1
|
Jokesch P, Holzer L, Jantscher L, Guttzeit S, Übelhart R, Oskolkova O, Bochkov V, Gesslbauer B. Identification of plasma proteins binding oxidized phospholipids using pull-down proteomics and OxLDL masking assay. J Lipid Res 2025; 66:100704. [PMID: 39566852 PMCID: PMC11696850 DOI: 10.1016/j.jlr.2024.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as toxic and proinflammatory mediators, which raises interest in the mechanisms of their detoxification. Circulating OxPLs are bound and neutralized by plasma proteins, including both antibodies and non-immunoglobulin proteins. The latter group of proteins is essentially not investigated because only three OxPC-binding plasma proteins are currently known. The goal of this work was to characterize a broad spectrum of plasma proteins selectively binding OxPLs. Using pull-down-proteomic analysis, we found about 150 non-immunoglobulin proteins preferentially binding oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphatidylcholine (OxPAPC) as compared to non-oxidized PAPC. To test if candidate proteins indeed can form a barrier isolating OxPLs from recognition by other proteins, we applied an immune masking assay. Oxidized LDL (OxLDL) immobilized in multiwell plates was used as a carrier of OxPLs, while mAbs recognizing OxPC or OxPE were used as "detectors" showing if OxPLs on the surface of OxLDL are physically accessible to external binding partners. Using an orthogonal combination of pull-down and masking assays we confirmed that previously described OxPL-binding proteins (non-fractionated IgM, CFH, and Apo-M) indeed can bind to and mask OxPC and OxPE on liposomes and OxLDL. Furthermore, we identified additional plasma proteins selectively binding and masking OxPC including Apo-D, Apo-H, pulmonary surfactant-associated protein B, and antithrombin-III. We hypothesize that in addition to circulating antibodies, multiple non-immunoglobulin plasma proteins can also bind OxPLs and modulate their recognition by innate and adaptive immunity.
Collapse
Affiliation(s)
- Philipp Jokesch
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Lisa Holzer
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Lydia Jantscher
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | | | | | - Olga Oskolkova
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria.
| | - Bernd Gesslbauer
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria.
| |
Collapse
|
2
|
Stamenkovic A, Pierce GN, Ravandi A. Oxidized lipids: not just another brick in the wall 1. Can J Physiol Pharmacol 2018; 97:473-485. [PMID: 30444647 DOI: 10.1139/cjpp-2018-0490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past decade, there has been intense investigation in trying to understand the pathological role that oxidized phospholipids play in cardiovascular disease. Phospholipids are targets for oxidation, particularly during conditions of excess free radical generation. Once oxidized, they acquire novel roles uncharacteristic of their precursors. Oxidized phosphatidylcholines have an important role in multiple physiological and pathophysiological conditions including atherosclerosis, neurodegenerative diseases, lung disease, inflammation, and chronic alcohol consumption. Circulating oxidized phosphatidylcholine may also serve as a clinical biomarker. The focus of this review, therefore, will be to summarize existing evidence that oxidized phosphatidylcholine molecules play an important role in cardiovascular pathology.
Collapse
Affiliation(s)
- Aleksandra Stamenkovic
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N6, Canada
| | - Grant N Pierce
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N6, Canada
| | - Amir Ravandi
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Interventional Cardiology, Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Gesslbauer B, Kuerzl D, Valpatic N, Bochkov VN. Unbiased Identification of Proteins Covalently Modified by Complex Mixtures of Peroxidized Lipids Using a Combination of Electrophoretic Mobility Band Shift with Mass Spectrometry. Antioxidants (Basel) 2018; 7:antiox7090116. [PMID: 30200198 PMCID: PMC6162613 DOI: 10.3390/antiox7090116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Covalent modification of functionally important cell proteins by lipid oxidation products (LOPs) is a known mechanism initiating pathological consequences of oxidative stress. Identification of new proteins covalently modified by electrophilic lipids can be performed by a combination of chemical, immunological, and mass spectrometry-based methods, but requires prior knowledge either on the exact molecular structure of LOPs (e.g., 4-hydroxynonenal) or candidate protein targets. However, under the conditions of oxidative stress in vivo, a complex mixture of proteins (e.g., cytosolic proteome) reacts with a complex mixture of LOPs. Here we describe a method for detection of lipid-modified proteins that does not require an a priori knowledge on the chemical structure of LOPs or identity of target proteins. The method is based on the change of electrophoretic mobility of lipid-modified proteins, which is induced by conformational changes and cross-linking with other proteins. Abnormally migrating proteins are detected by mass spectrometry-based protein peptide sequencing. We applied this method to study effects of oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) on endothelial cells. Several known, but also many new, OxPAPC-binding proteins were identified. We expect that this technically relatively simple method can be widely applied for label-free analysis of lipid-protein interactions in complex protein samples treated with different LOPs.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| | - David Kuerzl
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| | - Niko Valpatic
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria.
