1
|
Meriwether D, Sulaiman D, Wagner A, Grijalva V, Kaji I, Williams KJ, Yu L, Fogelman S, Volpe C, Bensinger SJ, Anantharamaiah GM, Shechter I, Fogelman AM, Reddy ST. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res 2016; 57:1175-93. [PMID: 27199144 DOI: 10.1194/jlr.m067025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/28/2023] Open
Abstract
The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol.
Collapse
Affiliation(s)
- David Meriwether
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, CA
| | - Alan Wagner
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Izumi Kaji
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kevin J Williams
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Spencer Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Carmen Volpe
- Division of Laboratory Animal Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven J Bensinger
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ishaiahu Shechter
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
2
|
Douillard FP, Rasinkangas P, Bhattacharjee A, Palva A, de Vos WM. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLoS One 2016; 11:e0153373. [PMID: 27070897 PMCID: PMC4829219 DOI: 10.1371/journal.pone.0153373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.
Collapse
Affiliation(s)
- François P. Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (FPD); (WMdV)
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Bhattacharjee
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- * E-mail: (FPD); (WMdV)
| |
Collapse
|
3
|
Abstract
The concept of lipoprotein mimetics was developed and extensively tested in the last three decades. Most lipoprotein mimetics were designed to recreate one or several functions of high-density lipoprotein (HDL) in the context of cardiovascular disease; however, the application of this approach is much broader. Lipoprotein mimetics should not just be seen as a set of compounds aimed at replenishing a deficiency or dysfunctionality of individual elements of lipoprotein metabolism but rather as a designer concept with remarkable flexibility and numerous applications in medicine and biology. In the present review, we discuss the fundamental design principles used to create lipoprotein mimetics, mechanisms of their action, medical indications and efficacy in animal models and human studies.
Collapse
|
4
|
Wang Q, Ma X, Jia J, Fei H. A peptide-lipid nanoparticle assembly platform with integrated functions for targeted cell delivery. J Mater Chem B 2016; 4:1535-1543. [PMID: 32263120 DOI: 10.1039/c5tb02783g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liposomes are extensively used as drug carriers because of their biocompatibility, low toxicity, and controlled release properties, however challenges exist in the control of their particle size, surface properties and targeting functionality. In this work, we report a peptide-lipid nanoparticle platform that can achieve nanoparticle formation, surface functionalization and hydrophobic drug loading in an integrated assembly process. A designer peptide that harbors bivalent amphipathic α-helices linked by a central loop (ALA peptide) was used to encapsulate lipid nanoparticles (LNPs). The bivalency design affords higher peptide helicity and lipid-packaging efficiency, and allows encapsulated hydrophobic molecules for more stability under long-term storage. The central loop structure displays sufficient surface exposure as demonstrated by the interaction between penta-histidine installed LNPs and Ni-NTA agarose. RGD-inserted and cytotoxic iridium complex-encapsulated LNPs showed preferential entry and selective cytotoxicity to integrin high expression cancer cells, while showing reduced toxicity to non-cancer cells. Further study indicates that a constrained cyclic conformation of RGD is required to fully exert targeting capability, suggesting an intact structural exposure on the LNP surface. In summary, we demonstrate a simple yet effective method of peptide-based LNP surface modification with potential for various targeted deliveries of hydrophobic drugs.
Collapse
Affiliation(s)
- Qiao Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China.
