1
|
Keever K, Askari B. Exacerbation of atherosclerosis, hyperlipidemia and inflammation by MK886, an inhibitor of leukotriene biosynthesis, in obese and diabetic mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100203. [PMID: 39497763 PMCID: PMC11532750 DOI: 10.1016/j.crphar.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Leukotrienes are potent mediators of the inflammatory response and 5-lipoxygenase, the enzyme responsible for their synthesis, is dependent on its interaction with 5-lipoxygenase activating protein for optimum catalysis. Previous studies had demonstrated that macrophage infiltration into adipose tissue is associated with obesity and atherosclerosis in LDLR-/- mice fed a high fat-high carbohydrate. The present study was undertaken to determine whether inhibition of 5-lipoxygenase activating protein is efficacious in attenuating adipose tissue inflammation in LDLR-/- mice fed a high fat-high carbohydrate. 10-week old male LDLR-/- mice were fed a high fat-high carbohydrate diet for 22-weeks, with or without MK886 (40 mg/kg/day, ad libitum) a well-established 5-lipoxygenase activating protein inhibitor. All mice had an approximate 2-fold increase in total body weight, but a 6-week course of MK886 treatment had differential effects on adipose tissue size, without affecting macrophage accumulation. MK886 exacerbated the dyslipidemia, increased serum amyloid A content of high-density lipoproteins and caused a profound hepatomegaly. Dyslipidemia and increased serum amyloid A were concomitant with increases in atherosclerosis. In conclusion, MK886 paradoxically exacerbated hyperlipidemia and the pro-inflammatory phenotype in a mouse model of diet-induced atherosclerosis, possibly via a disruption of hepatic lipid metabolism and increased inflammation.
Collapse
Affiliation(s)
- Katherine Keever
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Bardia Askari
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
3
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
4
|
Plasma Oxylipin Profile Discriminates Ethnicities in Subjects with Non-Alcoholic Steatohepatitis: An Exploratory Analysis. Metabolites 2022; 12:metabo12020192. [PMID: 35208265 PMCID: PMC8875408 DOI: 10.3390/metabo12020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver pathology that includes steatosis, or non-alcoholic fatty liver (NAFL), and non-alcoholic steatohepatitis (NASH). Without a clear pathophysiological mechanism, it affects Hispanics disproportionately compared to other ethnicities. Polyunsaturated fatty acids (PUFAs) and inflammatory lipid mediators including oxylipin (OXL) and endocannabinoid (eCB) are altered in NAFLD and thought to contribute to its pathogenesis. However, the existence of ethnicity-related differences is not clear. We employed targeted lipidomic profiling for plasma PUFAs, non-esterified OXLs and eCBs in White Hispanics (HIS, n = 10) and Caucasians (CAU, n = 8) with biopsy-confirmed NAFL, compared with healthy control subjects (HC; n = 14 HIS; n = 8 CAU). NAFLD was associated with diminished long chain PUFA in HIS, independent of histological severity. Differences in plasma OXLs and eCBs characterized ethnicities in NASH, with lower arachidonic acid derived OXLs observed in HIS. The secondary analysis comparing ethnicities within NASH (n = 12 HIS; n = 17 CAU), confirms these ethnicity-related differences and suggests lower lipoxygenase(s) and higher soluble epoxide hydrolase(s) activities in HIS compared to CAU. While causes are not clear, these lipidomic differences might be with implications for NAFLD severity and are worth further investigation. We provide preliminary data indicating ethnicity-specific lipidomic signature characterizes NASH which requires further validation.
Collapse
|
5
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
6
|
Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 2020; 11:802. [PMID: 32978374 PMCID: PMC7519685 DOI: 10.1038/s41419-020-03003-w] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD stages range from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which can progress to cirrhosis and hepatocellular carcinoma. One of the crucial events clearly involved in NAFLD progression is the lipotoxicity resulting from an excessive fatty acid (FFA) influx to hepatocytes. Hepatic lipotoxicity occurs when the capacity of the hepatocyte to manage and export FFAs as triglycerides (TGs) is overwhelmed. This review provides succinct insights into the molecular mechanisms responsible for lipotoxicity in NAFLD, including ER and oxidative stress, autophagy, lipoapotosis and inflammation. In addition, we highlight the role of CD36/FAT fatty acid translocase in NAFLD pathogenesis. Up-to-date, it is well known that CD36 increases FFA uptake and, in the liver, it drives hepatosteatosis onset and might contribute to its progression to NASH. Clinical studies have reinforced the significance of CD36 by showing increased content in the liver of NAFLD patients. Interestingly, circulating levels of a soluble form of CD36 (sCD36) are abnormally elevated in NAFLD patients and positively correlate with the histological grade of hepatic steatosis. In fact, the induction of CD36 translocation to the plasma membrane of the hepatocytes may be a determining factor in the physiopathology of hepatic steatosis in NAFLD patients. Given all these data, targeting the fatty acid translocase CD36 or some of its functional regulators may be a promising therapeutic approach for the prevention and treatment of NAFLD.
Collapse
|
7
|
He R, Chen Y, Cai Q. The role of the LTB4-BLT1 axis in health and disease. Pharmacol Res 2020; 158:104857. [PMID: 32439596 DOI: 10.1016/j.phrs.2020.104857] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Leukotriene B4 (LTB4) is a major type of lipid mediator that is rapidly generated from arachidonic acid through sequential action of 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTA4 hydrolase (LTA4H) in response to various stimuli. LTB4 is well known to be a chemoattractant for leukocytes, particularly neutrophils, via interaction with its high-affinity receptor BLT1. Extensive attention has been paid to the role of the LTB4-BLT1 axis in acute and chronic inflammatory diseases, such as infectious diseases, allergy, autoimmune diseases, and metabolic disease via mediating recruitment and/or activation of different types of inflammatory cells depending on different stages or the nature of inflammatory response. Recent studies also demonstrated that LTB4 acts on non-immune cells via BLT1 to initiate and/or amplify pathological inflammation in various tissues. In addition, emerging evidence reveals a complex role of the LTB4-BLT1 axis in cancer, either tumor-inhibitory or tumor-promoting, depending on the different target cells. In this review, we summarize both established understanding and the most recent progress in our knowledge about the LTB4-BLT1 axis in host defense, inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Liangpunsakul S, Chalasani N. Lipid mediators of liver injury in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2019; 316:G75-G81. [PMID: 30383414 PMCID: PMC6383373 DOI: 10.1152/ajpgi.00170.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of histopathological phenotypes ranging from simple steatosis to more severe liver disease associated with cell injury, including nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. Only a subset of patients with NAFLD develop NASH from yet incompletely understood mechanisms. Emerging data suggest lipid species other than triglycerides as contributors to the pathogenesis of NASH. In this mini review, we focus on the recent data on the mechanisms of NASH, focusing on these lipid mediators and their potential as therapeutic targets in NASH.