| |
Collapse
|
4
|
Chu LH, Indramohan M, Ratsimandresy RA, Gangopadhyay A, Morris EP, Monack DM, Dorfleutner A, Stehlik C. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun 2018. [PMID: 29520027 PMCID: PMC5843631 DOI: 10.1038/s41467-018-03409-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS) of Gram-negative bacteria can elicit a strong immune response. Although extracellular LPS is sensed by TLR4 at the cell surface and triggers a transcriptional response, cytosolic LPS binds and activates non-canonical inflammasome caspases, resulting in pyroptotic cell death, as well as canonical NLRP3 inflammasome-dependent cytokine release. Contrary to the highly regulated multiprotein platform required for caspase-1 activation in the canonical inflammasomes, the non-canonical mouse caspase-11 and the orthologous human caspase-4 function simultaneously as innate sensors and effectors, and their regulation is unclear. Here we show that the oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) inhibits the non-canonical inflammasome in macrophages, but not in dendritic cells. Aside from a TLR4 antagonistic role, oxPAPC binds directly to caspase-4 and caspase-11, competes with LPS binding, and consequently inhibits LPS-induced pyroptosis, IL-1β release and septic shock. Therefore, oxPAPC and its derivatives might provide a basis for therapies that target non-canonical inflammasomes during Gram-negative bacterial sepsis.
Collapse
Affiliation(s)
- Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Mohanalaxmi Indramohan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Anu Gangopadhyay
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Emily P Morris
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, Stanford, California, 94305, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.
| |
Collapse
|
5
|
Abstract
Lipid mediators play a critical role in the development and resolution of vascular endothelial barrier dysfunction caused by various pathologic interventions. The accumulation of excess lipids directly impairs endothelial cell (EC) barrier function that is known to contribute to the development of atherosclerosis and metabolic disorders such as obesity and diabetes as well as chronic inflammation in the vascular endothelium. Certain products of phospholipid oxidation (OxPL) such as fragmented phospholipids generated during oxidative and nitrosative stress show pro-inflammatory potential and cause endothelial barrier dysfunction. In turn, other OxPL products enhance basal EC barrier and exhibit potent barrier-protective effects in pathologic settings of acute vascular leak caused by pro-inflammatory mediators, barrier disruptive agonists and pathologic mechanical stimulation. These beneficial effects were further confirmed in rodent models of lung injury and inflammation. The bioactive oxidized lipid molecules may serve as important therapeutic prototype molecules for future treatment of acute lung injury syndromes associated with endothelial barrier dysfunction and inflammation. This review will summarize recent studies of biological effects exhibited by various groups of lipid mediators with a focus on the role of oxidized phospholipids in control of vascular endothelial barrier, agonist induced EC permeability, inflammation, and barrier recovery related to clinical settings of acute lung injury and inflammatory vascular leak.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA,CONTACT Konstantin G. Birukov, MD, PhD Department of Anesthesiology, University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med 2017; 111:156-168. [PMID: 28232205 PMCID: PMC5511074 DOI: 10.1016/j.freeradbiomed.2017.02.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/26/2022]
Abstract
Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, macrophages exposed to oxidized phospholipids drastically change their gene expression pattern and function. These 'Mox,'macrophages were identified in atherosclerotic lesions, however, it remains unclear how lipid oxidation products are sensed by macrophages and how they influence their biological function. Here, we review recent developments in the field that provide insight into the structure, recognition, and downstream signaling of oxidized phospholipids in macrophages.
Collapse
Affiliation(s)
- Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Dory DeWeese
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| |
Collapse
|
7
|
Egger J, Bretscher P, Freigang S, Kopf M, Carreira EM. Discovery of a highly potent anti-inflammatory epoxyisoprostane-derived lactone. J Am Chem Soc 2014; 136:17382-5. [PMID: 25474746 DOI: 10.1021/ja509892u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epoxyisoprostanes EI (1) and EC (2) are effective inhibitors of the secretion of proinflammatory cytokines IL-6 and IL-12. In detailed studies toward the investigation of the molecular mode of action of these structures, a highly potent lactone (3) derived from 1 was identified. The known isoprostanoids 1 and 2 are most likely precursors of 3, the product of facile intramolecular reaction between the epoxide with the carboxylic acid in 2.
Collapse
Affiliation(s)
- Julian Egger
- Laboratory of Organic Chemistry, ETH Zurich , HCI H335, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Nankar SA, Pande AH. Properties of apolipoprotein E derived peptide modulate their lipid-binding capacity and influence their anti-inflammatory function. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:620-9. [PMID: 24486429 DOI: 10.1016/j.bbalip.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
Abstract
Apolipoprotein-derived peptides are promising candidates for the treatment of various inflammatory conditions. The beneficial effects of these peptides are based on multiple mechanisms; prominent among them being high-affinity binding to pro-inflammatory oxidized phospholipids (Ox-PLs) and facilitating their sequestration/metabolism/clearance in the body. This indicates that peptides which can bind exclusively to Ox-PLs without recognizing normal, non-oxidized phospholipids (non-Ox-PLs) will be more potent anti-inflammatory agent than that of the peptides that bind to both Ox-PLs and non-Ox-PLs. In order to develop such Ox-PL-specific peptides, the knowledge about the properties (molecular determinants) of peptides that govern their Ox-PL preference is a must. In this study we have synthesized eleven peptides corresponding to the conserved regions of human apolipoprotein E and compared their biochemical properties, lipid-binding specificities, and anti-inflammatory properties. Our results show that these peptides exhibit considerably different specificities towards non-Ox-PL and different species of Ox-PLs. Some of these peptides bind exclusively to the Ox-PLs and inhibit the pro-inflammatory function of Ox-PLs in human blood. Biochemical characterization revealed that the peptides possess substantially different properties. Our results suggest that physicochemical properties of peptides play an important role in their lipid-binding specificity.
