1
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Kumari D, Fisher EA, Brodsky JL. Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis. Mol Biol Cell 2021; 33:ar15. [PMID: 34910568 PMCID: PMC9236142 DOI: 10.1091/mbc.e21-09-0436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apolipoprotein B (ApoB) is the primary component of atherogenic lipoproteins, which transport serum fats and cholesterol. Therefore, elevated levels of circulating ApoB are a primary risk factor for cardiovascular disease. During ApoB biosynthesis in the liver and small intestine under nutrient-rich conditions, ApoB cotranslationally translocates into the endoplasmic reticulum (ER) and is lipidated and ultimately secreted. Under lipid-poor conditions, ApoB is targeted for ER Associated Degradation (ERAD). Although prior work identified select chaperones that regulate ApoB biogenesis, the contributions of cytoplasmic Hsp40s are undefined. To this end, we screened ApoB-expressing yeast and determined that a class A ER-associated Hsp40, Ydj1, associates with and facilitates the ERAD of ApoB. Consistent with these results, a homologous Hsp40, DNAJA1, functioned similarly in rat hepatoma cells. DNAJA1 deficient cells also secreted hyperlipidated lipoproteins, in accordance with attenuated ERAD. In contrast to the role of DNAJA1 during ERAD, DNAJB1-a class B Hsp40-helped stabilize ApoB. Depletion of DNAJA1 and DNAJB1 also led to opposing effects on ApoB ubiquitination. These data represent the first example in which different Hsp40s exhibit disparate effects during regulated protein biogenesis in the ER, and highlight distinct roles that chaperones can play on a single ERAD substrate.
Collapse
Affiliation(s)
- Deepa Kumari
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, Fifth & Ruskin Ave, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
3
|
Wang B, Zhu Y, Yu C, Zhang C, Tang Q, Huang H, Zhao Z. Hepatitis C virus induces oxidation and degradation of apolipoprotein B to enhance lipid accumulation and promote viral production. PLoS Pathog 2021; 17:e1009889. [PMID: 34492079 PMCID: PMC8448335 DOI: 10.1371/journal.ppat.1009889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/17/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection induces the degradation and decreases the secretion of apolipoprotein B (ApoB). Impaired production and secretion of ApoB-containing lipoprotein is associated with an increase in hepatic steatosis. Therefore, HCV infection-induced degradation of ApoB may contribute to hepatic steatosis and decreased lipoprotein secretion, but the mechanism of HCV infection-induced ApoB degradation has not been completely elucidated. In this study, we found that the ApoB level in HCV-infected cells was regulated by proteasome-associated degradation but not autophagic degradation. ApoB was degraded by the 20S proteasome in a ubiquitin-independent manner. HCV induced the oxidation of ApoB via oxidative stress, and oxidized ApoB was recognized by the PSMA5 and PSMA6 subunits of the 20S proteasome for degradation. Further study showed that ApoB was degraded at endoplasmic reticulum (ER)-associated lipid droplets (LDs) and that the retrotranslocation and degradation of ApoB required Derlin-1 but not gp78 or p97. Moreover, we found that knockdown of ApoB before infection increased the cellular lipid content and enhanced HCV assembly. Overexpression of ApoB-50 inhibited lipid accumulation and repressed viral assembly in HCV-infected cells. Our study reveals a novel mechanism of ApoB degradation and lipid accumulation during HCV infection and might suggest new therapeutic strategies for hepatic steatosis. Hepatitis C virus (HCV) infection induces the degradation of apolipoprotein B (ApoB), which is the primary apolipoprotein in low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Impaired production and secretion of ApoB-containing lipoprotein is associated with an increase in hepatic steatosis. Thus, ApoB degradation might contribute to HCV infection-induced fatty liver. Here, we found that ApoB was not degraded through endoplasmic reticulum-associated degradation (ERAD) or autophagy, as reported previously. Instead, HCV infection induced ApoB oxidation through oxidative stress, and oxidatively damaged ApoB could be recognized and directly degraded by the 20S proteasome. We also found that ApoB was retrotranslocated from the endoplasmic reticulum (ER) to lipid droplets (LDs) for degradation. Through overexpression of ApoB-50, which can mediate the assembly and secretion of LDL and VLDL, we confirmed that ApoB degradation contributed to hepatocellular lipid accumulation induced by HCV infection. Additionally, expression of ApoB-50 impaired HCV production due to the observed decrease in lipid accumulation. In this study, we identified new mechanisms of ApoB degradation and HCV-induced lipid accumulation, and our findings might facilitate the development of novel therapeutic strategies for HCV infection-induced fatty liver.