Collapse
Affiliation(s)
- Suthat Liangpunsakul
- 1Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana,2Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana,3Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Naga Chalasani
- 1Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
10
|
de Melo AF, Moreira CCL, Sales CF, Rentz T, Raposo HF, Garófalo MAR, Botion LM, Kettelhut IDC, de Oliveira HCF, Chaves VE. Increase in liver cytosolic lipases activities and VLDL-TAG secretion rate do not prevent the non-alcoholic fatty liver disease in cafeteria diet-fed rats. Biochimie 2018; 150:16-22. [DOI: 10.1016/j.biochi.2018.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
11
|
Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Samala N, Tersey SA, Chalasani N, Anderson RM, Mirmira RG. Molecular mechanisms of nonalcoholic fatty liver disease: Potential role for 12-lipoxygenase. J Diabetes Complications 2017; 31:1630-1637. [PMID: 28886991 PMCID: PMC5643240 DOI: 10.1016/j.jdiacomp.2017.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of pathologies associated with fat accumulation in the liver. NAFLD is the most common cause of liver disease in the United States, affecting up to a third of the general population. It is commonly associated with features of metabolic syndrome, particularly insulin resistance. NAFLD shares the basic pathogenic mechanisms with obesity and insulin resistance, such as mitochondrial, oxidative and endoplasmic reticulum stress. Lipoxygenases catalyze the conversion of poly-unsaturated fatty acids in the plasma membrane-mainly arachidonic acid and linoleic acid-to produce oxidized pro-inflammatory lipid intermediates. 12-Lipoxygenase (12-LOX) has been studied extensively in setting of inflammation and insulin resistance. As insulin resistance is closely associated with development of NAFLD, the role of 12-LOX in pathogenesis of NAFLD has received increasing attention in recent years. In this review we discuss the role of 12-LOX in NAFLD pathogenesis and its potential role in emerging new therapeutics.
Collapse
Affiliation(s)
- Niharika Samala
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Naga Chalasani
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan M Anderson
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G Mirmira
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Sci Rep 2017; 7:4560. [PMID: 28676689 PMCID: PMC5496870 DOI: 10.1038/s41598-017-04474-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 01/05/2023] Open
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 fatty acid with immunomodulatory and anti-inflammatory effects. Beyond its direct effects, the metabolic products of EPA also regulate various immune responses. Animal experiments demonstrated that EPA reduces adipose inflammation in high fat diet-induced obese mouse. However, the effects of EPA on infiltrated immune cell populations in adipose tissue and underlying mechanisms remain to be elucidated. We performed flow cytometry of stromal vascular fraction of epididymal adipose tissues from C57BL/6J and ob/ob mice fed normal chow mixed with or without 5% EPA. The numbers of hematopoietic cells, including Tregs, were higher in both C57BL/6J and ob/ob mice fed EPA diet compared with control diet. EPA enhanced the induction of Tregs in co-cultures of adipose tissue macrophages (ATMs) and naïve T cells. Among EPA metabolites, 5-HEPE was the most potent inducer of Tregs. GPR119 and GPR120 are receptors for 5-HEPE and EPA, respectively, and antagonist of GPR119 blocked Treg induction by EPA in the presence of ATMs. Alox5 gene encodes 5-lipoxygenase enzyme catalyzing EPA into 5-HEPE, and inhibitor of 5-lipoxygenase down-regulated EPA-mediated induction of adipose tissue Tregs in ob/ob mice. The study findings demonstrated that both EPA and 5-HEPE enhance ATM-mediated Treg induction.
Collapse
|
14
|
Significant Improvement Selected Mediators of Inflammation in Phenotypes of Women with PCOS after Reduction and Low GI Diet. Mediators Inflamm 2017; 2017:5489523. [PMID: 28655971 PMCID: PMC5474536 DOI: 10.1155/2017/5489523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/02/2017] [Accepted: 04/06/2017] [Indexed: 01/22/2023] Open
Abstract
Many researchers suggest an increased risk of atherosclerosis in women with polycystic ovary syndrome. In the available literature, there are no studies on the mediators of inflammation in women with PCOS, especially after dietary intervention. Eicosanoids (HETE and HODE) were compared between the biochemical phenotypes of women with PCOS (normal and high androgens) and after the 3-month reduction diet. Eicosanoid profiles (9(S)-HODE, 13(S)-HODE, 5(S)-HETE, 12(S)-HETE, 15(S)-HETE, 5(S)-oxoETE, 16(R)-HETE, 16(S)-HETE and 5(S), 6(R)-lipoxin A4, 5(S), 6(R), 15(R)-lipoxin A4) were extracted from 0.5 ml of plasma using solid-phase extraction RP-18 SPE columns. The HPLC separations were performed on a 1260 liquid chromatograph. No significant differences were found in the concentration of analysed eicosanoids in phenotypes of women with PCOS. These women, however, have significantly lower concentration of inflammatory mediators than potentially healthy women from the control group. Dietary intervention leads to a significant (p < 0.01) increase in the synthesis of proinflammatory mediators, reaching similar levels as in the control group. The development of inflammatory reaction in both phenotypes of women with PCOS is similar. The pathways for synthesis of proinflammatory mediators in women with PCOS are dormant, but can be stimulated through a reduction diet. Three-month period of lifestyle change may be too short to stimulate the pathways inhibiting inflammatory process.
Collapse
|
15
|
Zhao YY, Miao H, Cheng XL, Wei F. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 2015; 240:220-238. [PMID: 26358168 DOI: 10.1016/j.cbi.2015.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China.