Collapse
Affiliation(s)
- Sunil A Nankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
9
|
Yan X, Lee S, Gugiu BG, Koroniak L, Jung ME, Berliner J, Cheng J, Li R. Fatty acid epoxyisoprostane E2 stimulates an oxidative stress response in endothelial cells. Biochem Biophys Res Commun 2014; 444:69-74. [PMID: 24434148 DOI: 10.1016/j.bbrc.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
Atherosclerosis is the main underlying cause of major cardiovascular diseases such as stroke and heart attack. Oxidized phospholipids such as oxidized 1-palmitoyl-2-arachidonoyl-sn-Glycero-3-phosphorylcholine (OxPAPC) accumulate in lesions of and promote atherosclerosis. OxPAPC activates endothelial cells, a critical early event of atherogenesis. Epoxyisoprostane E2 (EI) is an oxidized fatty acid contained at the sn-2 position of 1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine (PEIPC), the most active component of OxPAPC in regulating inflammation. OxPAPC and its components including PEIPC activate endothelial cells to express an array of genes in different categories including oxidative stress response genes such as tumor suppressor gene OKL38 and Heme oxygenase-1 (HO-1). EI can be released by lipase from PEIPC. In this study, we examined the ability of EI to stimulate oxidative stress response in endothelial cells. EI released from OxPAPC and synthetic EI stimulated the expression of oxidative stress response gene OKL38 and antioxidant gene HO-1. Treatment of endothelial cells with EI increased the production of superoxide. NADPH oxidase inhibitor Apocynin and superoxide scavenger N-acetyl-cysteine (NAC) significantly attenuated EI-stimulated expression of OKL38 and HO-1. We further demonstrated that EI activated oxidative stress-sensitive transcription factor Nrf2. Silencing of Nrf2 with siRNA significantly reduced EI stimulated expression of OKL38 and HO-1. Thus, we demonstrated that EI induced oxidative stress in endothelial cells leading to increased expression of oxidative stress response gene OKL38 and HO-1 via Nrf2 signaling pathway relevant to atherosclerosis.
Collapse
Affiliation(s)
- Xinmin Yan
- Changzhou No. 2 People's Hospital, Diabetes Institute, 29 Xinglong Lane, Changzhou City, Jiangsu Prov. 213003, China
| | - Sangderk Lee
- Department of Medicine, University of California, Los Angeles, 650 Charles Young Dr., Los Angeles, CA 90095, USA
| | - B Gabriel Gugiu
- Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lukasz Koroniak
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA
| | - Judith Berliner
- Department of Medicine, University of California, Los Angeles, 650 Charles Young Dr., Los Angeles, CA 90095, USA
| | - Jinluo Cheng
- Changzhou No. 2 People's Hospital, Diabetes Institute, 29 Xinglong Lane, Changzhou City, Jiangsu Prov. 213003, China.
| | - Rongsong Li
- Department of Medicine, University of California, Los Angeles, 650 Charles Young Dr., Los Angeles, CA 90095, USA; Department of Biomedical Engineering, University of Southern California Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Gao D, Willard B, Podrez EA. Analysis of covalent modifications of proteins by oxidized phospholipids using a novel method of peptide enrichment. Anal Chem 2014; 86:1254-62. [PMID: 24350680 DOI: 10.1021/ac4035949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free radical-induced oxidation of phospholipids contributes significantly to pathologies associated with inflammation and oxidative stress. Detection of covalent interaction between oxidized phospholipids (oxPL) and proteins by LC-MS/MS could provide valuable information about the molecular mechanisms of oxPL effects. However, such studies are very limited because of significant challenges in detection of the comparatively low levels of oxPL-protein adducts in complex biological systems. Current approaches have several limitations, most important of which is the inability to detect protein modifications by naturally occurring oxPL. We now report, for the first time, an enrichment method that can be applied to the global analysis of protein adducts with various naturally occurring oxPL in relevant biological systems. This method exploits intrinsic properties of peptides modified by oxPL, allowing highly efficient enrichment of oxPL-modified peptides from biological samples. Very low levels of oxPL-protein adducts (<2 ppm) were detected using this enrichment method in combination with LC-MS/MS. We applied the method to several model systems, including oxidation of high density lipoprotein (HDL) and interaction of human platelets with a specific oxPL, and demonstrated its extremely high efficiency and productivity. We report multiple new modifications of apolipoproteins in HDL and proteins in human platelets.