| | | | | | | |
Collapse
|
5
|
Krishack PA, Bhanvadia CV, Lukens J, Sontag TJ, De Beer MC, Getz GS, Reardon CA. Serum Amyloid A Facilitates Early Lesion Development in Ldlr-/- Mice. J Am Heart Assoc 2015; 4:JAHA.115.001858. [PMID: 26187995 PMCID: PMC4608070 DOI: 10.1161/jaha.115.001858] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disorder, and several studies have demonstrated a positive association between plasma serum amyloid A (SAA) levels and cardiovascular disease risk. The aim of the study was to examine whether SAA has a role in atherogenesis, the underlying basis of most cardiovascular disease. METHODS AND RESULTS Mice globally deficient in acute-phase isoforms Saa1 and Saa2 (Saa(-/-)) were crossed to Ldlr(-/-) mice (Saa(-/-)Ldlr(-/-)). Saa(-/-)Ldlr(-/-) mice demonstrated a 31% reduction in lesional area in the ascending aorta but not in the aortic root or innominate artery after consuming a high-fat, high-cholesterol Western-type diet for 6 weeks. The lesions were predominantly macrophage foam cells. The phenotype was lost in more mature lesions in mice fed a Western-type diet for 12 weeks, suggesting that SAA is involved in early lesion development. The decreased atherosclerosis in the Saa(-/-)Ldlr(-/-) mice occurred despite increased levels of blood monocytes and was independent of plasma lipid levels. SAA is produced predominantly by hepatocytes and macrophages. To determine which source of SAA may have a dominant role in lesion development, bone marrow transplantation was performed. Ldlr(-/-) mice that received bone marrow from Saa(-/-)Ldlr(-/-) mice had slightly reduced ascending aorta atherosclerosis compared with Saa(-/-)Ldlr(-/-) mice receiving bone marrow from Ldlr(-/-) mice, indicating that the expression of SAA by macrophages may have an important influence on atherogenesis. CONCLUSIONS The results indicate that SAA produced by macrophages promotes early lesion formation in the ascending aorta.
Collapse
Affiliation(s)
- Paulette A Krishack
- Molecular Pathogenesis and Molecular Medicine Graduate Program, University of Chicago, IL (P.A.K., C.A.R.)
| | - Clarissa V Bhanvadia
- Department of Pathology, University of Chicago, IL (C.V.B., J.L., T.J.S., G.S.G., C.A.R.)
| | - John Lukens
- Department of Pathology, University of Chicago, IL (C.V.B., J.L., T.J.S., G.S.G., C.A.R.)
| | - Timothy J Sontag
- Department of Pathology, University of Chicago, IL (C.V.B., J.L., T.J.S., G.S.G., C.A.R.)
| | - Maria C De Beer
- Graduate Center for Nutritional Science, Saha Cardiovascular Research Center, Lexington, KY (M.C.D.B.) Department of Physiology, University of Kentucky Medical Center, Lexington, KY (M.C.D.B.)
| | - Godfrey S Getz
- Department of Pathology, University of Chicago, IL (C.V.B., J.L., T.J.S., G.S.G., C.A.R.)
| | - Catherine A Reardon
- Molecular Pathogenesis and Molecular Medicine Graduate Program, University of Chicago, IL (P.A.K., C.A.R.) Department of Pathology, University of Chicago, IL (C.V.B., J.L., T.J.S., G.S.G., C.A.R.)
| |
Collapse
|
6
|
White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J Lipid Res 2014; 55:2007-21. [PMID: 25157031 DOI: 10.1194/jlr.r051367] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Divisions of Cardiovascular Disease, Gerontology, Geriatric Medicine University of Alabama at Birmingham, Birmingham, AL
| | - David W Garber
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - G M Anantharamaiah
- Palliative Care, University of Alabama at Birmingham, Birmingham, AL Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Wool GD, Reardon CA, Getz GS. Mimetic peptides of human apoA-I helix 10 get together to lower lipids and ameliorate atherosclerosis: is the action in the gut? J Lipid Res 2014; 55:1983-5. [PMID: 25085258 DOI: 10.1194/jlr.e053538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
8
|
Zhao Y, Black AS, Bonnet DJ, Maryanoff BE, Curtiss LK, Leman LJ, Ghadiri MR. In vivo efficacy of HDL-like nanolipid particles containing multivalent peptide mimetics of apolipoprotein A-I. J Lipid Res 2014; 55:2053-63. [PMID: 24975585 DOI: 10.1194/jlr.m049262] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective. Surprisingly, these nanoparticles were also effective when administered orally at a dose of 75 mg/kg, despite the peptide construct being composed of l-amino acids and being undetectable in the plasma. The orally administered nanoparticles reduced whole aorta lesion areas by 55% and aortic sinus lesion volumes by 71%. Reductions in plasma cholesterol were due to the loss of non-HDL lipoproteins, while plasma HDL-cholesterol levels were increased. At a 10-fold lower oral dose, the nanoparticles were marginally effective in reducing atherosclerotic lesions. Intriguingly, analogous results were obtained with nanolipids of the corresponding monomeric peptide. These nanolipid formulations provide an avenue for developing orally efficacious therapeutic agents to manage atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Audrey S Black
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - David J Bonnet
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Bruce E Maryanoff
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Linda K Curtiss
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Luke J Leman
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - M Reza Ghadiri
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
9
|
|
10
|
Alwaili K, Awan Z, Alshahrani A, Genest J. High-density lipoproteins and cardiovascular disease: 2010 update. Expert Rev Cardiovasc Ther 2014; 8:413-23. [DOI: 10.1586/erc.10.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Leman LJ, Maryanoff BE, Ghadiri MR. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis. J Med Chem 2013; 57:2169-96. [PMID: 24168751 DOI: 10.1021/jm4005847] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.
