1
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
2
|
Javaheri A, Diab A, Zhao L, Qian C, Cohen JB, Zamani P, Kumar A, Wang Z, Ebert C, Maranville J, Kvikstad E, Basso M, van Empel V, Richards AM, Doughty R, Rietzschell E, Kammerhoff K, Gogain J, Schafer P, Seiffert DA, Gordon DA, Ramirez-Valle F, Mann DL, Cappola TP, Chirinos JA. Proteomic Analysis of Effects of Spironolactone in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2022; 15:e009693. [PMID: 36126144 PMCID: PMC9504263 DOI: 10.1161/circheartfailure.121.009693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The TOPCAT trial (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) suggested clinical benefits of spironolactone treatment among patients with heart failure with preserved ejection fraction enrolled in the Americas. However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction has not been performed. METHODS We conducted aptamer-based proteomic analysis utilizing 5284 modified aptamers to 4928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction. Mean percentage change from baseline was calculated for each protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone. RESULTS Spironolactone therapy was associated with proteome-wide significant changes in 7 proteins. Among these, CARD18 (caspase recruitment domain-containing protein 18), PKD2 (polycystin 2), and PSG2 (pregnancy-specific glycoprotein 2) were upregulated, whereas HGF (hepatic growth factor), PLTP (phospholipid transfer protein), IGF2R (insulin growth factor 2 receptor), and SWP70 (switch-associated protein 70) were downregulated. CARD18, a caspase-1 inhibitor, was the most upregulated protein by spironolactone (-0.5% with placebo versus +66.5% with spironolactone, P<0.0001). The top canonical pathways that were significantly associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 signaling, atherosclerosis signaling, liver X receptor activation, and farnesoid X receptor activation. Among the top pathways, collagens were a consistent theme that increased in patients receiving placebo but decreased in patients randomized to spironolactone. CONCLUSIONS Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved collagens. In addition to effects on fibrosis, our studies suggest potential antiapoptotic effects of spironolactone in heart failure with preserved ejection fraction, a hypothesis that merits further exploration.
Collapse
Affiliation(s)
- Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO
| | - Lei Zhao
- Bristol Myers Squibb Company, Lawrenceville, NJ
| | - Chenao Qian
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jordana B. Cohen
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Payman Zamani
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Anupam Kumar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | | | | | | | | | | | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rob Doughty
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ernst Rietzschell
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| |
Collapse
|
3
|
Chen J, Qi H, Liu L, Niu Y, Yu S, Qin S, He L. Elevated cholesteryl ester transfer and phospholipid transfer proteins aggravated psoriasis in imiquimod-induced mouse models. Lipids Health Dis 2022; 21:75. [PMID: 35982498 PMCID: PMC9389805 DOI: 10.1186/s12944-022-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Psoriasis is a chronic inflammatory skin disorder related to dyslipidemia, with decreased high-density lipoprotein (HDL). Various cell types express phospholipid transfer protein (PLTP) as well as cholesteryl ester transfer protein (CETP). Their elevated levels among transgenic (Tg) mice led to reduced HDL and a higher risk of atherosclerosis (AS). This study examined whether elevated CETP and PLTP could aggravate psoriasis in a psoriasis vulgaris mouse model. Methods The back skins of CETP-Tg, PLTP-Tg, and C57BL/6 male mice, aged six to 8 weeks, were shaved for imiquimod cream (IMQ) (5%) treatment for five consecutive days. The clinical pathological parameters were rated independently using the modified target lesion psoriasis severity score. The skin sections stained with hematoxylin-eosin were scored by the Baker score. Epidermal thickening and differentiation and inflammatory factor infiltration were determined by immunohistochemistry. Inflammatory cytokine levels were measured using quantitative reverse transcription-polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA) kits. This work employed SPSS Statistics Version to conduct statistical analyses. Results In this study, CETP-Tg and PLTP-Tg mice had higher clinical and histological scores than wild-type (WT) mice. Immunohistochemistry of the epidermis and dermis revealed a high proportion of proliferating cell nuclear antigen (PCNA) positivity within psoriatic skin lesions of CETP-Tg and PLTP-Tg mice compared with WT mice. Interferon-α (IFN-α), interleukin-1β (IL-1β), IL-6, IL-17A, IL-17F, IL-22, and IL-23p19 mRNA levels increased within CETP-Tg and PLTP-Tg mice compared with WT counterparts. In comparison with WT mice, plasma tumor necrosis factor-α (TNF-α) levels, rather than IL-6 levels, were increased in CETP-Tg and PLTP-Tg mice. Conclusions Elevated CETP and PLTP aggravate psoriasis in a imiquimod-induced mouse model.