Collapse
Affiliation(s)
- Detao Gao
- Department of Molecular Cardiology, Cleveland Clinic, Lerner Research Institute , Cleveland, Ohio 44195, United States
| | | | | |
Collapse
|
11
|
Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. Role of phospholipid oxidation products in atherosclerosis. Circ Res 2012; 111:778-99. [PMID: 22935534 DOI: 10.1161/circresaha.111.256859] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms. It has been recognized that Ox-PL promote phenotypic changes in these cell types that have long-term consequences for the vessel wall. Individual Ox-PL responsible for specific cellular effects have been identified. A model of the configuration of bioactive truncated Ox-PL within membranes has been developed that demonstrates that the oxidized fatty acid moiety protrudes into the aqueous phase, rendering it accessible for receptor recognition. Receptors and signaling pathways for individual Ox-PL species are now determined and receptor independent signaling pathways identified. The effects of Ox-PL are mediated both by gene regulation and transcription independent processes. It has now become apparent that Ox-PL affects multiple genes and pathways, some of which are proatherogenic and some are protective. However, at concentrations that are likely present in the vessel wall in atherosclerotic lesions, the effects promote atherogenesis. There have also been new insights on enzymes that metabolize Ox-PL and the significance of these enzymes for atherosclerosis. With the knowledge we now have of the regulation and effects of Ox-PL in different vascular cell types, it should be possible to design experiments to test the role of specific Ox-PL on the development of atherosclerosis.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology, University of California-Los Angeles, MRL 4760, 675 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ferreiro-Vera C, Priego-Capote F, Luque de Castro M. Comparison of sample preparation approaches for phospholipids profiling in human serum by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2012; 1240:21-8. [DOI: 10.1016/j.chroma.2012.03.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 11/29/2022]
|
13
|
Springstead JR, Gugiu BG, Lee S, Cha S, Watson AD, Berliner JA. Evidence for the importance of OxPAPC interaction with cysteines in regulating endothelial cell function. J Lipid Res 2012; 53:1304-15. [PMID: 22550136 DOI: 10.1194/jlr.m025320] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), referred to as OxPAPC, and an active component, 1-palmitoyl-2-(5,6-epoxyisoprostane E₂)-sn-glycero-3-phosphatidylcholine (PEIPC), accumulate in atherosclerotic lesions and regulate over 1,000 genes in human aortic endothelial cells (HAEC). We previously demonstrated that OxPNB, a biotinylated analog of OxPAPC, covalently binds to a number of proteins in HAEC. The goal of these studies was to gain insight into the binding mechanism and determine whether binding regulates activity. In whole cells, N-acetylcysteine inhibited gene regulation by OxPAPC, and blocking cell cysteines with N-ethylmaleimide strongly inhibited the binding of OxPNB to HAEC proteins. Using MS, we demonstrate that most of the binding of OxPAPC to cysteine is mediated by PEIPC. We also show that OxPNB and PEIPE-NB, the analog of PEIPC, bound to a model protein, H-Ras, at cysteines previously shown to regulate activity in response to 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ₂). This binding was observed with recombinant protein and in cells overexpressing H-Ras. OxPAPC and PEIPC compete with OxPNB for binding to H-Ras. 15dPGJ₂ and OxPAPC increased H-Ras activity at comparable concentrations. Using microarray analysis, we demonstrate a considerable overlap of gene regulation by OxPAPC, PEIPC, and 15dPGJ₂ in HAEC, suggesting that some effects attributed to 15dPGJ₂ may also be regulated by PEIPC because both molecules accumulate in inflammatory sites. Overall, we provide evidence for the importance of OxPAPC-cysteine interactions in regulating HAEC function.
Collapse
Affiliation(s)
- James R Springstead
- Department of Medicine and University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ullery JC, Marnett LJ. Protein modification by oxidized phospholipids and hydrolytically released lipid electrophiles: Investigating cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2424-35. [PMID: 22562025 DOI: 10.1016/j.bbamem.2012.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/17/2022]
Abstract
Oxygen is essential for the growth and function of mammalian cells. However, imbalances in oxygen or abnormalities in the ability of a cell to respond to oxygen levels can result in oxidative stress. Oxidative stress plays an important role in a number of diseases including atherosclerosis, rheumatoid arthritis, cancer, neurodegenerative diseases and asthma. When membrane lipids are exposed to high levels of oxygen or derived oxidants, they undergo lipid peroxidation to generate oxidized phospholipids (oxPL). Continual exposure to oxidants and decomposition of oxPL results in the formation of reactive electrophiles, such as 4-hydroxy-2-nonenal (HNE). Reactive lipid electrophiles have been shown to covalently modify DNA and proteins. Furthermore, exposure of cells to lipid electrophiles results in the activation of cytoprotective signaling pathways in order to promote cell survival and recovery from oxidant stress. However, if not properly managed by cellular detoxification mechanisms, the continual exposure of cells to electrophiles results in cytotoxicity. The following perspective will discuss the biological importance of lipid electrophile protein adducts including current strategies employed to identify and isolate protein adducts of lipid electrophiles as well as approaches to define cellular signaling mechanisms altered upon exposure to electrophiles. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
Affiliation(s)
- Jody C Ullery
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | | |
Collapse
|
15
|
Stemmer U, Hermetter A. Protein modification by aldehydophospholipids and its functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2436-45. [PMID: 22450235 PMCID: PMC3790970 DOI: 10.1016/j.bbamem.2012.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/02/2012] [Accepted: 03/09/2012] [Indexed: 10/30/2022]
Abstract
Phospholipid aldehydes represent a particular subclass of lipid oxidation products. They are chemically reactive and can form Schiff bases with proteins and aminophospholipids. As chemically bound molecular entities they modulate the functional properties of biomolecules in solution and the surface of supramolecular systems including plasma lipoproteins and cell membranes. The lipid-protein and lipid-lipid conjugates may be considered the active primary platforms that are responsible for the biological effects of aldehydophospholipids, e.g. receptor binding, cell signaling, and recognition by the immune system. Despite the fact that aldehydophospholipids are covalently associated, they are subject to exchange between nucleophiles since their imine conjugates are not stable. As a consequence, aldehydophospholipids exist in a dynamic equilibrium between different "states" depending on the lipid and protein environment. Aldehydophospholipids may also contribute to the systemic administration and activity of oxidized phospholipids by inducing release of microparticles by cells. These effects are lipid-specific. Future studies should help clarify the mechanisms and consequences of these membrane-associated effects of "phospholipid stress". This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
Affiliation(s)
- Ute Stemmer
- Graz University of Technology, Graz, Austria
| | | |
Collapse
|
16
|
Kansanen E, Jyrkkänen HK, Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 2012; 52:973-82. [PMID: 22198184 DOI: 10.1016/j.freeradbiomed.2011.11.038] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 12/20/2022]
Abstract
Unsaturated fatty acids are prone to radical reactions that occur in biological situations where extensive formation of reactive oxygen and nitrogen species (ROS and RNS) takes place. These reactions are frequent in inflammatory conditions such as atherosclerosis, and yield a variety of biologically active species, many of which are electrophilic in nature. Electrophilic lipid oxidation and nitration products can influence redox cell signaling via S-alkylation of protein thiols, and moderate exposure to these species evokes protective cell signaling responses through this mechanism. Herein, we review the stress signaling pathways elicited by electrophiles derived from unsaturated fatty acids, focusing on the Keap1-Nrf2 pathway, the heat shock response pathway (HSR), and the unfolded protein response pathway (UPR).
