traits genetically compared with non-eQTL SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14 eQTL SNPs that were significantly associated with metabolic traits. These results suggest that our approach can be expanded to other genome-wide association studies.
Collapse
Affiliation(s)
- Kyung-Won Hong
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Cheongwon-gun, Korea
| | - Seok Won Jeong
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Cheongwon-gun, Korea
| | - Myungguen Chung
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Cheongwon-gun, Korea
- Division of Molecular and Life Science, Hanyang University, Seoul, Korea
| | - Seong Beom Cho
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Cheongwon-gun, Korea
| |
Collapse
|
15
|
Leu452His mutation in lipoprotein lipase gene transfer associated with hypertriglyceridemia in mice in vivo. PLoS One 2013; 8:e75462. [PMID: 24086538 PMCID: PMC3784453 DOI: 10.1371/journal.pone.0075462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022] Open
Abstract
Mutated mouse lipoprotein lipase (LPL) containing a leucine (L) to histidine (H) substitution at position 452 was transferred into mouse liver by hydrodynamics-based gene delivery (HD). Mutated-LPL (MLPL) gene transfer significantly increased the concentrations of plasma MLPL and triglyceride (TG) but significantly decreased the activity of plasma LPL. Moreover, the gene transfer caused adiposis hepatica and significantly increased TG content in mouse liver. To understand the effects of MLPL gene transfer on energy metabolism, we investigated the expression of key functional genes related to energy metabolism in the liver, epididymal fat, and leg muscles. The mRNA contents of hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), fatty acid-binding protein (FABP), and uncoupling protein (UCP) were found to be significantly reduced. Furthermore, we investigated the mechanism by which MLPL gene transfer affected fat deposition in the liver, fat tissue, and muscle. The gene expression and protein levels of forkhead Box O3 (FOXO3), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) were found to be remarkably decreased in the liver, fat and muscle. These results suggest that the Leu452His mutation caused LPL dysfunction and gene transfer of MLPL in vivo produced resistance to the AMPK/PGC-1α signaling pathway in mice.
Collapse
|
16
|
Xie C, Wang ZC, Liu XF, Yang MS. The common biological basis for common complex diseases: evidence from lipoprotein lipase gene. Eur J Hum Genet 2010; 18:3-7. [PMID: 19639021 PMCID: PMC2987160 DOI: 10.1038/ejhg.2009.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 05/19/2009] [Accepted: 06/26/2009] [Indexed: 11/08/2022] Open
Abstract
The lipoprotein lipase (LPL) gene encodes a rate-limiting enzyme protein that has a key role in the hydrolysis of triglycerides. Hypertriglyceridemia, one widely prevalent syndrome of LPL deficiency and dysfunction, may be a risk factor in the development of dyslipidemia, type II diabetes (T2D), essential hypertension (EH), coronary heart disease (CHD) and Alzheimer's disease (AD). Findings from earlier studies indicate that LPL may have a role in the pathology of these diseases and therefore is a common or shared biological basis for these common complex diseases. To examine this hypothesis, we reviewed articles on the molecular structure, expression and function of the LPL gene, and its potential role in the etiology of diseases. Evidence from these studies indicate that LPL dysfunction is involved in dyslipidemia, T2D, EH, CHD and AD; and support the hypothesis that there is a common or shared biological basis for these common complex diseases.