Collapse
Affiliation(s)
- Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
12
|
Zhao Y, Imura T, Leman LJ, Curtiss LK, Maryanoff BE, Ghadiri MR. Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs. J Am Chem Soc 2013; 135:13414-24. [PMID: 23978057 DOI: 10.1021/ja404714a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe an approach for engineering peptide-lipid nanoparticles that function similarly to high-density lipoprotein (HDL). Branched, multivalent constructs, bearing multiple 23- or 16-amino-acid peptides, were designed, synthesized, and combined with phospholipids to produce nanometer-scale discoidal HDL-like particles. A variety of biophysical techniques were employed to characterize the constructs, including size exclusion chromatography, analytical ultracentrifuge sedimentation, circular dichroism, transmission electron microscopy, and fluorescence spectroscopy. The nanoparticles functioned in vitro (human and mouse plasma) and in vivo (mice) to rapidly remodel large native HDLs into small lipid-poor HDL particles, which are key acceptors of cholesterol in reverse cholesterol transport. Fluorescent labeling studies showed that the constituents of the nanoparticles readily distributed into native HDLs, such that the peptide constructs coexisted with apolipoprotein A-I (apoA-I), the main structural protein in HDLs. Importantly, nanolipid particles containing multivalent peptides promoted efficient cellular cholesterol efflux and were functionally superior to those derived from monomeric apoA-I mimetic peptides. The multivalent peptide-lipid nanoparticles were also remarkably stable toward enzymatic digestion in vitro and displayed long half-lives and desirable pharmacokinetic profiles in mice, providing a real practical advantage over previously studied linear or tandem helical peptides. Encouragingly, a two-week exploratory efficacy study in a widely used animal model for atherosclerosis research (LDLr-null mice) using nanoparticles constructed from a trimeric peptide demonstrated an exceptional 50% reduction in the plasma total cholesterol levels compared to the control group. Altogether, the studies reported here point to an attractive avenue for designing synthetic, HDL-like nanoparticles, with potential for treating atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Department of Chemistry, ‡Department of Immunology and Microbial Science, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
13
|
Ditiatkovski M, D’Souza W, Kesani R, Chin-Dusting J, de Haan JB, Remaley A, Sviridov D. An apolipoprotein A-I mimetic peptide designed with a reductionist approach stimulates reverse cholesterol transport and reduces atherosclerosis in mice. PLoS One 2013; 8:e68802. [PMID: 23874769 PMCID: PMC3706315 DOI: 10.1371/journal.pone.0068802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/01/2013] [Indexed: 01/19/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe(-/-) mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe(-/-) mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe(-/-) mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.
Collapse
Affiliation(s)
| | - Wilissa D’Souza
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Rajitha Kesani
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | | | - Judy B. de Haan
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Alan Remaley
- Lipoprotein Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
- * E-mail:
| |
Collapse
|
14
|
Sviridov DO, Andrianov AM, Anishchenko IV, Stonik JA, Amar MJA, Turner S, Remaley AT. Hydrophobic amino acids in the hinge region of the 5A apolipoprotein mimetic peptide are essential for promoting cholesterol efflux by the ABCA1 transporter. J Pharmacol Exp Ther 2013; 344:50-8. [PMID: 23042953 PMCID: PMC3533411 DOI: 10.1124/jpet.112.198143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/03/2012] [Indexed: 12/17/2022] Open
Abstract
The bihelical apolipoprotein mimetic peptide 5A effluxes cholesterol from cells and reduces inflammation and atherosclerosis in animal models. We investigated how hydrophobic residues in the hinge region between the two helices are important in the structure and function of this peptide. By simulated annealing analysis and molecular dynamics modeling, two hydrophobic amino acids, F-18 and W-21, in the hinge region were predicted to be relatively surface-exposed and to interact with the aqueous solvent. Using a series of 5A peptide analogs in which F-18 or W-21 was changed to either F, W, A, or E, only peptides with hydrophobic amino acids in these two positions were able to readily bind and solubilize phospholipid vesicles. Compared with active peptides containing F or W, peptides containing E in either of these two positions were more than 10-fold less effective in effluxing cholesterol by the ABCA1 transporter. Intravenous injection of 5A in C57BL/6 mice increased plasma-free cholesterol (5A: 89.9 ± 13.6 mg/dl; control: 38.7 ± 4.3 mg/dl (mean ± S.D.); P < 0.05) and triglycerides (5A: 887.0 ± 172.0 mg/dl; control: 108.9 ± 9.9 mg/dl; P < 0.05), whereas the EE peptide containing E in both positions had no effect. Finally, 5A increased cholesterol efflux approximately 2.5-fold in vivo from radiolabeled macrophages, whereas the EE peptide was inactive. These results provide a rationale for future design of therapeutic apolipoprotein mimetic peptides and provide new insights into the interaction of hydrophobic residues on apolipoproteins with phospholipids in the lipid microdomain created by the ABCA1 transporter during the cholesterol efflux process.