Collapse
Affiliation(s)
- Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211, Kuopio, Finland
| | | | | |
Collapse
|
17
|
Lee S, Springstead JR, Parks BW, Romanoski CE, Palvolgyi R, Ho T, Nguyen P, Lusis AJ, Berliner JA. Metalloproteinase processing of HBEGF is a proximal event in the response of human aortic endothelial cells to oxidized phospholipids. Arterioscler Thromb Vasc Biol 2012; 32:1246-54. [PMID: 22402363 DOI: 10.1161/atvbaha.111.241257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory disease initiated by monocyte recruitment and retention in the vessel wall. An important mediator of monocyte endothelial interaction is the chemokine interleukin (IL)-8. The oxidation products of phospholipids, including oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC), accumulate in atherosclerotic lesions and strongly induce IL-8 in human aortic endothelial cells (HAECs). The goal of this study was to identify the proximal events leading to induction of IL-8 by Ox-PAPC in vascular endothelial cells. METHODS AND RESULTS In a systems genetics analysis of HAECs isolated from 96 different human donors, we showed that heparin-binding EGF-like growth factor (HBEGF) transcript levels are strongly correlated to IL-8 induction by Ox-PAPC. The silencing and overexpression of HBEGF in HAECs confirmed the role of HBEGF in regulating IL-8 expression. HBEGF has been shown to be stored in an inactive form and activation is dependent on processing by a dysintegrin and metalloproteinases (ADAM) to a form that can activate the epidermal growth factor (EGF) receptor. Ox-PAPC was shown to rapidly induce HBEGF processing and EGF receptor activation in HAECs. Using siRNA we identified 3 ADAMs that regulate IL-8 induction and directly demonstrated that Ox-PAPC increases ADAM activity in the cells using a substrate cleavage assay. We provide evidence for one mechanism of Ox-PAPC activation of ADAM involving covalent binding of Ox-PAPC to cysteine on ADAM. Free thiol cysteine analogs showed inhibition of IL-8 induction by Ox-PAPC, and both a cysteine analog and a cell surface thiol blocker strongly inhibited ADAM activity induction by Ox-PAPC. Using microarray analyses, we determined that this ADAM pathway may regulate at least 30% of genes induced by Ox-PAPC in HAECs. CONCLUSIONS This study is the first report demonstrating a role for the ADAM-HBEGF-EGF receptor axis in Ox-PAPC induction of IL-8 in HAECs. These studies highlight a role for specific ADAMs as initiators of Ox-PAPC action and provide evidence for a role of covalent interaction of Ox-PAPC in activation of ADAMs.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Uptake and protein targeting of fluorescent oxidized phospholipids in cultured RAW 264.7 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:706-18. [PMID: 22333180 PMCID: PMC3790972 DOI: 10.1016/j.bbalip.2012.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 12/04/2022]
Abstract
The truncated phospholipids 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are oxidation products of 1-palmitoyl-2-arachidonoyl phosphatidylcholine. Depending on concentration and the extent of modification, these compounds induce growth and death, differentiation and inflammation of vascular cells thus playing a role in the development of atherosclerosis. Here we describe the import of fluorescent POVPC and PGPC analogs into cultured RAW 264.7 macrophages and the identification of their primary protein targets. We found that the fluorescent oxidized phospholipids were rapidly taken up by the cells. The cellular target sites depended on the chemical reactivity of these compounds but not on the donor (aqueous lipid suspension, albumin or LDL). The great differences in cellular uptake of PGPC and POVPC are a direct consequence of the subtle structural differences between both molecules. The former compound (carboxyl lipid) can only physically interact with the molecules in its immediate vicinity. In contrast, the aldehydo-lipid covalently reacts with free amino groups of proteins by forming covalent Schiff bases, and thus becomes trapped in the cell surface. Despite covalent binding, POVPC is exchangeable between (lipo)proteins and cells, since imines are subject to proton-catalyzed base exchange. Protein targeting by POVPC is a selective process since only a limited subfraction of the total proteome was labeled by the fluorescent aldehydo-phospholipid. Chemically stabilized lipid–protein conjugates were identified by MS/MS. The respective proteins are involved in apoptosis, stress response, lipid metabolism and transport. The identified target proteins may be considered primary signaling platforms of the oxidized phospholipid.