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| | - Feng Wei
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| |
Collapse
|
16
|
Maciejewska D, Ossowski P, Drozd A, Ryterska K, Jamioł-Milc D, Banaszczak M, Kaczorowska M, Sabinicz A, Raszeja-Wyszomirska J, Stachowska E. Metabolites of arachidonic acid and linoleic acid in early stages of non-alcoholic fatty liver disease--A pilot study. Prostaglandins Other Lipid Mediat 2015; 121:184-9. [PMID: 26408952 DOI: 10.1016/j.prostaglandins.2015.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/13/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions related to fat infiltration. The role of liver triacylglycerol accumulation in NAFLD is not fully understood. METHODS Twenty-four patients, 12 in the first and 12 in the second stage of NAFLD, were prospectively enrolled in this study. Biochemical parameters and eicosanoids (HETE and HODE) were compared between the first and the second stage of hepatic steatosis and the effect of a 6-month dietary intervention on these parameters was evaluated. Eicosanoid profiles were extracted from 0.5 ml of plasma using solid-phase extraction RP-18 SPE columns. The HPLC separations were performed on a 1260 liquid chromatograph. RESULTS Patients with stage I NAFLD had a significantly higher level of HDL cholesterol and a lower level of 5-HETE. Patients with grade II steatosis had higher concentrations of 9-HODE. Following the six-month dietary intervention, hepatic steatosis resolved completely in all patients. This resulted in a significant decrease in the concentrations of all eicosanoids (LX4, 16-HETE, 13-HODE, 9-HODE, 15-HETE, 12-HETE, 5-oxoETE, 5-HETE) and key biochemical parameters (BMI, insulin, HOMA-IR, liver enzymes). CONCLUSION A significant reduction in the analyzed eicosanoids and a parallel reduction in fatty liver confirmed the usefulness of HETE and HODE in the assessment of NAFLD.
Collapse
Affiliation(s)
- Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Ossowski
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Karina Ryterska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Dominika Jamioł-Milc
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Marcin Banaszczak
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Kaczorowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Anna Sabinicz
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | | | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
17
|
Pardo V, González-Rodríguez Á, Guijas C, Balsinde J, Valverde ÁM. Opposite cross-talk by oleate and palmitate on insulin signaling in hepatocytes through macrophage activation. J Biol Chem 2015; 290:11663-77. [PMID: 25792746 DOI: 10.1074/jbc.m115.649483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/07/2023] Open
Abstract
Chronic low grade inflammation in adipose tissue during obesity is associated with an impairment of the insulin signaling cascade. In this study, we have evaluated the impact of palmitate or oleate overload of macrophage/Kupffer cells in triggering stress-mediated signaling pathways, in lipoapoptosis, and in the cross-talk with insulin signaling in hepatocytes. RAW 264.7 macrophages or Kupffer cells were stimulated with oleate or palmitate, and levels of M1/M2 polarization markers and the lipidomic profile of eicosanoids were analyzed. Whereas proinflammatory cytokines and total eicosanoids were elevated in macrophages/Kupffer cells stimulated with palmitate, enhanced arginase 1 and lower leukotriene B4 (LTB4) levels were detected in macrophages stimulated with oleate. When hepatocytes were pretreated with conditioned medium (CM) from RAW 264.7 or Kupffer cells loaded with palmitate (CM-P), phosphorylation of stress kinases and endoplasmic reticulum stress signaling was increased, insulin signaling was impaired, and lipoapoptosis was detected. Conversely, enhanced insulin receptor-mediated signaling and reduced levels of the phosphatases protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homolog (PTEN) were found in hepatocytes treated with CM from macrophages stimulated with oleate (CM-O). Supplementation of CM-O with LTB4 suppressed insulin sensitization and increased PTP1B and PTEN. Furthermore, LTB4 decreased insulin receptor tyrosine phosphorylation in hepatocytes, activated the NFκB pathway, and up-regulated PTP1B and PTEN, these effects being mediated by LTB4 receptor BTL1. In conclusion, oleate and palmitate elicit an opposite cross-talk between macrophages/Kupffer cells and hepatocytes. Whereas CM-P interferes at the early steps of insulin signaling, CM-O increases insulin sensitization, possibly by reducing LTB4.
Collapse
Affiliation(s)
- Virginia Pardo
- From the Instituto de Investigaciones Biomédicas Alberto Sols (Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid), 28029 Madrid, Spain, the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain, and
| | - Águeda González-Rodríguez
- From the Instituto de Investigaciones Biomédicas Alberto Sols (Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid), 28029 Madrid, Spain, the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain, and
| | - Carlos Guijas
- the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain, and the Instituto de Biología y Genética Molecular (Consejo Superior de Investigaciones Científicas), 47003 Valladolid, Spain
| | - Jesús Balsinde
- the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain, and the Instituto de Biología y Genética Molecular (Consejo Superior de Investigaciones Científicas), 47003 Valladolid, Spain
| | - Ángela M Valverde
- the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain, and the Instituto de Biología y Genética Molecular (Consejo Superior de Investigaciones Científicas), 47003 Valladolid, Spain
| |
Collapse
|
18
|
Park MY, Sung MK. Carnosic acid attenuates obesity-induced glucose intolerance and hepatic fat accumulation by modulating genes of lipid metabolism in C57BL/6J-ob/ob mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:828-835. [PMID: 25348739 DOI: 10.1002/jsfa.6973] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 09/17/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Carnosic acid (CA), a major bioactive component of rosemary (Rosmarinus officinalis) leaves, is known to possess antioxidant and anti-adipogenic activities. In this study it was hypothesized that CA would ameliorate obesity-induced glucose intolerence and hepatic fat accumulation, and possible mechanisms are suggested. RESULTS It was observed that a 0.02% (w/w) CA diet effectively decreased body weight, liver weight and blood triglyceride (TG) and total cholesterol levels (P < 0.05) compared with the control diet. CA at 0.02% significantly improved glucose tolerance, and hepatic TG accumulation was reduced in a dose-dependent manner. Hepatic lipogenic-related gene (L-FABP, SCD1 and FAS) expression decreased whereas lipolysis-related gene (CPT1) expression increased in animals fed the 0.02% CA diet (P < 0.05). Long-chain fatty acid content and the ratio of C18:1/C18:0 fatty acids were decreased in adipose tissue of animals fed the 0.02% CA diet (P < 0.05). Serum inflammatory mediators were also decreased significantly in animals fed the 0.02% CA diet compared with those of the obese control group (P < 0.05). CONCLUSION These results suggest that CA is an effective anti-obesity agent that regulates fatty acid metabolism in C57BL/6J-ob/ob mice.