Collapse
Affiliation(s)
- Jun Chen
- Department of Geriatrics, The Affiliated Hospital of Chengde Medical University Chengde, 067000, Hebei, China
| | - Haihua Qi
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lijun Liu
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yandong Niu
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Shuping Yu
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Shucun Qin
- Institute of Atherosclerosis, Shandong First Medical University, Tai'an, 271000, Shandong, China
| | - Lei He
- Department of Dermatology and Venerology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
4
|
PLTP deficiency-mediated atherosclerosis regression could be related with sphinogosine-1-phosphate reduction. Atherosclerosis 2022; 356:53-55. [DOI: 10.1016/j.atherosclerosis.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
|
5
|
Jiang XC, Yu Y. The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis. Curr Atheroscler Rep 2021; 23:9. [PMID: 33496859 DOI: 10.1007/s11883-021-00907-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Phospholipid transfer protein (PLTP), a member of lipid transfer protein family, is an important protein involved in lipid metabolism in the circulation. This article reviews recent PLTP research progresses, involving lipoprotein metabolism and atherogenesis. RECENT FINDINGS PLTP activity influences atherogenic and anti-atherogenic lipoprotein levels. Human serum PLTP activity is a risk factor for human cardiovascular disease and is an independent predictor of all-cause mortality. PLTP deficiency reduces VLDL and LDL levels and attenuates atherosclerosis in mouse models, while PLTP overexpression exerts an opposite effect. Both PLTP deficiency and overexpression result in reduction of HDL which has different size, inflammatory index, and lipid composition. Moreover, although both PLTP deficiency and overexpression reduce cholesterol efflux capacity, but this effect has no impact in macrophage reverse cholesterol transport in mice. Furthermore, PLTP activity is related with metabolic syndrome, thrombosis, and inflammation. PLTP could be target for the treatment of dyslipidemia and atherosclerosis, although some potential off-target effects should be noted.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, USA.
| | - Yang Yu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| |
Collapse
|
6
|
Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:1-13. [PMID: 32705590 DOI: 10.1007/978-981-15-6082-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLTP plays an important role in lipoprotein metabolism and cardiovascular disease development in humans; however, the mechanisms are still not completely understood. In mouse models, PLTP deficiency reduces cardiovascular disease, while its overexpression induces it. Therefore, we used mouse models to investigate the involved mechanisms. In this chapter, the recent main progresses in the field of PLTP research are summarized, and our focus is on the relationship between PLTP and lipoprotein metabolism, as well as PLTP and cardiovascular diseases.
Collapse
|
7
|
Hantani R, Takahashi Y, Sotani T, Hantani Y. Identification of Novel Phospholipid Transfer Protein Inhibitors by High-Throughput Screening. SLAS DISCOVERY 2019; 24:579-586. [PMID: 31017809 DOI: 10.1177/2472555219842210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherogenesis has been recognized as a risk factor for lethal cardiovascular diseases. Plasma low-density lipoprotein levels are correlated to the occurrence of atherosclerosis, and their control is critical for both the prevention and treatment of these diseases. Phospholipid transfer protein (PLTP) is one of the key regulators of lipoprotein metabolism; PLTP-deficient mice exhibit decreased apolipoprotein B (apoB)-containing lipoprotein secretion and atherosclerosis, indicating the validity of PLTP as a promising therapeutic target. Here, we demonstrate a high-throughput screening (HTS) method to identify a novel chemotype of PLTP inhibitors. Instead of using recombinant proteins, we used human plasma as a source of enzymes in the first screening, so as to efficiently exclude promiscuous inhibitors. The selected compounds were further confirmed to target PLTP both biochemically and biophysically and were shown to inhibit apoB secretion from hepatic cells with no apparent toxicity. We believe that our approach is suitable for filtering out nonspecific inhibitors at an earlier stage of screening campaigns and that these compounds should have potential to be developed into drugs to treat dyslipidemia.