Collapse
Affiliation(s)
- Bei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congci Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chongyang Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Tang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - He Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Single symbiotic cell transcriptome sequencing of coral. Genomics 2020; 112:5305-5312. [DOI: 10.1016/j.ygeno.2020.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
|
5
|
Ubiquitination of disease-causing CFTR variants in a microsome-based assay. Anal Biochem 2020; 604:113829. [PMID: 32621804 DOI: 10.1016/j.ab.2020.113829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Soluble secreted proteins and membrane proteins are subjected to protein quality control pathways during their synthesis in the endoplasmic reticulum (ER) and delivery to other destinations. Foremost among these quality control pathways is the selection of misfolded proteins for ER-associated degradation (ERAD). A growing number of diseases, including Cystic Fibrosis, are linked to the ERAD pathway. In most cases, a membrane protein known as the Cystic Fibrosis Transmembrane Conductance Regulator, or CFTR, is prematurely degraded by ERAD. Cell-based assays and in vitro studies have elucidated factors required for the recognition and degradation of CFTR, yet mechanistic details on how these factors target specific disease-causing variants is limited. Given the possibility that variants might exhibit unique susceptibilities to ubiquitin modification, which is required for proteasome-mediated degradation, we devised an assay that recapitulates this event. Here, we demonstrate that ER-enriched membranes from transfected human cells support CFTR ubiquitination when combined with radiolabeled ubiquitin and isolated enzymes in the ubiquitination cascade. We also show that select disease-causing variants are ubiquitinated more extensively than wild-type channels and to varying degrees. Our system provides a platform to examine how other purified factors impact CFTR ubiquitination and the ubiquitination of additional disease-associated membrane proteins.
Collapse
|
6
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
7
|
Joshi V, Upadhyay A, Kumar A, Mishra A. Gp78 E3 Ubiquitin Ligase: Essential Functions and Contributions in Proteostasis. Front Cell Neurosci 2017; 11:259. [PMID: 28890687 PMCID: PMC5575403 DOI: 10.3389/fncel.2017.00259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 11/26/2022] Open
Abstract
As per the requirement of metabolism and fitness, normal cellular functions are controlled by several proteins, and their interactive molecular and signaling events at multiple levels. Protein quality control (PQC) mechanisms ensure the correct folding and proper utilization of these proteins to avoid their misfolding and aggregation. To maintain the optimum environment of complex proteome PQC system employs various E3 ubiquitin ligases for the selective degradation of aberrant proteins. Glycoprotein 78 (Gp78) is an E3 ubiquitin ligase that prevents multifactorial deleterious accumulation of different misfolded proteins via endoplasmic reticulum-associated degradation (ERAD). However, the precise role of Gp78 under stress conditions to avoid bulk misfolded aggregation is unclear, which can act as a crucial resource to establish the dynamic nature of the proteome. Present article systematically explains the detailed molecular characterization of Gp78 and also addresses its various cellular physiological functions, which could be crucial to achieving protein homeostasis. Here, we comprehensively represent the current findings of Gp78, which shows its PQC roles in different physiological functions and diseases; and thereby propose novel opportunities to better understand the unsolved questions for therapeutic interventions linked with different protein misfolding disorders.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology IndoreIndore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
8
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
9
|