Collapse
Affiliation(s)
- Mi-Young Park
- Department of Food and Nutrition, Graduate School of Education, Soonchunhyang University, Asan, Chungnam, 336-745, Korea
| | | |
Collapse
|
19
|
Jayanthy G, Subramanian S. RA abrogates hepatic gluconeogenesis and insulin resistance by enhancing IRS-1 and AMPK signalling in experimental type 2 diabetes. RSC Adv 2015. [DOI: 10.1039/c5ra04605j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RA abrogates hyperglycemia and insulin resistance, the primary features of type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- G. Jayanthy
- Department of Biochemistry
- University of Madras
- Guindy Campus
- Chennai
- India
| | - S. Subramanian
- Department of Biochemistry
- University of Madras
- Guindy Campus
- Chennai
- India
| |
Collapse
|
20
|
Zhao YY, Cheng XL, Lin RC, Wei F. Lipidomics applications for disease biomarker discovery in mammal models. Biomark Med 2015; 9:153-168. [PMID: 25689902 DOI: 10.2217/bmm.14.81] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipidomics is a lipid-targeted metabolomics approach focusing on comprehensive analysis of all lipids with which they interact in biology systems. Recent technological advances in MS and chromatography have greatly enhanced the developments and applications of metabolic profiling of diverse lipids in complex biological samples. Lipidomics will not only provide insights into the specific functions of lipid species in health and disease, but will also identify potential biomarkers for establishing preventive or therapeutic programs for human disease. In this review, recent applications of lipidomics to understand animal models of disease such as metabolic syndromes, neurodegenerative diseases, cancer and infectious diseases are considered. We also discuss the lipidomics for the future perspectives and their potential problems.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology & Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
21
|
Ezetimibe prevents the development of non‑alcoholic fatty liver disease induced by high‑fat diet in C57BL/6J mice. Mol Med Rep 2014; 10:2917-23. [PMID: 25310357 PMCID: PMC4227427 DOI: 10.3892/mmr.2014.2623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
There is currently no established treatment for non-alcoholic fatty liver disease (NAFLD), including its most extreme form, non-alcoholic steatohepatitis (NASH). Ezetimibe, an inhibitor of Niemann-Pick C1 Like 1-dependent cholesterol absorption, improves diet-induced hyperlipidemia and attenuates liver steatosis and insulin resistance. The aim of the present study was to determine whether ezetimibe treatment is able to inhibit the development of NAFLD, and to elucidate the underlying mechanism, using C57BL/6J (B6) mice maintained on a high-fat diet. Male B6 mice (20 weeks of age) were divided into the following two groups (n=7 in each group): Mice fed a high-fat diet for four weeks and mice fed a high-fat diet with 0.0064% (wt/wt) ezetimibe (5 mg/kg/day) for four weeks. Administration of ezetimibe significantly reduced liver steatosis and fibrosis. Ezetimibe reduced serum cholesterol, hepatic fat accumulation and insulin resistance in the liver of mice fed the high-fat diet. Furthermore, ezetimibe significantly reduced hepatic mRNA expression of Acc1 and Scd1, which are involved in hepatic fatty acid synthesis. Ezetimibe significantly reduced hepatic Cd36 gene expression, upregulation of which is significantly associated with insulin resistance, hyperinsulinemia and increased steatosis. The protein expression of SKP2, a viable therapeutic target in human cancer, was also reduced by ezetimibe. These findings suggest that ezetimibe may be an effective therapy for high fat-induced NAFLD, including NASH.
Collapse
|
22
|
Lipid-Coated Calcium Phosphate Nanoparticles for Nonviral Gene Therapy. ADVANCES IN GENETICS 2014; 88:205-29. [DOI: 10.1016/b978-0-12-800148-6.00007-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
The Kaposi's sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis. J Virol 2013; 88:2131-56. [PMID: 24335295 DOI: 10.1128/jvi.02786-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). KS lesions are characterized by endothelial cells with multiple copies of the latent KSHV episomal genome, lytic replication in a low percentage of infiltrating monocytes, and inflammatory cytokines plus growth factors. We demonstrated that KSHV utilizes inflammatory cyclooxygenase 2/prostaglandin E2 to establish and maintain latency (Sharma-Walia, N., A. G. Paul, V. Bottero, S. Sadagopan, M. V. Veettil, N. Kerur, and B. Chandran, PLoS Pathog 6:e1000777, 2010 [doi:10.1371/journal.ppat.1000777]). Here, we evaluated the role of 5-lipoxygenase (5LO) and its chemotactic metabolite leukotriene B4 (LTB4) in KSHV biology. Abundant staining of 5LO was detected in human KS tissue sections. We observed elevated levels of 5LO and high levels of secretion of LTB4 during primary KSHV infection of endothelial cells and in PEL B cells (BCBL-1 and BC-3 cells). Blocking the 5LO/LTB4 cascade inhibited viral latent ORF73, immunomodulatory K5, viral macrophage inflammatory protein 1 (MIP-1), and viral MIP-2 gene expression, without much effect on lytic switch ORF50, immediate early lytic K8, and viral interferon-regulatory factor 2 gene expression. 5LO inhibition significantly downregulated latent viral Cyclin and latency-associated nuclear antigen 2 levels in PEL cells. 5LO/LTB4 inhibition downregulated TH2-related cytokine secretion, elevated TH1-related cytokine secretion, and reduced human monocyte recruitment, adhesion, and transendothelial migration. 5LO/LTB4 inhibition reduced fatty acid synthase (FASN) promoter activity and its expression. Since FASN, a key enzyme required in lipogenesis, is important in KSHV latency, these findings collectively suggest that 5LO/LTB4 play important roles in KSHV biology and that effective inhibition of the 5LO/LTB4 pathway could potentially be used in treatment to control KS/PEL.
Collapse
|
24
|
Kelly OJ, Gilman JC, Kim Y, Ilich JZ. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis. Nutr Res 2013; 33:521-33. [PMID: 23827126 DOI: 10.1016/j.nutres.2013.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/21/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022]
Abstract
The overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA. During the life cycle, inflammation increases, fat mass accumulates, and bone mass declines, thus suggesting that a connection exists. This review will begin by examining how the current American diet and dietary guidelines may fall short of providing an anti-inflammatory dose of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It will then define LGCI and outline the evidence for a relationship between fat and bone. Inflammation as it pertains to obesity and osteoporosis and how EPA and DHA can alleviate the associated inflammation will be discussed, followed by some preliminary evidence to show how mesenchymal stem cell (MSC) lineage commitment may be altered by inflammation to favor adipogenesis. Our hypothesis is that n-3 PUFA positively influence obesity and osteoporosis by reducing LGCI, ultimately leading to a beneficial shift in MSC lineage commitment. This hypothesis essentially relates the need for more focused research in several areas such as determining age and lifestyle factors that promote the shift in MSC commitment and if current intakes of EPA and DHA are optimal for fat and bone.