Collapse
Affiliation(s)
- Rie Hantani
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| | - Yu Takahashi
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| | - Tomohiro Sotani
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| | - Yoshiji Hantani
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki, Osaka, Japan
| |
Collapse
|
8
|
Plasma phospholipid transfer protein (PLTP) as an emerging determinant of the adaptive immune response. Cell Mol Immunol 2018; 15:1077-1079. [PMID: 29735978 DOI: 10.1038/s41423-018-0036-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 11/08/2022] Open
|
9
|
Deletion of plasma Phospholipid Transfer Protein (PLTP) increases microglial phagocytosis and reduces cerebral amyloid-β deposition in the J20 mouse model of Alzheimer's disease. Oncotarget 2018; 9:19688-19703. [PMID: 29731975 PMCID: PMC5929418 DOI: 10.18632/oncotarget.24802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 01/22/2023] Open
Abstract
Plasma phospholipid transfer protein (PLTP) binds and transfers a number of amphipathic compounds, including phospholipids, cholesterol, diacylglycerides, tocopherols and lipopolysaccharides. PLTP functions are relevant for many pathophysiological alterations involved in neurodegenerative disorders (especially lipid metabolism, redox status, and immune reactions), and a significant increase in brain PLTP levels was observed in patients with Alzheimer's disease (AD) compared to controls. To date, it has not been reported whether PLTP can modulate the formation of amyloid plaques, i.e. one of the major histopathological hallmarks of AD. We thus assessed the role of PLTP in the AD context by breeding PLTP-deficient mice with an established model of AD, the J20 mice. A phenotypic characterization of the amyloid pathology was conducted in J20 mice expressing or not PLTP. We showed that PLTP deletion is associated with a significant reduction of cerebral Aβ deposits and astrogliosis, which can be explained at least in part by a rise of Aβ clearance through an increase in the microglial phagocytic activity and the expression of the Aβ-degrading enzyme neprilysin. PLTP arises as a negative determinant of plaque clearance and over the lifespan, elevated PLTP activity could lead to a higher Aβ load in the brain.
Collapse
|
10
|
Audo R, Deckert V, Daien CI, Che H, Elhmioui J, Lemaire S, Pais de Barros JP, Desrumaux C, Combe B, Hahne M, Lagrost L, Morel J. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity. PLoS One 2018; 13:e0193815. [PMID: 29565987 PMCID: PMC5863966 DOI: 10.1371/journal.pone.0193815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA.
Collapse
Affiliation(s)
- Rachel Audo
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| | - Valérie Deckert
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Claire I. Daien
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Hélène Che
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
| | - Jamila Elhmioui
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Stéphanie Lemaire
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jean-Paul Pais de Barros
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Catherine Desrumaux
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- INSERM U1198, (MMDN), EiAlz Team, University Montpellier 2, EPHE, Montpellier, France
| | - Bernard Combe
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Michael Hahne
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Laurent Lagrost
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jacques Morel
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| |
Collapse
|
11
|
Jiang XC. Phospholipid transfer protein: its impact on lipoprotein homeostasis and atherosclerosis. J Lipid Res 2018; 59:764-771. [PMID: 29438986 DOI: 10.1194/jlr.r082503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis development in humans; however, we still do not quite understand the mechanisms. In mouse models, PLTP overexpression induces atherosclerosis, while its deficiency reduces it. Thus, mouse models were used to explore the mechanisms. In this review, I summarize the major progress made in the PLTP research field and emphasize its impact on lipoprotein metabolism and atherosclerosis, as well as its regulation.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, Brooklyn, NY
| |
Collapse
|
12
|
Perrier V, Imberdis T, Lafon PA, Cefis M, Wang Y, Huetter E, Arnaud JD, Alvarez-Martinez T, Le Guern N, Maquart G, Lagrost L, Desrumaux C. Plasma cholesterol level determines in vivo prion propagation. J Lipid Res 2017; 58:1950-1961. [PMID: 28765208 PMCID: PMC5625119 DOI: 10.1194/jlr.m073718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 07/28/2017] [Indexed: 12/27/2022] Open
Abstract
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases with an urgent need for therapeutic and prophylactic strategies. At the time when the blood-mediated transmission of prions was demonstrated, in vitro studies indicated a high binding affinity of the scrapie prion protein (PrPSc) with apoB-containing lipoproteins, i.e., the main carriers of cholesterol in human blood. The aim of the present study was to explore the relationship between circulating cholesterol-containing lipoproteins and the pathogenicity of prions in vivo. We showed that, in mice with a genetically engineered deficiency for the plasma lipid transporter, phospholipid transfer protein (PLTP), abnormally low circulating cholesterol concentrations were associated with a significant prolongation of survival time after intraperitoneal inoculation of the 22L prion strain. Moreover, when circulating cholesterol levels rose after feeding PLTP-deficient mice a lipid-enriched diet, a significant reduction in survival time of mice together with a marked increase in the accumulation rate of PrPSc deposits in their brain were observed. Our results suggest that the circulating cholesterol level is a determinant of prion propagation in vivo and that cholesterol-lowering strategies might be a successful therapeutic approach for patients suffering from prion diseases.