Collapse
|
19
|
Romanoski CE, Che N, Yin F, Mai N, Pouldar D, Civelek M, Pan C, Lee S, Vakili L, Yang WP, Kayne P, Mungrue IN, Araujo JA, Berliner JA, Lusis AJ. Network for activation of human endothelial cells by oxidized phospholipids: a critical role of heme oxygenase 1. Circ Res 2011; 109:e27-41. [PMID: 21737788 PMCID: PMC3163234 DOI: 10.1161/circresaha.111.241869] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/27/2011] [Indexed: 01/14/2023]
Abstract
RATIONALE Oxidized palmitoyl arachidonyl phosphatidylcholine (Ox-PAPC) accumulates in atherosclerotic lesions, is proatherogenic, and influences the expression of more than 1000 genes in endothelial cells. OBJECTIVE To elucidate the major pathways involved in Ox-PAPC action, we conducted a systems analysis of endothelial cell gene expression after exposure to Ox-PAPC. METHODS AND RESULTS We used the variable responses of primary endothelial cells from 149 individuals exposed to Ox-PAPC to construct a network that consisted of 11 groups of genes, or modules. Modules were enriched for a broad range of Gene Ontology pathways, some of which have not been identified previously as major Ox-PAPC targets. Further validating our method of network construction, modules were consistent with relationships established by cell biology studies of Ox-PAPC effects on endothelial cells. This network provides novel hypotheses about molecular interactions, as well as candidate molecular regulators of inflammation and atherosclerosis. We validated several hypotheses based on network connections and genomic association. Our network analysis predicted that the hub gene CHAC1 (cation transport regulator homolog 1) was regulated by the ATF4 (activating transcription factor 4) arm of the unfolded protein response pathway, and here we showed that ATF4 directly activates an element in the CHAC1 promoter. We showed that variation in basal levels of heme oxygenase 1 (HMOX1) contribute to the response to Ox-PAPC, consistent with its position as a hub in our network. We also identified G-protein-coupled receptor 39 (GPR39) as a regulator of HMOX1 levels and showed that it modulates the promoter activity of HMOX1. We further showed that OKL38/OSGN1 (oxidative stress-induced growth inhibitor), the hub gene in the blue module, is a key regulator of both inflammatory and antiinflammatory molecules. CONCLUSIONS Our systems genetics approach has provided a broad view of the pathways involved in the response of endothelial cells to Ox-PAPC and also identified novel regulatory mechanisms.
Collapse
Affiliation(s)
- Casey E. Romanoski
- Department of Human Genetics, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Nam Che
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Fen Yin
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Nguyen Mai
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Delila Pouldar
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Mete Civelek
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Calvin Pan
- Department of Human Genetics, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Sangderk Lee
- Department of Pathology and Laboratory Medicine, the University of California, Los Angeles, CA, 90095, USA
| | - Ladan Vakili
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Wen-Pin Yang
- Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Paul Kayne
- Bristol-Myers Squibb, Pennington, NJ, 08534, USA
| | - Imran N. Mungrue
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Jesus A. Araujo
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
| | - Judith A. Berliner
- Department of Pathology and Laboratory Medicine, the University of California, Los Angeles, CA, 90095, USA
| | - Aldons J. Lusis
- Department of Human Genetics, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Cardiology, at the University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, the University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 2010; 12:1009-59. [PMID: 19686040 PMCID: PMC3121779 DOI: 10.1089/ars.2009.2597] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 08/11/2009] [Accepted: 08/15/2009] [Indexed: 12/12/2022]
Abstract
Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of "modified-self" type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators.
Collapse
Affiliation(s)
- Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
21
|
Fu P, Birukov KG. Oxidized phospholipids in control of inflammation and endothelial barrier. Transl Res 2009; 153:166-76. [PMID: 19304275 PMCID: PMC3677584 DOI: 10.1016/j.trsl.2008.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/17/2022]
Abstract
The levels of circulating oxidized phospholipids (OxPLs) become increased in chronic and acute pathologic conditions such as hyperlipidemia, atherosclerosis, increased intimamedia thickness in the patients with systemic Lupus erythematosus, vascular balloon injury, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). These pathologies are associated with inflammation and activation of endothelial cells. Depending on the biological context and the specific group of phospholipid oxidation products, OxPL may exhibit both proinflammatory and anti-inflammatory effects. This review will summarize the data showing a dual role of OxPL in modulation of chronic and acute inflammation as well as OxPL effects on pulmonary endothelial permeability. Recent reports show protective effects of OxPL in the models of endotoxin and ventilator-induced ALI and suggest a potential for using OxPL-derived cyclopenthenone-containing compounds with barrier-protective properties for drug design. These compounds may represent a new group of therapeutic agents for the treatment of lung syndromes associated with acute inflammation and lung vascular leak.