Collapse
Affiliation(s)
- Owen J Kelly
- Abbott Nutrition Research and Development, Columbus, OH 43219-3034, USA.
| | | | | | | |
Collapse
|
25
|
Das R, Ganapathy S, Mahabeleshwar GH, Drumm C, Febbraio M, Jain MK, Plow EF. Macrophage gene expression and foam cell formation are regulated by plasminogen. Circulation 2013; 127:1209-18, e1-16. [PMID: 23401155 DOI: 10.1161/circulationaha.112.001214] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deciphering the molecular and cellular processes that govern macrophage foam cell formation is critical to understanding the basic mechanisms underlying atherosclerosis and other vascular pathologies. METHODS AND RESULTS Here, we identify a pivotal role of plasminogen (Plg) in regulating foam cell formation. Deficiency of Plg inhibited macrophage cholesterol accumulation on exposure to hyperlipidemic conditions in vitro, ex vivo, and in vivo. Gene expression analysis identified CD36 as a regulated target of Plg, and macrophages from Plg(-/-) mice had decreased CD36 expression and diminished foam cell formation. The Plg-dependent CD36 expression and foam cell formation depended on conversion of Plg to plasmin, binding to the macrophage surface, and the consequent intracellular signaling that leads to production of leukotriene B4. Leukotriene B4 rescued the suppression of CD36 expression and foam cell formation arising from Plg deficiency. CONCLUSIONS Our findings demonstrate an unanticipated role of Plg in the regulation of gene expression and cholesterol metabolism by macrophages and identify Plg-mediated regulation of leukotriene B4 as an underlying mechanism.
Collapse
Affiliation(s)
- Riku Das
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hardwick JP, Eckman K, Lee YK, Abdelmegeed MA, Esterle A, Chilian WM, Chiang JY, Song BJ. Eicosanoids in metabolic syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:157-266. [PMID: 23433458 DOI: 10.1016/b978-0-12-404717-4.00005-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism. The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS.
Collapse
Affiliation(s)
- James P Hardwick
- Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsuzaka T, Atsumi A, Matsumori R, Nie T, Shinozaki H, Suzuki-Kemuriyama N, Kuba M, Nakagawa Y, Ishii K, Shimada M, Kobayashi K, Yatoh S, Takahashi A, Takekoshi K, Sone H, Yahagi N, Suzuki H, Murata S, Nakamuta M, Yamada N, Shimano H. Elovl6 promotes nonalcoholic steatohepatitis. Hepatology 2012; 56:2199-208. [PMID: 22753171 DOI: 10.1002/hep.25932] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 06/11/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is associated with obesity and type 2 diabetes, and an increased risk for liver cirrhosis and cancer. ELOVL family member 6, elongation of very long chain fatty acids (Elovl6), is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids (FAs). We have shown previously that Elovl6 is a major target for sterol regulatory element binding proteins in the liver and that it plays a critical role in the development of obesity-induced insulin resistance by modifying FA composition. To further investigate the role of Elovl6 in the development of NASH and its underlying mechanism, we used three independent mouse models with loss or gain of function of Elovl6, and human liver samples isolated from patients with NASH. Our results demonstrate that (1) Elovl6 is a critical modulator for atherogenic high-fat diet-induced inflammation, oxidative stress, and fibrosis in the liver; (2) Elovl6 expression is positively correlated with severity of hepatosteatosis and liver injury in NASH patients; and (3) deletion of Elovl6 reduces palmitate-induced activation of the NLR family pyrin domain-containing 3 inflammasome; this could be at least one of the underlying mechanisms by which Elovl6 modulates the progress of NASH. CONCLUSION Hepatic long-chain fatty acid composition is a novel determinant in NASH development, and Elovl6 could be a potential therapeutic target for the prevention and treatment of NASH.
Collapse
Affiliation(s)
- Takashi Matsuzaka
- Department of Endocrinology and Metabolism, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhou AL, Hintze KJ, Jimenez-Flores R, Ward RE. Dietary fat composition influences tissue lipid profile and gene expression in Fischer-344 rats. Lipids 2012; 47:1119-30. [PMID: 23086552 DOI: 10.1007/s11745-012-3729-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022]
Abstract
The AIN-76A diet causes fatty liver in rodents when fed for long periods of time. The aim of this study was to utilize fatty acid analysis and transcriptomics to investigate the effects of different fat sources in the AIN-76A diet on tissue lipid profiles and gene expression in male, weanling Fischer-344 rats. Animals were fed isocaloric diets that differed only in the fat source: (1) corn oil (CO) (2) anhydrous milk fat (AMF), and (3) AMF supplemented with 10% phospholipids from the milk fat globule membrane (AMF-MFGM). There were no differences in food intake, body weight, growth rate, or body fat composition among the groups, and the fatty acid compositions of red blood cells (RBC), plasma, muscle, and visceral adipose tissues reflected the dietary fat sources. Modifying the fat source resulted in 293 genes differentially regulated in skeletal muscle, 1,124 in adipose, and 831 in liver as determined by analysis of variance (ANOVA). Although tissue fatty acid profiles mostly reflected the diet, there were several quantitative differences in lipid classes in the liver and plasma. The AMF diet resulted in the highest level of hepatic triacylglycerols, but the lowest level in plasma. The CO diet resulted in significant accumulation of hepatic unesterified fatty acids and decreased DGAT expression and activity, a potential trigger for steatohepatitis. These results indicate that the fatty acid composition and presence of polar lipids in the AIN-76A diets have significant effects on lipid partitioning, gene expression, and potentially the development of liver pathology.
Collapse
Affiliation(s)
- Albert L Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA
| | | | | | | |
Collapse
|
29
|
Ma K, Jin X, Liang X, Zhao Q, Zhang X. Inflammatory mediators involved in the progression of the metabolic syndrome. Diabetes Metab Res Rev 2012; 28:388-94. [PMID: 22389088 DOI: 10.1002/dmrr.2291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The metabolic syndrome is often associated with type 2 diabetes mellitus, dyslipidemia, atherosclerosis, hypertension, steatosis of the liver and other organs, as well as hypertension, type 2 diabetes mellitus, and atherosclerosis. Recent studies have implicated a number of inflammatory mediators including cytokines, adipokines and eicosanoids in the inflammatory responses that accompany the metabolic syndrome. Measurements of the circulating levels of the inflammatory molecules that accompany this syndrome might provide leads to therapeutic approaches to modulate the inflammatory responses and thereby alter disease progression. In this review, we summarize recent studies on classical and newer inflammatory mediators in the pathogenesis of the metabolic syndrome in humans and experimental models.