Collapse
Affiliation(s)
- Denis O Sviridov
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Xu H, Krolikowski JG, Jones DW, Ge ZD, Pagel PS, Pritchard KA, Weihrauch D. 4F decreases IRF5 expression and activation in hearts of tight skin mice. PLoS One 2012; 7:e52046. [PMID: 23251680 PMCID: PMC3522636 DOI: 10.1371/journal.pone.0052046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/08/2012] [Indexed: 12/21/2022] Open
Abstract
The apoAI mimetic 4F was designed to inhibit atherosclerosis by improving HDL. We reported that treating tight skin (Tsk−/+) mice, a model of systemic sclerosis (SSc), with 4F decreases inflammation and restores angiogenic potential in Tsk−/+ hearts. Interferon regulating factor 5 (IRF5) is important in autoimmunity and apoptosis in immune cells. However, no studies were performed investigating IRF5 in myocardium. We hypothesize that 4F differentially modulates IRF5 expression and activation in Tsk−/+ hearts. Posterior wall thickness was significantly increased in Tsk−/+ compared to C57Bl/6J (control) and Tsk−/+ mice with 4F treatment assessed by echoradiography highlighting reduction of fibrosis in 4F treated Tsk−/+ mice. IRF5 in heart lysates from control and Tsk/+ with and without 4F treatment (sc, 1 mg/kg/d, 6–8 weeks) was determined. Phosphoserine, ubiquitin, ubiquitin K63 on IRF5 were determined on immunoprecipitates of IRF5. Immunofluorescence and TUNEL assays in heart sections were used to determine positive nuclei for IRF5 and apoptosis, respectively. Fluorescence-labeled streptavidin (SA) was used to determine endothelial cell uptake of biotinylated 4F. SA-agarose pulldown and immunoblotting for IRF5 were used to determine 4F binding IRF5 in endothelial cell cytosolic fractions and to confirm biolayer interferometry studies. IRF5 levels in Tsk−/+ hearts were similar to control. 4F treatments decrease IRF5 in Tsk−/+ hearts and decrease phosphoserine and ubiquitin K63 but increase total ubiquitin on IRF5 in Tsk−/+ compared with levels on IRF5 in control hearts. 4F binds IRF5 by mechanisms favoring association over dissociation strong enough to pull down IRF5 from a mixture of endothelial cell cytosolic proteins. IRF5 positive nuclei and apoptotic cells in Tsk−/+ hearts were increased compared with controls. 4F treatments decreased both measurements in Tsk−/+ hearts. IRF5 activation in Tsk−/+ hearts is increased. 4F treatments decrease IRF5 expression and activation in Tsk−/+ hearts by a mechanism related to 4F’s ability to bind IRF5.