Zhang J, Zamani M, Thiele C, Taher J, Amir Alipour M, Yao Z, Adeli K. AUP1 (Ancient Ubiquitous Protein 1) Is a Key Determinant of Hepatic Very-Low-Density Lipoprotein Assembly and Secretion. Arterioscler Thromb Vasc Biol 2017; 37:633-642. [PMID: 28183703 DOI: 10.1161/atvbaha.117.309000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE AUP1 (ancient ubiquitous protein 1) is an endoplasmic reticulum-associated protein that also localizes to the surface of lipid droplets (LDs), with dual role in protein quality control and LD regulation. Here, we investigated the role of AUP1 in hepatic lipid mobilization and demonstrate critical roles in intracellular biogenesis of apoB100 (apolipoprotein B-100), LD mobilization, and very-low-density lipoprotein (VLDL) assembly and secretion. APPROACH AND RESULTS: siRNA (short/small interfering RNA) knockdown of AUP1 significantly increased secretion of VLDL-sized apoB100-containing particles from HepG2 cells, correcting a key metabolic defect in these cells that normally do not secrete much VLDL. Secreted particles contained higher levels of metabolically labeled triglyceride, and AUP1-deficient cells displayed a larger average size of LDs, suggesting a role for AUP1 in lipid mobilization. Importantly, AUP1 was also found to directly interact with apoB100, and this interaction was enhanced with proteasomal inhibition. Knockdown of AUP1 reduced apoB100 ubiquitination, decreased intracellular degradation of newly synthesized apoB100, and enhanced extracellular apoB100 secretion. Interestingly, the stimulatory effect of AUP1 knockdown on VLDL assembly was reminiscent of the effect previously observed after MEK-ERK (mitogen-activated protein kinase kinase-extracellular signal-regulated kinase) inhibition; however, further studies indicated that the AUP1 effect was independent of MEK-ERK signaling. CONCLUSIONS In summary, our findings reveal an important role for AUP1 as a regulator of apoB100 stability, hepatic LD metabolism, and intracellular lipidation of VLDL particles. AUP1 may be a crucial factor in apoB100 quality control, determining the rate at which apoB100 is degraded or lipidated to enable VLDL particle assembly and secretion.
Collapse
Affiliation(s)
- Jing Zhang
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Mostafa Zamani
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Christoph Thiele
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Jennifer Taher
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Mohsen Amir Alipour
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Zemin Yao
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Khosrow Adeli
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.).
| |
Collapse
|
10
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
11
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
12
|
Fryer LGD, Jones B, Duncan EJ, Hutchison CE, Ozkan T, Williams PA, Alder O, Nieuwdorp M, Townley AK, Mensenkamp AR, Stephens DJ, Dallinga-Thie GM, Shoulders CC. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis. J Biol Chem 2013; 289:4244-61. [PMID: 24338480 PMCID: PMC3924288 DOI: 10.1074/jbc.m113.479980] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions.
Collapse
Affiliation(s)
- Lee G D Fryer
- From the Endocrinology Centre, William Harvey Research Institute, Queen Mary University of London and Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rutledge AC, Qiu W, Zhang R, Urade R, Adeli K. Role of cysteine-protease CGHC motifs of ER-60, a protein disulfide isomerase, in hepatic apolipoprotein B100 degradation. Arch Biochem Biophys 2013; 537:104-12. [PMID: 23827315 DOI: 10.1016/j.abb.2013.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/30/2022]
Abstract
Apolipoprotein B100 (apoB), the structural component of very low density lipoproteins (VLDL), is susceptible to misfolding and subsequent degradation by several intracellular pathways. ER-60, which has been implicated in apoB degradation, is a protein disulfide isomerase (PDI) that forms or rearranges disulfide bonds in substrate proteins and also possesses cysteine protease activity. To determine which ER-60 function is important for apoB degradation, adenoviruses encoding wild-type human ER-60 or a mutant form of human ER-60 (C60A, C409A) that lacked cysteine protease activity were overexpressed in HepG2 cells. Overexpression of wild-type ER-60 in HepG2 cells promoted apoB degradation and impaired apoB secretion, but mutant ER-60 overexpression did not. In McArdle RH-7777 cells, VLDL secretion was markedly inhibited following overexpression of wild-type but not mutant ER-60, an effect that could be blocked by oleate treatment. Mutant ER-60 was not trapped on apoB as it was with the control substrate tapasin, suggesting that ER-60's role in apoB degradation is likely unrelated to its protein disulfide isomerase activity. Thus, ER-60 may participate in apoB degradation by acting as a cysteine protease. We postulate that apoB cleavage by ER-60 within the ER lumen could facilitate proteasomal degradation of the C-terminus of translocationally-arrested apoB.