Collapse
Affiliation(s)
- Véronique Perrier
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Thibaud Imberdis
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Pierre-André Lafon
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Marina Cefis
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Yunyun Wang
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France.,Cellular Signaling Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Elisabeth Huetter
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Jacques-Damien Arnaud
- Etablissement Confiné d'Expérimentation A3/L3, CECEMA, US009 Biocampus, UMS 3426, Université Montpellier, Montpellier, F-34095 France
| | - Teresa Alvarez-Martinez
- Etablissement Confiné d'Expérimentation A3/L3, CECEMA, US009 Biocampus, UMS 3426, Université Montpellier, Montpellier, F-34095 France
| | - Naig Le Guern
- INSERM, LNC UMR866, F-21000 Dijon, France and LNC UMR866, Université Bourgogne Franche-Comté, F-21000 Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Guillaume Maquart
- INSERM, LNC UMR866, F-21000 Dijon, France and LNC UMR866, Université Bourgogne Franche-Comté, F-21000 Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR866, F-21000 Dijon, France and LNC UMR866, Université Bourgogne Franche-Comté, F-21000 Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France.,University Hospital of Dijon, F-21000 Dijon, France
| | - Catherine Desrumaux
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France .,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| |
Collapse
|
13
|
Si Y, Zhang Y, Chen X, Zhai L, Zhou G, Yu A, Cao H, Shucun Q. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo. Exp Biol Med (Maywood) 2016; 241:1466-72. [PMID: 27037277 DOI: 10.1177/1535370216641218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with (3)H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of (3)H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed (3)H-cholesterol of plasma was decreased by 68% for male and 62% for female, and (3)H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and (3)H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, (3)H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0-24 h period, but there was no significant difference during 24-48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of phospholipid transfer protein KO mice compared with WT mice. These data reveal that systemic phospholipid transfer protein deficiency in mice impairs macrophage-specific reverse cholesterol transport in vivo.
Collapse
Affiliation(s)
- Yanhong Si
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Ying Zhang
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Xiaofeng Chen
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Lei Zhai
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Guanghai Zhou
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Ailing Yu
- Taian Center Hospital, Taian 271000, China
| | - Haijun Cao
- Taian Center Hospital, Taian 271000, China
| | - Qin Shucun
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| |
Collapse
|
14
|
Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization. Cell Mol Immunol 2015; 13:795-804. [PMID: 26320740 DOI: 10.1038/cmi.2015.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. CONCLUSIONS For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype.