Collapse
Affiliation(s)
- Hao Xu
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - John G. Krolikowski
- Division of Anesthesiology, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Deron W. Jones
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Zhi-Dong Ge
- Division of Anesthesiology, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Paul S. Pagel
- The Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| | - Kirkwood A. Pritchard
- Division of Pediatric Surgery, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Dorothée Weihrauch
- Division of Anesthesiology, Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
|
17
|
Nayyar G, Mishra VK, Handattu SP, Palgunachari MN, Shin R, McPherson DT, Deivanayagam CCS, Garber DW, Segrest JP, Anantharamaiah GM. Sidedness of interfacial arginine residues and anti-atherogenicity of apolipoprotein A-I mimetic peptides. J Lipid Res 2012; 53:849-858. [PMID: 22377531 DOI: 10.1194/jlr.m019844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To test the hypothesis that sidedness of interfacial arginine (Arg) in apoA-I mimetic peptides, similar to that observed in apoA-I (Bashtovyy, D. et al. 2011. Sequence conservation of apolipoprotein A-I affords novel insights into HDL structure-function. J. Lipid Res. 52: 435-450.), may be important for biological activity, we compared properties of 4F and analogs, [K⁴,¹⁵>R]4F and [K⁹,¹³>R]4F, with Lys>Arg substitutions on the right and left side, respectively, of the 4F amphipathic helix. Intraperitoneal administration of these peptides into female apoE null mice (n = 13 in each group) reduced en face lesions significantly compared with controls; 4F and [K⁴,¹⁵>R]4F were equally effective whereas [K⁹,¹³>R]4F was less effective. Turnover experiments indicated that [K⁴,¹⁵>R]4F reached the highest, whereas [K⁹,¹³>R]4F had the lowest, plasma peak levels with a similar half life as the [K⁴,¹⁵>R]4F analog. The half life of 4F was two times longer than the other two peptides. The order in their abilities to associate with HDL in human plasma, generation of apoA-I particles with pre-β mobility from isolated HDL, lipid associating ability, and sensitivity of lipid complexes to trypsin digestion was: 4F>[K⁴,¹⁵,>R]4F>[K⁹,¹³>R]4F. These studies support our hypothesis that the sidedness of interfacial Arg residues in the polar face of apoA-I mimetics results in differential biological properties.
Collapse
Affiliation(s)
- Gaurav Nayyar
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Vinod K Mishra
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294.
| | - Shaila P Handattu
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mayakonda N Palgunachari
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ronald Shin
- Department of Biochemistry and Molecular Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David T McPherson
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Champion C S Deivanayagam
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David W Garber
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jere P Segrest
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Biochemistry and Molecular Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - G M Anantharamaiah
- The Atherosclerosis Research Unit, Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Biochemistry and Molecular Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
18
|
Lu SC, Atangan L, Won Kim K, Chen MM, Komorowski R, Chu C, Han J, Hu S, Gu W, Véniant M, Wang M. An apoA-I mimetic peptibody generates HDL-like particles and increases alpha-1 HDL subfraction in mice. J Lipid Res 2012; 53:643-52. [PMID: 22287724 DOI: 10.1194/jlr.m020438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study is to investigate the capability of an apoA-I mimetic with multiple amphipathic helices to form HDL-like particles in vitro and in vivo. To generate multivalent helices and to track the peptide mimetic, we have constructed a peptibody by fusing two tandem repeats of 4F peptide to the C terminus of a murine IgG Fc fragment. The resultant peptidbody, mFc-2X4F, dose-dependently promoted cholesterol efflux in vitro, and the efflux potency was superior to monomeric 4F peptide. Like apoA-I, mFc-2X4F stabilized ABCA1 in J774A.1 and THP1 cells. The peptibody formed larger HDL particles when incubated with cultured cells compared with those by apoA-I. Interestingly, when administered to mice, mFc-2X4F increased both pre-β and α-1 HDL subfractions. The lipid-bound mFc-2X4F was mostly in the α-1 migrating subfraction. Most importantly, mFc-2X4F and apoA-I were found to coexist in the same HDL particles formed in vivo. These data suggest that the apoA-I mimetic peptibody is capable of mimicking apoA-I to generate HDL particles. The peptibody and apoA-I may work cooperatively to generate larger HDL particles in vivo, either at the cholesterol efflux stage and/or via fusion of HDL particles that were generated by the peptibody and apoA-I individually.