Collapse
Key Words
- ali, acute lung injury
- camp, cyclic adenosine monophosphate
- cox-2, cyclooxygenase-2
- cs1, connecting segment 1
- ec, endothelial cell
- enos, endothelial nitric oxide synthase
- erk1/2, extracellular signaling kinase 1/2
- egr-1, early growth response factor-1
- fak, focal adhesion kinase
- gas, gamma-interferon activation sequence
- gpcr, g-protein-coupled receptor
- gpi, glycosylphosphatidylinositol
- gtp, guanosine triphosphate
- ho-1, heme oxygenase-1
- icam-1, intercellular adhesion molecule-1, il-8, interleukin-8
- kodia-pc, 5-keto-6-octendioic acid ester of 2-lyso-phosphocholine
- lbp, lps binding protein
- ldl, low-density lipoprotein
- l-name, n-nitro-l-arginine-methyl ester
- lps, lipopolysaccharide
- mcp1, monocyte chemotactic protein 1
- mlc, myosin light chain
- mm-ldl, minimally modified ldl
- mrna, messenger rna
- nfκb, nuclear factor κb
- oxldl, oxidated ldl
- oxpapc, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
- oxpl, oxidized phospholipids
- paf, platelet activation factor
- papc, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine
- pape, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylethanolamine
- paps, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylserine
- pecpc, 1-palmitoyl-2-(5,6-epoxycyclopentenone)-sn-glycero-3-phsphocholine
- peipc, 1-palmitoyl-2-(5,6-epoxyisoprostane e2)-sn-glycero-3-phsphocholine
- pge2, prostaglandin e2
- pgpc, 1-palmitoyl-2-glutaroyl-sn-glycero-phosphocholine
- pka, protein kinase a
- pkc, protein kinase c
- pla2, phospholipase a2
- povpc, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-phosphocholine
- ppar, peroxisome proliferator-activated receptor
- ros, reactive oxygen species
- sirna, small interfering rna
- srebp, sterol response element binding protein
- tf, tissue factor
- tlr, toll-like receptor
- tnf-α, tumor necrosis factor-α
- upr, unfolded protein response
- vcam-1, vascular cell adhesion molecule-1
- vegf, vascular endothelial growth factor
- vili, ventilator-induced lung injury
Collapse
Affiliation(s)
- Panfeng Fu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill 60637, USA
| | | |
Collapse
|
22
|
Lipidomic Analysis of Glycerolipid and Cholesteryl Ester Autooxidation Products. Mol Biotechnol 2009; 42:224-68. [DOI: 10.1007/s12033-009-9146-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/08/2009] [Indexed: 11/25/2022]
|
23
|
Kuksis A, Suomela JP, Tarvainen M, Kallio H. Use of lipidomics for analyzing glycerolipid and cholesteryl ester oxidation by gas chromatography, HPLC, and on-line MS. Methods Mol Biol 2009; 580:39-91. [PMID: 19784594 DOI: 10.1007/978-1-60761-325-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Various analytical techniques have been adopted for the isolation and identification of the oxolipids and for determining their functionality. Gas chromatography in combination with mass spectrometry (MS) has been specifically utilized in analysis of isoprostanes and other low molecular weight oxolipids, although it requires derivatization of the solutes. In contrast, liquid chromatography (LC) in combination with on-line MS has proven to be well suited for analysis of intact oxolipids without (or minimal) derivatization. LC-MS has also been helpful for the identification of lipidomic changes resulting from covalent binding of lipid ester core aldehydes to amino lipids, amino acids, peptides, and proteins. This chapter reviews the use of the above techniques for lipidomic analysis of the autoxidation products of cholesteryl esters and glycerolipids as practiced in the authors' laboratories.
Collapse
Affiliation(s)
- Arnis Kuksis
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
24
|
Berliner JA, Leitinger N, Tsimikas S. The role of oxidized phospholipids in atherosclerosis. J Lipid Res 2008; 50 Suppl:S207-12. [PMID: 19059906 DOI: 10.1194/jlr.r800074-jlr200] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence that oxidized phospholipids (OxPLs) play an important role in atherosclerosis. These phospholipids accumulate in human and mouse lesions. Specific OxPLs have been identified as major regulators of many cell types present in the vessel wall. In endothelial cells, >1,000 genes are regulated. Some of these genes are pro-atherogenic and others anti-atherogenic. The anti-atherogenic effects are likely important in slowing the atherogenic process. Several receptors and signaling pathways associated with OxPL action have been identified and shown to be upregulated in human lesions. A structural model of the mechanism by which specific OxPLs serve as CD36 ligands has been identified. Specific oxidized phospholipids are also present in plasma and associated with Lp(a) particles. In humans, OxPL/apolipoprotein B has been shown to be a prognostic indicator and a separate risk factor for coronary events. Levels of OxPL in plasma have been shown to be correlated with platelet activation. The results of these studies suggest an important role for OxPL in all stages of atherosclerosis.
Collapse
Affiliation(s)
- Judith A Berliner
- Department of Pathology, University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
25
|
Jung ME, Berliner JA, Koroniak L, Gugiu BG, Watson AD. Improved synthesis of the epoxy isoprostane phospholipid PEIPC and its reactivity with amines. Org Lett 2008; 10:4207-9. [PMID: 18754590 PMCID: PMC2712226 DOI: 10.1021/ol8014804] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved synthesis of the naturally occurring hydroxy ketone 1-palmitoyl-2-(5,6)-epoxyisoprostane E 2- sn-glycero-3-phosphocholine (PEIPC) 1, a compound that plays a role in endothelial activation in atherosclerosis, has been carried out using a PMB ether as the key protecting group. Opening of an intermediate with pentylamine shows that the allylic epoxide is the position of attack by nucleophiles.