Collapse
Affiliation(s)
- Angela C Rutledge
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Rubenstein EM, Kreft SG, Greenblatt W, Swanson R, Hochstrasser M. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. ACTA ACUST UNITED AC 2012; 197:761-73. [PMID: 22689655 PMCID: PMC3373407 DOI: 10.1083/jcb.201203061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hrd1 ubiquitin ligase plays a role in quality control of two substrates associated with the Sec61 translocon. Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.
Collapse
Affiliation(s)
- Eric M Rubenstein
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
15
|
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012; 32:2104-12. [PMID: 22796579 DOI: 10.1161/atvbaha.111.241463] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin plays a central role in regulating energy metabolism, including hepatic transport of very low-density lipoprotein (VLDL)-associated triglyceride. Hepatic hypersecretion of VLDL and consequent hypertriglyceridemia leads to lower circulating high-density lipoprotein levels and generation of small dense low-density lipoproteins characteristic of the dyslipidemia commonly observed in metabolic syndrome and type 2 diabetes mellitus. Physiological fluctuations of insulin modulate VLDL secretion, and insulin inhibition of VLDL secretion upon feeding may be the first pathway to become resistant in obesity that leads to VLDL hypersecretion. This review summarizes the role of insulin-related signaling pathways that determine hepatic VLDL production. Disruption in signaling pathways that reduce generation of the second messenger phosphatidylinositide (3,4,5) triphosphate downstream of activated phosphatidylinositide 3-kinase underlies the development of VLDL hypersecretion. As insulin resistance progresses, a number of pathways are altered that further augment VLDL hypersecretion, including hepatic inflammatory pathways. Insulin plays a complex role in regulating glucose metabolism, and it is not surprising that the role of insulin in VLDL and lipid metabolism will prove equally complex.
Collapse
Affiliation(s)
- Janet D Sparks
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine, Rochester, NY, USA
| | | | | |
Collapse
|
16
|
Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T, Hashimoto H, Taniguchi H, Fujimoto T. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 2012; 23:800-10. [PMID: 22238364 PMCID: PMC3290640 DOI: 10.1091/mbc.e11-11-0950] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein B-100 after lipidation is dislocated from the ER lumen to the cytoplasmic surface of lipid droplets for proteasomal degradation. UBXD8 in lipid droplets and Derlin-1 in the ER membrane interact with each other and with ApoB and are engaged in the pre- and postdislocation steps, respectively. Apolipoprotein B-100 (ApoB) is the principal component of very low density lipoprotein. Poorly lipidated nascent ApoB is extracted from the Sec61 translocon and degraded by proteasomes. ApoB lipidated in the endoplasmic reticulum (ER) lumen is also subjected to proteasomal degradation, but where and how it dislocates to the cytoplasm remain unknown. In the present study, we demonstrate that ApoB after lipidation is dislocated to the cytoplasmic surface of lipid droplets (LDs) and accumulates as ubiquitinated ApoB in Huh7 cells. Depletion of UBXD8, which is almost confined to LDs in this cell type, decreases recruitment of p97 to LDs and causes an increase of both ubiquitinated ApoB on the LD surface and lipidated ApoB in the ER lumen. In contrast, abrogation of Derlin-1 function induces an accumulation of lipidated ApoB in the ER lumen but does not increase ubiquitinated ApoB on the LD surface. UBXD8 and Derlin-1 bind with each other and with lipidated ApoB and show colocalization around LDs. These results indicate that ApoB after lipidation is dislocated from the ER lumen to the LD surface for proteasomal degradation and that Derlin-1 and UBXD8 are engaged in the predislocation and postdislocation steps, respectively.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Grubb S, Guo L, Fisher EA, Brodsky JL. Protein disulfide isomerases contribute differentially to the endoplasmic reticulum-associated degradation of apolipoprotein B and other substrates. Mol Biol Cell 2011; 23:520-32. [PMID: 22190736 PMCID: PMC3279382 DOI: 10.1091/mbc.e11-08-0704] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ER-associated degradation (ERAD) rids the early secretory pathway of misfolded or misprocessed proteins. Some members of the protein disulfide isomerase (PDI) family appear to facilitate ERAD substrate selection and retrotranslocation, but a thorough characterization of PDIs during the degradation of diverse substrates has not been undertaken, in part because there are 20 PDI family members in mammals. PDIs can also exhibit disulfide redox, isomerization, and/or chaperone activity, but which of these activities is required for the ERAD of different substrate classes is unknown. We therefore examined the fates of unique substrates in yeast, which expresses five PDIs. Through the use of a yeast expression system for apolipoprotein B (ApoB), which is disulfide rich, we discovered that Pdi1 interacts with ApoB and facilitates degradation through its chaperone activity. In contrast, Pdi1's redox activity was required for the ERAD of CPY* (a misfolded version of carboxypeptidase Y that has five disulfide bonds). The ERAD of another substrate, the alpha subunit of the epithelial sodium channel, was Pdi1 independent. Distinct effects of mammalian PDI homologues on ApoB degradation were then observed in hepatic cells. These data indicate that PDIs contribute to the ERAD of proteins through different mechanisms and that PDI diversity is critical to recognize the spectrum of potential ERAD substrates.