Collapse
|
15
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
16
|
Deckert V, Kretz B, Habbout A, Raghay K, Labbé J, Abello N, Desrumaux C, Gautier T, Lemaire-Ewing S, Maquart G, Le Guern N, Masson D, Steinmetz E, Lagrost L. Development of abdominal aortic aneurysm is decreased in mice with plasma phospholipid transfer protein deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:975-86. [PMID: 23830874 DOI: 10.1016/j.ajpath.2013.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 12/13/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) increases the circulating levels of proatherogenic lipoproteins, accelerates blood coagulation, and modulates inflammation. The role of PLTP in the development of abdominal aortic aneurysm (AAA) was investigated by using either a combination of mechanical and elastase injury at one site of mouse aorta (elastase model) or continuous infusion of angiotensin II in hyperlipidemic ApoE-knockout mice (Ang II model). With the elastase model, complete PLTP deficiency was associated with a significantly lower incidence and a lesser degree of AAA expansion. With the Ang II model, findings were consistent with those in the elastase model, with a lower severity grade in PLTP-deficient mice, an intermediate phenotype in PLTP-deficient heterozygotes, and a blunted effect of the PLTP-deficient trait when restricted to bone marrow-derived immune cells. The protective effect of whole-body PLTP deficiency in AAA was illustrated further by a lesser degree of adventitia expansion, reduced elastin degradation, fewer recruited macrophages, and less smooth muscle cell depletion in PLTP-deficient than in wild-type mice, as evident from comparative microscopic analysis of aorta sections. Finally, cumulative evidence supports the association of PLTP deficiency with reduced expression and activity levels of matrix metalloproteinases, known to degrade elastin and collagen. We conclude that PLTP can play a significant role in the pathophysiology of AAA.
Collapse
|
17
|
Chen X, Sun A, Zou Y, Ge J, Kamran H, Jiang XC, Lazar JM. High PLTP activity is associated with depressed left ventricular systolic function. Atherosclerosis 2013; 228:438-42. [PMID: 23545183 DOI: 10.1016/j.atherosclerosis.2013.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/29/2013] [Accepted: 02/26/2013] [Indexed: 12/13/2022]
Abstract
Phospholipid transfer protein (PLTP) modulates lipoprotein metabolism and plays an important role in inflammation and oxidative stress. High PLTP activity is associated with atherosclerosis and its risk factors, which also predispose to left ventricular systolic (LV) dysfunction and/or congestive heart failure. However there are few data linking PLTP activity directly to LV function. According, we sought to determine the relation between PLTP activity and LV ejection fraction (EF) in a Chinese cohort of 732 patients referred for coronary angiography. Weak but significant correlations of PLTP activity levels were found with age (r = -0.09, p = 0.017), male gender (r = 0.09, p = 0.019), diabetes (r = 0.08, p = 0.036), TG (r = 0.11, p = 0.003), HDL-C (r = -0.18, p = <0.001), apo A (-0.30, p < 0.001) apo B (r = 0.20, p < 0.001), fibrinogen (r = 0.32, p < 0.001) and LVEF (r = -0.12, p = 0.003). Median PLTP activity levels were higher among patients with reduced than in normal LV systolic function (LVEF <50%) [26.7 pmol/microl/h (IQR 20.2, 38.6) vs. 19.9 pmol/microl/h (IQR 12.2, 31.0), p < 0.001]. There was a step-wise increase in median PLTP levels in patients with normal, mild, and moderate-severe degrees of LV dysfunction (19.9 pmol/microl/h vs. 25.1 pmol/microl/h vs. 34.7 pmol/microl/h, p < 0.001). Median PLTP activity levels were higher among patients with unstable rather than stable AP and non-CHD patients (25.9 pmol/microl/h vs 20.2 vs 21.9, p = 0.012). On multivariate analyzes, higher median PLTP activity levels were associated with depressed LV systolic function as a dichotomous variable and with lower LVEF as a continuous variable. In conclusion, higher PLTP activity is associated with depressed LV systolic function in a dose-dependent manner independent of coronary heart disease as well as to unstable CHD.