Collapse
Affiliation(s)
- Kuifen Ma
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
30
|
Park MY, Jang HH, Kim JB, Yoon HN, Lee JY, Lee YM, Kim JH, Park DS. Hog millet (Panicum miliaceum L.)-supplemented diet ameliorates hyperlipidemia and hepatic lipid accumulation in C57BL/6J-ob/ob mice. Nutr Res Pract 2011; 5:511-9. [PMID: 22259675 PMCID: PMC3259293 DOI: 10.4162/nrp.2011.5.6.511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 01/18/2023] Open
Abstract
Dietary intake of whole grains reduces the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. In an earlier study, we showed that Panicum miliaceum L. extract (PME) exhibited the highest anti-lipogenic activity in 3T3-L1 cells among extracts of nine different cereal grains tested. In this study, we hypothesized that PME in the diet would lead to weight loss and augmentation of hyperlipidemia by regulating fatty acid metabolism. PME was fed to ob/ob mice at 0%, 0.5%, or 1% (w/w) for 4 weeks. After the experimental period, body weight changes, blood serum and lipid profiles, hepatic fatty acid metabolism-related gene expression, and white adipose tissue (WAT) fatty acid composition were determined. We found that the 1% PME diet, but not the 0.5%, effectively decreased body weight, liver weight, and blood triglyceride and total cholesterol levels (P < 0.05) compared to obese ob/ob mice on a normal diet. Hepatic lipogenic-related gene (PPARα, L-FABP, FAS, and SCD1) expression decreased, whereas lipolysis-related gene (CPT1) expression increased in animals fed the 1% PME diet (P < 0.05). Long chain fatty acid content and the ratio of C18:1/C18:0 fatty acids decreased significantly in adipose tissue of animals fed the 1% PME diet (P < 0.05). Serum inflammatory mediators also decreased significantly in animals fed the 1% PME diet compared to those of the ob/ob control group (P < 0.05). These results suggest that PME is useful in the chemoprevention or treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Mi-Young Park
- Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Develpoment Administration, Seodun-dong, Gwonseon-gu, Suwon-si 88-2, Gyeonggi 441-707, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Spite M, Hellmann J, Tang Y, Mathis SP, Kosuri M, Bhatnagar A, Jala VR, Haribabu B. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. THE JOURNAL OF IMMUNOLOGY 2011; 187:1942-9. [PMID: 21742977 DOI: 10.4049/jimmunol.1100196] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chronic inflammation is an underlying factor linking obesity with insulin resistance. Diet-induced obesity promotes an increase in circulating levels of inflammatory monocytes and their infiltration into expanding adipose tissue. Nevertheless, the endogenous pathways that trigger and sustain chronic low-grade inflammation in obesity are incompletely understood. In this study, we report that a high-fat diet selectively increases the circulating levels of CD11b(+) monocytes in wild-type mice that express leukotriene B(4) receptor, BLT-1, and that this increase is abolished in BLT-1-null mice. The accumulation of classically activated (M1) adipose tissue macrophages (ATMs) and the expression of proinflammatory cytokines and chemokines (i.e., IL-6 and Ccl2) was largely blunted in adipose tissue of obese BLT-1(-/-) mice, whereas the ratio of alternatively activated (M2) ATMs to M1 ATMs was increased. Obese BLT-1(-/-) mice were protected from systemic glucose and insulin intolerance and this was associated with a decrease in inflammation in adipose tissue and liver and a decrease in hepatic triglyceride accumulation. Deletion of BLT-1 prevented high fat-induced loss of insulin signaling in liver and skeletal muscle. These observations elucidate a novel role of chemoattractant receptor, BLT-1, in promoting monocyte trafficking to adipose tissue and promoting chronic inflammation in obesity and could lead to the identification of new therapeutic targets for treating insulin resistance in obesity.
Collapse
Affiliation(s)
- Matthew Spite
- Division of Cardiovascular Medicine, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adipose tissue of sucrose-induced obese rats. J Physiol Biochem 2011; 67:595-604. [PMID: 21695545 DOI: 10.1007/s13105-011-0106-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 06/08/2011] [Indexed: 01/13/2023]
Abstract
The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn-canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn-canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.
Collapse
|
33
|
Amacher DE. The mechanistic basis for the induction of hepatic steatosis by xenobiotics. Expert Opin Drug Metab Toxicol 2011; 7:949-65. [PMID: 21510823 DOI: 10.1517/17425255.2011.577740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Hepatic steatosis is the histological observation of numerous lipid inclusions due to an excess accumulation of triacylglycerols. They are a concern with new therapeutic candidates because they signify altered lipid metabolism that can progress to more serious liver toxicity. AREAS COVERED This article is based on an article search using the PubMed database from 1987 to 2011 and confirms associations for several previously marketed drugs with four basic hepatocellular mechanisms. The article also describes how these mechanisms are controlled by master regulators of lipid metabolism, which include gene transcription factors, nuclear receptors, hormonal signaling, energy sensing proteins, endoplasmic reticulum stress signaling and certain key metabolic intermediates. EXPERT OPINION Drug-induced hepatic steatosis is typically not detectable by conventional means other than invasive histological examinations. By understanding the basic mechanisms, key regulators and energy signaling systems of the liver, the investigator is better equipped to avoid xenobiotics with steatogenic potential in the drug discovery or early development process. There are now a number of methods for detecting this potential, specifically gene expression or metabolomic profiling and pathway analysis or mechanism-based in vitro systems.
Collapse
|
34
|
Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV, Pickel J, Makriyannis A, Kunos G. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 2010; 120:2953-66. [PMID: 20664173 PMCID: PMC2912197 DOI: 10.1172/jci42551] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Obesity and its metabolic consequences are a major public health concern worldwide. Obesity is associated with overactivity of the endocannabinoid system, which is involved in the regulation of appetite, lipogenesis, and insulin resistance. Cannabinoid-1 receptor (CB1R) antagonists reduce body weight and improve cardiometabolic abnormalities in experimental and human obesity, but their therapeutic potential is limited by neuropsychiatric side effects. Here we have demonstrated that a CB1R neutral antagonist largely restricted to the periphery does not affect behavioral responses mediated by CB1R in the brains of mice with genetic or diet-induced obesity, but it does cause weight-independent improvements in glucose homeostasis, fatty liver, and plasma lipid profile. These effects were due to blockade of CB1R in peripheral tissues, including the liver, as verified through the use of CB1R-deficient mice with or without transgenic expression of CB1R in the liver. These results suggest that targeting peripheral CB1R has therapeutic potential for alleviating cardiometabolic risk in obese patients.