Collapse
Affiliation(s)
- Sarah Grubb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
18
|
Xiao C, Hsieh J, Adeli K, Lewis GF. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 2011; 301:E429-46. [PMID: 21693689 DOI: 10.1152/ajpendo.00178.2011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver and intestine have complementary and coordinated roles in lipoprotein metabolism. Despite their highly specialized functions, assembly and secretion of triglyceride-rich lipoproteins (TRL; apoB-100-containing VLDL in the liver and apoB-48-containing chylomicrons in the intestine) are regulated by many of the same hormonal, inflammatory, nutritional, and metabolic factors. Furthermore, lipoprotein metabolism in these two organs may be affected in a similar fashion by certain disorders. In insulin resistance, for example, overproduction of TRL by both liver and intestine is a prominent component of and underlies other features of a complex dyslipidemia and increased risk of atherosclerosis. The intestine is gaining increasing recognition for its importance in affecting whole body lipid homeostasis, in part through its interaction with the liver. This review aims to integrate recent advances in our understanding of these processes and attempts to provide insight into the factors that coordinate lipid homeostasis in these two organs in health and disease.
Collapse
|
19
|
Fisher EA, Khanna NA, McLeod RS. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J Lipid Res 2011; 52:1170-1180. [PMID: 21421992 DOI: 10.1194/jlr.m011726] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein B-100 (apoB-100) is degraded by endoplasmic reticulum-associated degradation (ERAD) when lipid availability limits assembly of VLDLs. The ubiquitin ligase gp78 and the AAA-ATPase p97 have been implicated in the proteasomal degradation of apoB-100. To study the relationship between ERAD and VLDL assembly, we used small interfering RNA (siRNA) to reduce gp78 expression in HepG2 cells. Reduction of gp78 decreased apoB-100 ubiquitination and cytosolic apoB-ubiquitin conjugates. Radiolabeling studies revealed that gp78 knockdown increased secretion of newly synthesized apoB-100 and, unexpectedly, enhanced VLDL assembly, as the shift in apoB-100 density in gp78-reduced cells was accompanied by increased triacylglycerol (TG) secretion. To explore the mechanisms by which gp78 reduction might enhance VLDL assembly, we compared the effects of gp78 knockdown with those of U0126, a mitogen-activated protein kinase/ERK kinase1/2 inhibitor that enhances apoB-100 secretion in HepG2 cells. U0126 treatment increased secretion of both apoB100 and TG and decreased the ubiquitination and cellular accumu-lation of apoB-100. Furthermore, p97 knockdown caused apoB-100 to accumulate in the cell, but if gp78 was concomitantly reduced or assembly was enhanced by U0126 treatment, cellular apoB-100 returned toward baseline. This indicates that ubiquitination commits apoB-100 to p97-mediated retrotranslocation during ERAD. Thus, decreasing ubiquitination of apoB-100 enhances VLDL assembly, whereas improving apoB-100 lipidation decreases its ubiquitination, suggesting that ubiquitination has a regulatory role in VLDL assembly.