Collapse
Affiliation(s)
- Xueying Chen
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Gene-expression profiling to identify genes related to spontaneous tumor regression in a canine cancer model. Vet Immunol Immunopathol 2013; 151:207-16. [DOI: 10.1016/j.vetimm.2012.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/15/2012] [Accepted: 11/15/2012] [Indexed: 02/07/2023]
|
19
|
Plasma PLTP (phospholipid-transfer protein): an emerging role in 'reverse lipopolysaccharide transport' and innate immunity. Biochem Soc Trans 2011; 39:984-8. [PMID: 21787334 DOI: 10.1042/bst0390984] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasma PLTP (phospholipid-transfer protein) is a member of the lipid transfer/LBP [LPS (lipopolysaccharide)-binding protein] family, which constitutes a superfamily of genes together with the short and long PLUNC (palate, lung and nasal epithelium clone) proteins. Although PLTP was studied initially for its involvement in the metabolism of HDL (high-density lipoproteins) and reverse cholesterol transport (i.e. the metabolic pathway through which cholesterol excess can be transported from peripheral tissues back to the liver for excretion in the bile), it displays a number of additional biological properties. In particular, PLTP can modulate the lipoprotein association and metabolism of LPS that are major components of Gram-negative bacteria. The delayed association of LPS with lipoproteins in PLTP-deficient mice results in a prolonged residence time, in a higher toxicity of LPS aggregates and in a significant increase in LPS-induced mortality as compared with wild-type mice. It suggests that PLTP may play a pivotal role in inflammation and innate immunity through its ability to accelerate the 'reverse LPS transport' pathway.
Collapse
|
20
|
Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, Pais de Barros JP, Le Guern N, Grober J, Labbé J, Ménétrier F, Ripoll PJ, Leroux-Coyau M, Jolivet G, Houdebine LM, Lagrost L. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol 2011; 31:766-74. [PMID: 21252068 DOI: 10.1161/atvbaha.110.215756] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Plasma phospholipid transfer protein (PLTP) is involved in intravascular lipoprotein metabolism. PLTP is known to act through 2 main mechanisms: by remodeling high-density lipoproteins (HDL) and by increasing apolipoprotein (apo) B-containing lipoproteins. The aim of this study was to generate a new model of human PLTP transgenic (HuPLTPTg) rabbit and to determine whether PLTP expression modulates atherosclerosis in this species that, unlike humans and mice, displays naturally very low PLTP activity. METHODS AND RESULTS In HuPLTPTg rabbits, the human PLTP cDNA was placed under the control of the human eF1-α gene promoter, resulting in a widespread tissue expression pattern and in increased plasma PLTP. The HuPLTPTg rabbits showed a significant increase in the cholesterol content of the plasma apoB-containing lipoprotein fractions, with a more severe trait when animals were fed a cholesterol-rich diet. In contrast, HDL cholesterol level was not modified in HuPLTPTg rabbits. Formation of aortic fatty streaks was increased in hypercholesterolemic HuPLTPTg animals as compared with nontransgenic littermates. CONCLUSIONS Human PLTP expression in HuPLTPTg rabbit worsens atherosclerosis as a result of increased levels of atherogenic apoB-containing lipoproteins but not of alterations in their antioxidative protection or in cholesterol content of plasma HDL.
Collapse
Affiliation(s)
- David Masson
- Institut National de la Santé et de la Recherche Médicale, Université de Bourgogne, UMR866, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yan KP, Zhu HL, Dan N, Chen C. An Improved Method for the Separation and Quantification of Major Phospholipid Classes by LC-ELSD. Chromatographia 2010. [DOI: 10.1365/s10337-010-1759-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Luo Y, Shelly L, Sand T, Reidich B, Chang G, Macdougall M, Peakman MC, Jiang XC. Pharmacologic inhibition of phospholipid transfer protein activity reduces apolipoprotein-B secretion from hepatocytes. J Pharmacol Exp Ther 2010; 332:1100-6. [PMID: 19933370 PMCID: PMC2835446 DOI: 10.1124/jpet.109.161232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/13/2009] [Indexed: 11/22/2022] Open
Abstract
Phospholipid transfer protein (PLTP) plays an important role in atherogenesis, and its function goes well beyond that of transferring phospholipids between lipoprotein particles. Previous studies showed that genetic deficiency of PLTP in mice causes a substantially impaired hepatic secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins. To understand whether the impaired apoB secretion is a direct result from lack of PLTP activity, in this study, we further investigated the function of PLTP in apoB secretion by using PLTP inhibitors. We identified a series of compounds containing a 3-benzazepine core structure that inhibit PLTP activity. Compound A, the most potent inhibitor, was characterized further and had little cross-reactivity with microsomal triglyceride transfer protein. Compound A reduced apoB secretion in human hepatoma cell lines and mouse primary hepatocytes. Furthermore, we confirmed that the reduction of apoB secretion mediated by compound A is PLTP-dependent, because the PLTP inhibitor had no effect on apoB secretion from PLTP-deficient hepatocytes. These studies provided evidence that PLTP activity regulates apoB secretion and pharmacologic inhibition of PLTP may be a new therapy for dyslipidemia by reducing apoB secretion.