Collapse
Affiliation(s)
- Joseph Tam
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - V. Kiran Vemuri
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Shinobu Ohnuma
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V. Ambudkar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - James Pickel
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandros Makriyannis
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Protection from hepatic lipid accumulation and inflammation by genetic ablation of 5-lipoxygenase. Prostaglandins Other Lipid Mediat 2010; 92:54-61. [PMID: 20227514 DOI: 10.1016/j.prostaglandins.2010.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 02/06/2023]
Abstract
Five-lipoxygenase (5-LO) has been postulated as a pathogenic factor in liver injury. Indeed, Alox5, the gene coding for 5-LO, is heavily over-expressed in experimental liver disease, in which 5-LO inhibition consistently ameliorates hepatic steatosis, inflammation and fibrosis. Herein, we report the findings in mice with targeted deletion of Alox5 as a proof of concept of the role of 5-LO in liver injury. Our findings demonstrate that ablation of Alox5 in mice confers protection against carbon tetrachloride-induced liver injury since hepatic necroinflammation, inflammatory infiltrate, hepatocyte ballooning and serum ALT levels were significantly reduced in Alox5-deficient mice. These mice also showed a lower degree of hepatic steatosis, which affected micro- and macrosteatosis to a similar extent. Moreover, microarray analysis revealed a differential profile of hepatic gene expression in Alox5-deficient mice, with a total of 117 genes differentially expressed in these animals. Functional grouping of these genes revealed that 28 (approximately 24% of total changes) were related to the category of lipid metabolism, including the lipogenic factors Lpin1, C/EBP, Fasn, Acly and Elovl6. Moreover, Ingenuity Pathway Analysis revealed lipid metabolism as the molecular/cellular function most affected by the loss of Alox5. These findings confirm at a genetic level that Alox5 plays a pathogenic role in the response of the liver to injury.
Collapse
|
36
|
Horrillo R, González-Périz A, Martínez-Clemente M, López-Parra M, Ferré N, Titos E, Morán-Salvador E, Deulofeu R, Arroyo V, Clària J. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. THE JOURNAL OF IMMUNOLOGY 2010; 184:3978-87. [PMID: 20207999 DOI: 10.4049/jimmunol.0901355] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of the so-called low-grade inflammatory state is recognized as a critical event in adipose tissue dysfunction, leading to altered secretion of adipokines and free fatty acids (FFAs), insulin resistance, and development of hepatic complications associated with obesity. This study was designed to investigate the potential contribution of the proinflammatory 5-lipoxygenase (5-LO) pathway to adipose tissue inflammation and lipid dysfunction in experimental obesity. Constitutive expression of key components of the 5-LO pathway, as well as leukotriene (LT) receptors, was detected in adipose tissue as well as in adipocyte and stromal vascular fractions. Adipose tissue from obese mice, compared with that from lean mice, exhibited increased 5-LO activating protein (FLAP) expression and LTB(4) levels. Incubation of adipose tissue with 5-LO products resulted in NF-kappaB activation and augmented secretion of proinflammatory adipokines such as MCP-1, IL-6, and TNF-alpha. In addition, LTB(4), but not LTD(4), reduced FFA uptake in primary adipocytes, whereas 5-LO inhibition suppressed isoproterenol-induced adipose tissue lipolysis. In mice with dietary obesity, elevated FLAP expression in adipose tissue was paralleled with macrophage infiltration, increased circulating FFA levels, and hepatic steatosis, phenomena that were reversed by FLAP inhibition with Bay-X-1005. Interestingly, FLAP inhibition induced AMP-activated protein kinase phosphorylation in parallel with decreases in hormone-sensitive lipase activity and the expression and secretion of TNF-alpha and IL-6. Similar effects were observed in differentiated 3T3-L1 adipocytes incubated with either Bay-X-1005 or the selective LTB(4) receptor antagonist U-75302. Taken together, these findings indicate that the 5-LO pathway signals the adipose tissue low-grade inflammatory state and steatogenic potential in experimental obesity.
Collapse
Affiliation(s)
- Raquel Horrillo
- Department of Biochemistry and Molecular Genetics, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Esther Koplowitz Biomedical Research Center, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Martínez-Clemente M, Ferré N, González-Périz A, López-Parra M, Horrillo R, Titos E, Morán-Salvador E, Miquel R, Arroyo V, Funk CD, Clària J. 5-lipoxygenase deficiency reduces hepatic inflammation and tumor necrosis factor alpha-induced hepatocyte damage in hyperlipidemia-prone ApoE-null mice. Hepatology 2010; 51:817-27. [PMID: 20112424 DOI: 10.1002/hep.23463] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED The actual risk factors that drive hepatic inflammation during the transition from steatosis to steatohepatitis are unknown. We recently demonstrated that hyperlipidemia-prone apolipoprotein E-deficient (ApoE(-/-)) mice exhibit hepatic steatosis and increased susceptibility to hepatic inflammation and advanced fibrosis. Because the proinflammatory 5-lipoxygenase (5-LO) pathway was found to be up-regulated in these mice and given that 5-LO deficiency confers cardiovascular protection to ApoE(-/-) mice, we determined the extent to which the absence of 5-LO would alter liver injury in these mice. Compared with ApoE(-/-) mice, which showed expected hepatic steatosis and inflammation, ApoE/5-LO double-deficient (ApoE(-/-)/5-LO(-/-)) mice exhibited reduced hepatic inflammation, macrophage infiltration, tumor necrosis factor alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-18 expression, caspase-3 and nuclear factor-kappaB (NF-kappaB) activities, and serum alanine aminotransferase levels in the absence of changes in hepatic steatosis. The lack of 5-LO produced a remarkable insulin-sensitizing effect in the adipose tissue because peroxisome proliferator-activated receptor gamma, insulin receptor substrate-1, and adiponectin were up-regulated, whereas c-Jun amino-terminal kinase phosphorylation and MCP-1 and IL-6 expression were down-regulated. On the other hand, hepatocytes isolated from ApoE(-/-)/5-LO(-/-) mice were more resistant to TNF-alpha-induced apoptosis. The 5-LO products leukotriene (LT) B(4), LTD(4), and 5-HETE consistently triggered TNF-alpha-induced apoptosis and compromised hepatocyte survival by suppressing NF-kappaB activity in the presence of actinomycin D. Moreover, ApoE(-/-)/5-LO(-/-) mice were protected against sustained high-fat diet (HFD)-induced liver injury and hepatic inflammation, macrophage infiltration and insulin resistance were significantly milder than those of ApoE(-/-) mice. Finally, pharmacological inhibition of 5-LO significantly reduced hepatic inflammatory infiltrate in the HFD and ob/ob models of fatty liver disease. CONCLUSION These combined data indicate that hyperlipidemic mice lacking 5-LO are protected against hepatic inflammatory injury, suggesting that 5-LO is involved in mounting hepatic inflammation in metabolic disease.