Collapse
Affiliation(s)
- Michael E Jung
- Departments of Chemistry and Biochemistry, Medicine/Cardiology, and Pathology, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
26
|
Blüml S, Rosc B, Lorincz A, Seyerl M, Kirchberger S, Oskolkova O, Bochkov VN, Majdic O, Ligeti E, Stöckl J. The Oxidation State of Phospholipids Controls the Oxidative Burst in Neutrophil Granulocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:4347-53. [DOI: 10.4049/jimmunol.181.6.4347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Berliner JA, Gharavi NM. Endothelial cell regulation by phospholipid oxidation products. Free Radic Biol Med 2008; 45:119-23. [PMID: 18460347 PMCID: PMC2895487 DOI: 10.1016/j.freeradbiomed.2008.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/05/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
Oxidized phospholipids accumulate in atherosclerotic lesions, on lipoproteins, in other states of chronic inflammation, on apoptotic cells, necrotic cells and cells exposed to oxidative stress. These lipids regulate the transcription of over 1000 gene, regulating many endothelial functions, by activating several different cell surface receptors and multiple signaling pathways. These lipids also have important effects not involving transcription that regulate cell junctions and leukocyte binding. Thus these lipids are potent regulators of endothelial cell function with broad effects comparable in extent but differing from those of cytokines.
Collapse
Affiliation(s)
- Judith A Berliner
- Department of Pathology, University of California at Los Angeles 13-229 CHS, Pathology, 650 Charles Young Dr. South, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
28
|
Van Lenten BJ, Wagner AC, Jung CL, Ruchala P, Waring AJ, Lehrer RI, Watson AD, Hama S, Navab M, Anantharamaiah GM, Fogelman AM. Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. J Lipid Res 2008; 49:2302-11. [PMID: 18621920 DOI: 10.1194/jlr.m800075-jlr200] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
4F is an anti-inflammatory, apolipoprotein A-I (apoA-I)-mimetic peptide that is active in vivo at nanomolar concentrations in the presence of a large molar excess of apoA-I. Physiologic concentrations ( approximately 35 microM) of human apoA-I did not inhibit the production of LDL-induced monocyte chemotactic activity by human aortic endothelial cell cultures, but adding nanomolar concentrations of 4F in the presence of approximately 35 microM apoA-I significantly reduced this inflammatory response. We analyzed lipid binding by surface plasmon resonance. The anti-inflammatory 4F peptide bound oxidized lipids with much higher affinity than did apoA-I. Initially, we examined the binding of PAPC (1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine) and observed that its oxidized products bound 4F with an affinity that was approximately 4-6 orders of magnitude higher than that of apoA-I. This high binding affinity was confirmed in studies with defined lipids and phospholipids. 3F-2 and 3F(14) are also amphipathic alpha-helical octadecapeptides, but 3F-2 inhibits atherosclerosis in mice and 3F(14) does not. Like 4F, 3F-2 also bound oxidized phospholipids with very high affinity, whereas 3F(14) resembled apoA-I. The extraordinary ability of 4F to bind pro-inflammatory oxidized lipids probably accounts for its remarkable anti-inflammatory properties.
Collapse
Affiliation(s)
- Brian J Van Lenten
- Department of Medicine David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jyrkkänen HK, Kansanen E, Inkala M, Kivelä AM, Hurttila H, Heinonen SE, Goldsteins G, Jauhiainen S, Tiainen S, Makkonen H, Oskolkova O, Afonyushkin T, Koistinaho J, Yamamoto M, Bochkov VN, Ylä-Herttuala S, Levonen AL. Nrf2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circ Res 2008; 103:e1-9. [PMID: 18535259 DOI: 10.1161/circresaha.108.176883] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Besides their well-characterized proinflammatory and proatherogenic effects, oxidized phospholipids, such as oxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphocholine) have been shown to have beneficial responses in vascular cells via induction of antioxidant enzymes such as heme oxygenase-1. We therefore hypothesized that oxPAPC could evoke a general cytoprotective response via activation of antioxidative transcription factor Nrf2. Here, we show that oxPAPC increases nuclear accumulation of Nrf2. Using the small interfering RNA approach, we demonstrate that Nrf2 is critical in mediating the induction of glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H quinone oxidoreductase-1 (NQO1) by oxPAPC in human endothelial cells, whereas the contribution to the induction of heme oxygenase-1 was less significant. The induction of GCLM and NQO1 was attenuated by reduction of electrophilic groups with sodium borohydrate, as well as treatment with thiol antioxidant N-acetylcysteine, suggesting that the thiol reactivity of oxPAPC is largely mediating its effect on Nrf2-responsive genes. Moreover, we show that oxidized phospholipid having a highly electrophilic isoprostane ring in its sn-2 position is a potent inducer of Nrf2 target genes. Finally, we demonstrate that the oxPAPC-inducible expression of heme oxygenase-1, GCLM, and NQO1 is lower in Nrf2-null than wild-type mouse carotid arteries in vivo. We suggest that the activation of Nrf2 by oxidized phospholipids provides a mechanism by which their deleterious effects are limited in the vasculature.
Collapse
Affiliation(s)
- Henna-Kaisa Jyrkkänen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|