Collapse
Affiliation(s)
- Eric A Fisher
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Neeraj A Khanna
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Roger S McLeod
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5.
| |
Collapse
|
20
|
Derlin-2-deficient mice reveal an essential role for protein dislocation in chondrocytes. Mol Cell Biol 2011; 31:1145-59. [PMID: 21220515 DOI: 10.1128/mcb.00967-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein quality control is a balance between chaperone-assisted folding and removal of misfolded proteins from the endoplasmic reticulum (ER). Cell-based assays have been used to identify key players of the dislocation machinery, including members of the Derlin family. We generated conditional knockout mice to examine the in vivo role of Derlin-2, a component that nucleates cellular dislocation machinery. In most Derlin-2-deficient tissues, we found constitutive upregulation of ER chaperones and IRE-1-mediated induction of the unfolded protein response. The IRE-1/XBP-1 pathway is required for development of highly secretory cells, particularly plasma cells and hepatocytes. However, B lymphocyte development and antibody secretion were normal in the absence of Derlin-2. Likewise, hepatocyte function was unaffected by liver-specific deletion of Derlin-2. Whole-body deletion of Derlin-2 results in perinatal death. The few mice that survived to adulthood all developed skeletal dysplasia, likely caused by defects in collagen matrix protein secretion by costal chondrocytes.
Collapse
|
21
|
Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins. J Biomed Biotechnol 2010; 2010:648501. [PMID: 20508850 PMCID: PMC2874991 DOI: 10.1155/2010/648501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/25/2010] [Indexed: 12/13/2022] Open
Abstract
Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.
Collapse
|
22
|
Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assemblyThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:251-67. [DOI: 10.1139/o09-168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein B100 (apoB) is a large amphipathic lipid-binding protein that is synthesized by hepatocytes and used to assemble and stabilize very low density lipoproteins (VLDL). It may have been derived through evolution from other lipid-associating proteins such as microsomal triglyceride transfer protein or vitellogenin. The correct folding of apoB requires assistance from chaperone proteins in co-translational lipidation, disulfide bond formation, and glycosylation. Any impairment in these processes results in co-translational targeting of the misfolded apoB molecule for proteasomal degradation. In fact, most of the regulation of apoB production is mediated by intracellular degradation. ApoB that misfolds post-translationally, perhaps as a result of oxidative stress, may be eliminated through autophagy. This review focuses on the proposed pentapartite domain structure of apoB, the role that each domain plays in the binding of lipid species and regulation of apoB synthesis, and the process of VLDL assembly. The factors involved in the recognition, ubiquitination, and proteasomal delivery of defective apoB molecules are also discussed.
Collapse
Affiliation(s)
- Angela C. Rutledge
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiaozhu Su
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
23
|
Rutledge AC, Qiu W, Zhang R, Kohen-Avramoglu R, Nemat-Gorgani N, Adeli K. Mechanisms Targeting Apolipoprotein B100 to Proteasomal Degradation. Arterioscler Thromb Vasc Biol 2009; 29:579-85. [DOI: 10.1161/atvbaha.108.181859] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives—
In lipid-poor states, the ubiquitin-proteasomal pathway rapidly degrades misfolded apolipoprotein B100 (apoB) cotranslationally, although the mechanism of delivery from the ER to cytosolic proteasomes is poorly understood. Here we demonstrate key roles of BiP, an ER luminal chaperone, and p97, a cytosolic ATPase anchored to the ER membrane, in the targeting of apoB for proteasomal degradation.
Methods and Results—
Using coimmunoprecipitations, we observed associations of apoB with BiP, p97, Derlin-1, VIMP, and the E3 ubiquitin ligase Hrd1 in HepG2 cells. BiP and p97 were found to bind apoB cotranslationally. Expression of C-terminal truncated apoB molecules in COS-7 cells showed an N-terminal region outside apoB15 and a C-terminal region found in apoB72 were required for BiP and p97 binding, respectively. Interestingly, overexpression of dominant negative p97 demonstrated that the ATPase activity of p97 was essential for proteasomal degradation of apoB but not for apoB binding. However, p97 activity did not appear to affect the N terminus of apoB, which may be cleaved before degradation.
Conclusions—
These data suggest that p97 and BiP play critical roles in the cotranslational delivery of apoB to proteasomes and formation of a degradative complex. Proteasomal degradation appears to selectively target apoB molecules with large C-terminal domains.
Collapse
Affiliation(s)
- Angela C. Rutledge
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Wei Qiu
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Rianna Zhang
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Rita Kohen-Avramoglu
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Nina Nemat-Gorgani
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| | - Khosrow Adeli
- From Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (A.C.R., W.Q., R.Z., R.K-A., N.N.-G., K.A.) and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (A.C.R.)
| |
Collapse
|