Collapse
Affiliation(s)
- Yi Luo
- Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research Division, Pfizer Inc., Groton, CT 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen X, Sun A, Mansoor A, Zou Y, Ge J, Lazar JM, Jiang XC. Plasma PLTP activity is inversely associated with HDL-C levels. Nutr Metab (Lond) 2009; 6:49. [PMID: 19948027 PMCID: PMC2793253 DOI: 10.1186/1743-7075-6-49] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/30/2009] [Indexed: 12/13/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is an important modulator of lipoprotein metabolism, including interparticle phospholipid transfer, remodeling of HDL, cholesterol and phospholipid efflux from peripheral tissues, and the production of hepatic VLDL. PLTP also plays an important role in inflammation and oxidative stress. Accordingly, PLTP has been implicated in the development of atherosclerosis. In this study, we evaluated the association between PLTP activity and lipoprotein metabolism in a Chinese patients cohort with or without coronary heart disease (CHD group n = 407, control group n = 215), the PLTP activity was measured and PLTP genotyping was screened for sequence anomalies by PCR. We found that human plasma PLTP activity was negatively associated with plasma HDL and apoA-I levels, and positively associated with plasma TG, apoB and apoE levels. We also found that PLTP rs2294213 polymorphism was tended to be associated with increased plasma PLTP activity.
Collapse
Affiliation(s)
- Xueying Chen
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Aijun Sun
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Ather Mansoor
- Division of Cardiovascular Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Yunzeng Zou
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Junbo Ge
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jason M Lazar
- Division of Cardiovascular Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
24
|
Henderson RJ, Wasan KM, Leon CG. Haptoglobin inhibits phospholipid transfer protein activity in hyperlipidemic human plasma. Lipids Health Dis 2009; 8:27. [PMID: 19627602 PMCID: PMC2729738 DOI: 10.1186/1476-511x-8-27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/23/2009] [Indexed: 12/16/2022] Open
Abstract
Background Haptoglobin is a plasma protein that scavenges haemoglobin during haemolysis. Phospholipid Transfer Protein (PLTP) transfers lipids from Low Density Lipoproteins (LDL) to High Density Lipoproteins (HDL). PLTP is involved in the pathogenesis of atherosclerosis which causes coronary artery disease, the leading cause of death in North America. It has been shown that Apolipoprotein-A1 (Apo-A1) binds and regulates PLTP activity. Haptoglobin can also bind to Apo-A1, affecting the ability of Apo-A1 to induce enzymatic activities. Thus we hypothesize that haptoglobin inhibits PLTP activity. This work tested the effect of Haptoglobin and Apo-A1 addition on PLTP activity in human plasma samples. The results will contribute to our understanding of the role of haptoglobin on modulating reverse cholesterol transport. Results We analyzed the PLTP activity and Apo-A1 and Haptoglobin content in six hyperlipidemic and six normolipidemic plasmas. We found that Apo-A1 levels are proportional to PLTP activity in hyperlipidemic (R2 = 0.66, p < 0.05) but not in normolipidemic human plasma. Haptoglobin levels and PLTP activity are inversely proportional in hyperlipidemic plasmas (R2 = 0.57, p > 0.05). When the PLTP activity was graphed versus the Hp/Apo-A1 ratio in hyperlipidemic plasma there was a significant correlation (R2 = 0.69, p < 0.05) suggesting that PLTP activity is affected by the combined effect of Apo-A1 and haptoglobin. When haptoglobin was added to individual hyperlipidemic plasma samples there was a dose dependent decrease in PLTP activity. In these samples we also found a negative correlation (-0.59, p < 0.05) between PLTP activity and Hp/Apo-A1. When we added an amount of haptoglobin equivalent to 100% of the basal levels, we found a 64 ± 23% decrease (p < 0.05) in PLTP activity compared to basal PLTP activity. We tested the hypothesis that additional Apo-A1 would induce PLTP activity. Interestingly we found a dose dependent decrease in PLTP activity upon Apo-A1 addition. When both Apo-A1 and Hpt were added to the plasma samples there was no further reduction in PLTP activity suggesting that they act through a common pathway. Conclusion These findings suggest an inhibitory effect of Haptoglobin over PLTP activity in hyperlipidemic plasma that may contribute to the regulation of reverse cholesterol transport.