Collapse
Affiliation(s)
- Shu-Chen Lu
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen Z, O'Neill EA, Meurer RD, Gagen K, Luell S, Wang SP, Ichetovkin M, Frantz-Wattley B, Eveland S, Strack AM, Fisher TS, Johns DG, Sparrow CP, Wright SD, Hubbard BK, Carballo-Jane E. Reconstituted HDL Elicits Marked Changes in Plasma Lipids Following Single-Dose Injection in C57Bl/6 Mice. J Cardiovasc Pharmacol Ther 2011; 17:315-23. [DOI: 10.1177/1074248411426144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhu Chen
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Edward A. O'Neill
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Roger D. Meurer
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Karen Gagen
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Silvi Luell
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Sheng-Ping Wang
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Marina Ichetovkin
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | | | - Suzanne Eveland
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Alison M. Strack
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Timothy S. Fisher
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Douglas G. Johns
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Carl P. Sparrow
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | | | - Brian K. Hubbard
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Ester Carballo-Jane
- Cardiovascular Diseases, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| |
Collapse
|
20
|
Meriwether D, Imaizumi S, Grijalva V, Hough G, Vakili L, Anantharamaiah GM, Farias-Eisner R, Navab M, Fogelman AM, Reddy ST, Shechter I. Enhancement by LDL of transfer of L-4F and oxidized lipids to HDL in C57BL/6J mice and human plasma. J Lipid Res 2011; 52:1795-809. [PMID: 21804067 DOI: 10.1194/jlr.m016741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The apoA-I mimetic peptide L-4F [(Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) synthesized from all L-amino acids] has shown potential for the treatment of a variety of diseases. Here, we demonstrate that LDL promotes association between L-4F and HDL. A 2- to 3-fold greater association of L-4F with human HDL was observed in the presence of human LDL as compared with HDL by itself. This association further increased when LDL was supplemented with the oxidized lipid 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15HETE). Additionally, L-4F significantly (P = 0.02) promoted the transfer of 15HETE from LDL to HDL. The transfer of L-4F from LDL to HDL was demonstrated both in vitro and in C57BL/6J mice. L-4F, injected into C57BL/6J mice, associated rapidly with HDL and was then cleared quickly from the circulation. Similarly, L-4F loaded onto human HDL and injected into C57BL/6J mice was cleared quickly with T(1/2) = 23.6 min. This was accompanied by a decline in human apoA-I with little or no effect on the mouse apoA-I. Based on these results, we propose that i) LDL promotes the association of L-4F with HDL and ii) in the presence of L-4F, oxidized lipids in LDL are rapidly transferred to HDL allowing these oxidized lipids to be acted upon by HDL-associated enzymes and/or cleared from the circulation.
Collapse
Affiliation(s)
- David Meriwether
- Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zheng Y, Patel AB, Narayanaswami V, Hura GL, Hang B, Bielicki JK. HDL mimetic peptide ATI-5261 forms an oligomeric assembly in solution that dissociates to monomers upon dilution. Biochemistry 2011; 50:4068-76. [PMID: 21476522 PMCID: PMC3100537 DOI: 10.1021/bi2002955] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ATI-5261 is a 26-mer peptide that stimulates cellular cholesterol efflux with high potency. This peptide displays high aqueous solubility, despite having amphipathic α-helix structure and a broad nonpolar surface. These features suggested to us that ATI-5261 may adopt a specific form in solution, having favorable structural characteristics and dynamics. To test this, we subjected ATI-5261 to a series of biophysical studies and correlated self-association with secondary structure and activity. Gel-filtration chromatography and native gel electrophoresis indicated ATI-5261 adopted a discrete self-associated form of low molecular weight at concentrations >1 mg/mL. Formation of a discrete molecular species was verified by small-angle X-ray scattering (SAXS), which further revealed the peptide formed a tetrameric assembly having an elongated shape and hollow central core. This assembly dissociated to individual peptide strands upon dilution to concentrations required for promoting high-affinity cholesterol efflux from cells. Moreover, the α-helical content of ATI-5261 was exceptionally high (74.1 ± 6.8%) regardless of physical form and concentration. Collectively, these results indicate ATI-5261 displays oligomeric behavior generally similar to native apolipoproteins and dissociates to monomers of high α-helical content upon dilution. Optimizing self-association behavior and secondary structure may prove useful for improving the translatability and efficacy of apolipoprotein mimetic peptides.