Collapse
Affiliation(s)
- Cui Xie
- Laboratory of Disorder Genes, School of Public Health, Chongqing University of Medical Sciences, Chongqing, People's Republic of China
| | - Zeng Chan Wang
- Laboratory of Disorder Genes, School of Public Health, Chongqing University of Medical Sciences, Chongqing, People's Republic of China
| | - Xiao Feng Liu
- Chongqing Medical University Library, Chongqing, People's Republic of China
| | - Mao Sheng Yang
- Laboratory of Disorder Genes, School of Public Health, Chongqing University of Medical Sciences, Chongqing, People's Republic of China
| |
Collapse
|
17
|
McLean AG, Petersons CJ, Hooper AJ, Burnett JR, Burt MG, Doogue MP. Extreme diabetic lipaemia associated with a novel lipoprotein lipase gene mutation. Clin Chim Acta 2009; 406:167-9. [PMID: 19447100 DOI: 10.1016/j.cca.2009.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/01/2009] [Accepted: 05/01/2009] [Indexed: 02/01/2023]
Abstract
Diabetic lipaemia, severe hypertriglyceridaemia associated with diabetic ketoacidosis, is a well recognised, but rare condition. Why this occurs in some patients and not others is unknown. We report a case of extreme lipaemia in a 20-year-old woman with type 1 diabetes who presented to hospital with diabetic ketoacidosis (DKA). At admission the patient's blood was grossly lipaemic and plasma lipid analyses showed triglyceride and cholesterol concentrations of 379 mmol/L and 52 mmol/L, respectively. She had no peripheral stigmata of chronic hyperlipidaemia and 1 year previously her plasma triglyceride and total cholesterol concentrations were 2.5 mmol/L and 4.4 mmol/L respectively. She was treated with insulin and the hypertriglyceridaemia resolved over several days. Because of the marked hypertriglyceridaemia, lipoprotein lipase (LPL) genetic testing was performed. Sequencing of the LPL gene revealed that she was heterozygous for the common S447X LPL variant and heterozygous for a novel missense mutation in exon five (I225N). Ile(225) is highly conserved among species and this mutation is predicted to impair function of the mature LPL protein. We conclude that heterozygosity for LPL mutations may predispose to transient severe hypertriglyceridaemia, when combined with insulin deficiency.
Collapse
Affiliation(s)
- Anna G McLean
- Southern Adelaide Diabetes and Endocrine Services, Southern Adelaide Health Services, Adelaide, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Chien KL, Lin YL, Wen HC, Lin HP, Yen CT, Lin SW, Kao JT. Common sequence variant in lipoprotein lipase gene conferring triglyceride response to fibrate treatment. Pharmacogenomics 2009; 10:267-76. [DOI: 10.2217/14622416.10.2.267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Little is known about whether the variations in the lipoprotein lipase (LPL) and apolipoprotein gene cluster (APOA1/C3/A5) confer appreciable triglyceride lowering after fibrate treatment among patients with hypertriglyceridemia. Materials & methods: We investigated whether variations in these genes confer a triglyceride lowering response after fibrate treatment among 145 patients with hypertriglyceridemia receiving 6 months of fibrate treatment. Results: Overall triglycerides decreased from 746.2 mg/dl to 465.9 mg/dl and the mean percentage of triglyceride lowering was 50.7 ± 38.6%. A total of two polymorphisms, LPL IVS8 +483T>G and APOA1 +2169G>C, were associated with a significant percentage of triglyceride lowering. Common haplotype effects of LPL on the triglyceride lowering percentage were significant (p = 0.002) and the percentage of variance explained by the LPL haplotype was 7.5%. One common LPL haplotype encompassing three polymorphisms was associated with a -45.40% change (p < 0.001) and risk of a 5.9-fold risk for developing a poor response (95% confidence interval: 1.11–31, p = 0.037), compared with the most frequent LPL haplotype. Conclusion: Our results indicate that the LPL gene variant may cause triglyceride lowering after fibrate treatment among patients with hypertriglyceridemia.
Collapse
Affiliation(s)
- Kuo-Liong Chien
- Institute of Preventive Medicine, School of Preventive Medicine, National Taiwan University, Taiwan
| | - Yen-Lin Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taiwan
| | - Hui-Chin Wen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taiwan
| | - Hsing-Pei Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taiwan
| | - Ching-Tzu Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taiwan
| | - Jau-Tsuen Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei 100, Taiwan
| |
Collapse
|