Collapse
Affiliation(s)
- Ryan J Henderson
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada.
| | | | | |
Collapse
|
25
|
Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 2009; 10:403-11. [PMID: 19413703 DOI: 10.1111/j.1467-789x.2009.00586.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) is a lipid transfer glycoprotein that binds to and transfers a number of amphipathic compounds. In earlier studies, the attention of the scientific community focused on the positive role of PLTP in high-density lipoprotein (HDL) metabolism. However, this potentially anti-atherogenic role of PLTP has been challenged recently by another picture: PLTP arose as a pro-atherogenic factor through its ability to increase the production of apolipoprotein B-containing lipoproteins, to decrease their antioxidative protection and to trigger inflammation. In humans, PLTP has mostly been studied in patients with cardiometabolic disorders. Both PLTP and related cholesteryl ester transfer protein (CETP) are secreted proteins, and adipose tissue is an important contributor to the systemic pools of these two proteins. Coincidently, high levels of PLTP and CETP have been found in the plasma of obese patients. PLTP activity and mass have been reported to be abnormally elevated in type 2 diabetes mellitus (T2DM) and insulin-resistant states, and this elevation is frequently associated with hypertriglyceridemia and obesity. This review article presents the state of knowledge on the implication of PLTP in lipoprotein metabolism, on its atherogenic potential, and the complexity of its implication in obesity, insulin resistance and T2DM.
Collapse
Affiliation(s)
- T Tzotzas
- Department of Nutrition and Dietetics, Technological Educational Institution, Thessaloniki, Greece.
| | | | | |
Collapse
|
26
|
Cavusoglu E, Marmur JD, Chhabra S, Chopra V, Eng C, Jiang XC. Relation of baseline plasma phospholipid transfer protein (PLTP) activity to left ventricular systolic dysfunction in patients referred for coronary angiography. Atherosclerosis 2009; 207:261-5. [PMID: 19446293 DOI: 10.1016/j.atherosclerosis.2009.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 12/13/2022]
Abstract
Phospholipid transfer protein (PLTP) is an important modulator of phospholipid transfer and exchange among proteins. It also plays a role in inflammation and oxidative stress. Accordingly, PLTP has been implicated in the development of atherosclerosis. Left ventricular (LV) systolic dysfunction is common in patients with atherosclerosis, and both inflammation and oxidative stress have also been implicated in its development and progression. The goal of the present study was to examine the relation between plasma PLTP activity and LV systolic function. Baseline plasma PLTP activity was measured in 389 male patients referred for coronary angiography for a variety of indications. Detailed clinical, angiographic and laboratory characteristics were available for the patients. Compared to those patients with normal LV function (defined as an ejection fraction of >or=55% on ventriculography), patients with any degree of LV dysfunction had elevated PLTP activity (median PLTP 17.8 pmol/microl/h versus 15.9 pmol/microl/h, p=0.0038). Using multivariate analysis, and adjusting for a variety of confounding variables known to affect both LV function and PLTP activity, PLTP activity was an independent predictor of the presence of any left ventricular systolic dysfunction in the entire population (OR 1.47, 95% CI 1.12-1.93, p=0.0052). Furthermore, PLTP activity was an independent predictor of the presence of LV dysfunction in both patients with and without myocardial infarction on presentation (OR 2.39, 95% CI 1.18-4.86, p=0.0161 and OR 1.41, 95% CI 1.05-1.89, p=0.0206, respectively). In conclusion, PLTP activity may represent a novel marker of LV systolic dysfunction in patients with known or suspected coronary artery disease.
Collapse
Affiliation(s)
- Erdal Cavusoglu
- Department of Medicine, Division of Cardiology, SUNY Downstate Medical Center, Brooklyn, NY 11203-2098, United States.
| | | | | | | | | | | |
Collapse
|
27
|
Vergeer M, Dallinga-Thie GM, Dullaart RPF, van Tol A. Evaluation of phospholipid transfer protein as a therapeutic target. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|