Collapse
Affiliation(s)
- Marcos Martínez-Clemente
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, Centro de Investigación Biomédica Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Smedsrød B, Le Couteur D, Ikejima K, Jaeschke H, Kawada N, Naito M, Knolle P, Nagy L, Senoo H, Vidal-Vanaclocha F, Yamaguchi N. Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium. Liver Int 2009; 29:490-501. [PMID: 19210626 DOI: 10.1111/j.1478-3231.2009.01979.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review aims to give an update of the field of the hepatic sinusoid, supported by references to presentations given at the 14th International Symposium on Cells of the Hepatic Sinusoid (ISCHS2008), which was held in Tromsø, Norway, August 31-September 4, 2008. The subtitle of the symposium, 'Integrating basic and clinical hepatology', signified the inclusion of both basal and applied clinical results of importance in the field of liver sinusoidal physiology and pathophysiology. Of nearly 50 oral presentations, nine were invited tutorial lectures. The authors of the review have avoided writing a 'flat summary' of the presentations given at ISCHS2008, and instead focused on important novel information. The tutorial presentations have served as a particularly important basis in the preparation of this update. In this review, we have also included references to recent literature that may not have been covered by the ISCHS2008 programme. The sections of this review reflect the scientific programme of the symposium (http://www.ub.uit.no/munin/bitstream/10037/1654/1/book.pdf): 1. Liver sinusoidal endothelial cells. 2. Kupffer cells. 3. Hepatic stellate cells. 4. Immunology. 5. Tumor/metastasis. Symposium abstracts are referred to by a number preceded by the letter A.
Collapse
Affiliation(s)
- Bård Smedsrød
- Department of Cell Biology and Histology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
González-Périz A, Horrillo R, Ferré N, Gronert K, Dong B, Morán-Salvador E, Titos E, Martínez-Clemente M, López-Parra M, Arroyo V, Clària J. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 2009; 23:1946-57. [PMID: 19211925 DOI: 10.1096/fj.08-125674] [Citation(s) in RCA: 444] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Omega-3-polyunsaturated fatty acids (omega-3-PUFAs) have well-documented protective effects that are attributed not only to eicosanoid inhibition but also to the formation of novel biologically active lipid mediators (i.e., resolvins and protectins). In this study, we examined their effects on ob/ob mice, an obesity model of insulin resistance and fatty liver disease. Dietary intake of omega-3-PUFAs had insulin-sensitizing actions in adipose tissue and liver and improved insulin tolerance in obese mice. Genes involved in insulin sensitivity (PPARgamma), glucose transport (GLUT-2/GLUT-4), and insulin receptor signaling (IRS-1/IRS-2) were up-regulated by omega-3-PUFAs. Moreover, omega-3-PUFAs increased adiponectin, an anti-inflammatory and insulin-sensitizing adipokine, and induced AMPK phosphorylation, a fuel-sensing enzyme and a gatekeeper of the energy balance. Concomitantly, hepatic steatosis was alleviated by omega-3-PUFAs. A lipidomic analysis with liquid chromatography/mass spectrometry/mass spectrometry revealed that omega-3-PUFAs inhibited the formation of omega-6-PUFA-derived eicosanoids, while triggering the formation of omega-3-PUFA-derived resolvins and protectins. Moreover, representative members of these lipid mediators, namely resolvin E1 and protectin D1, mimicked the insulin-sensitizing and antisteatotic effects of omega-3-PUFAs and induced adiponectin expression to a similar extent that of rosiglitazone, a member of the thiazolidinedione family of antidiabetic drugs. Taken together, these findings uncover beneficial actions of omega-3-PUFAs and their bioactive lipid autacoids in preventing obesity-induced insulin resistance and hepatic steatosis.
Collapse
Affiliation(s)
- Ana González-Périz
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 2008; 60:311-57. [PMID: 18922966 DOI: 10.1124/pr.108.00001] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Steatosis of the liver may arise from a variety of conditions, but the molecular basis for lipid droplet formation is poorly understood. Although a certain amount of lipid storage may even be hepatoprotective, prolonged lipid storage can result in an activation of inflammatory reactions and loss of metabolic competency. Apart from drug-induced steatosis, certain metabolic disorders associated with obesity, insulin resistance, and hyperlipidemia give also rise to nonalcoholic fatty liver diseases (NAFLD). It is noteworthy that advanced stages of nonalcoholic hepatic steatosis and steatohepatitis (NASH) result ultimately in fibrosis and cirrhosis. In this regard, the lipid droplets (LDs) have been discovered to be metabolically highly active structures that play major roles in lipid transport, sorting, and signaling cascades. In particular, LDs maintain a dynamic communication with the endoplasmic reticulum (ER) and the plasma membrane via sphingolipid-enriched domains of the plasma membrane-the lipid rafts. These microdomains frequently harbor receptor tyrosine kinases and other signaling molecules and connect extracellular events with intracellular signaling cascades. Here, we review recent knowledge on the molecular mechanisms of drug and metabolically induced hepatic steatosis and its progression to steatohepatitis (NASH). The contribution of cytokines and other signaling molecules, as well as activity of nuclear receptors, lipids, transcription factors, and endocrine mediators toward cellular dysfunction and progression of steatotic liver disease to NASH is specifically addressed, as is the cross-talk of different cell types in the pathogenesis of NAFLD. Furthermore, we provide an overview of recent therapeutic approaches in NASH therapy and discuss new as well as putative targets for pharmacological interventions.
Collapse
Affiliation(s)
- Nora Anderson
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | |
Collapse
|