Collapse
Affiliation(s)
- Ying Zheng
- Life Sciences Division, Lawrence Berkeley National Laboratory, Donner Laboratory, University of California, Berkeley CA 94720
| | - Arti B. Patel
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840
- Children’s Hospital of Oakland Research Institute, Oakland CA 94609
| | - Gregory L. Hura
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bo Hang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Donner Laboratory, University of California, Berkeley CA 94720
| | - John K. Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, Donner Laboratory, University of California, Berkeley CA 94720
| |
Collapse
|
22
|
Beilvert A, Vassy R, Canet-Soulas E, Rousseaux O, Picton L, Letourneur D, Chaubet F. Synthesis and evaluation of a tri-tyrosine decorated dextran MR contrast agent for vulnerable plaque detection. Chem Commun (Camb) 2011; 47:5506-8. [PMID: 21455511 DOI: 10.1039/c1cc10849b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication reports the synthesis, characterization and in vivo evaluation in mice of a new tri-tyrosine conjugated MR contrast agent, which may help to identify vulnerable plaques in atherosclerosis by targeting the lipid core.
Collapse
Affiliation(s)
- Anne Beilvert
- Inserm, U698, Cardiovascular Bio-engineering, CHU X. Bichat, University Paris 7, Paris, F-75877, France
| | | | | | | | | | | | | |
Collapse
|
23
|
ApoA-I mimetic peptides promote pre-β HDL formation in vivo causing remodeling of HDL and triglyceride accumulation at higher dose. Bioorg Med Chem 2010; 18:8669-78. [PMID: 21115285 DOI: 10.1016/j.bmc.2010.09.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/20/2022]
Abstract
Reverse cholesterol transport promoted by HDL-apoA-I is an important mechanism of protection against atherosclerosis. We have previously identified apoA-I mimetic peptides by synthesizing analogs of the 22 amino acid apoA-I consensus sequence (apoA-I(cons)) containing non-natural aliphatic amino acids. Here we examined the effect of different aliphatic non-natural amino acids on the structure-activity relationship (SAR) of apoA-I mimetic peptides. These novel apoA-I mimetics, with long hydrocarbon chain (C(5-8)) amino acids incorporated in the amphipathic α helix of the apoA-I(cons), have the following properties: (i) they stimulate in vitro cholesterol efflux from macrophages via ABCA1; (ii) they associate with HDL and cause formation of pre-β HDL particles when incubated with human and mouse plasma; (iii) they associate with HDL and induce pre-β HDL formation in vivo, with a corresponding increase in ABCA1-dependent cholesterol efflux capacity ex vivo; (iv) at high dose they associate with VLDL and induce hypertriglyceridemia in mice. These results suggest our peptide design confers activities that are potentially anti-atherogenic. However a dosing regimen which maximizes their therapeutic properties while minimizing adverse effects needs to be established.
Collapse
|
24
|
Wool GD, Cabana VG, Lukens J, Shaw PX, Binder CJ, Witztum JL, Reardon CA, Getz GS. 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice. FASEB J 2010; 25:290-300. [PMID: 20876212 DOI: 10.1096/fj.10-165670] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our objective was to contrast the effect of apolipoprotein (apo) A-I mimetic peptides, such as 4F and 4F-Pro-4F (Pro), on nascent and mature atherosclerotic lesions and on levels of antibodies against oxidation-specific epitopes. Chow-fed apoE(-/-) mice were injected intraperitoneally with either the 4F peptide or a tandem helix apoA-I mimetic peptide (Pro) every other day. Mice treated with 4F, but not Pro, for 4 wk starting at 10 wk of age showed a dramatic decrease in atherosclerosis at 2 arterial sites. However, neither peptide was effective in mice treated for 8 wk starting at 20 wk of age; lesions were larger and more mature at this time point. Peptide treatment caused increased production of antibodies against oxidation-specific epitopes, including a disproportionate induction of the IgM natural antibody (NAb) E06/T15 to oxidized phospholipids. In summary, 4F, but not the tandem peptide Pro, effectively inhibited early atherogenesis but was ineffective against more mature lesions. Two different apoA-I mimetic peptides increased titers of natural antibodies against oxidation-specific epitopes.
Collapse
Affiliation(s)
- Geoffrey D Wool
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Amar MJA, D'Souza W, Turner S, Demosky S, Sviridov D, Stonik J, Luchoomun J, Voogt J, Hellerstein M, Sviridov D, Remaley AT. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J Pharmacol Exp Ther 2010; 334:634-41. [PMID: 20484557 PMCID: PMC2913774 DOI: 10.1124/jpet.110.167890] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/13/2010] [Indexed: 01/28/2023] Open
Abstract
Intravenous administration of apolipoprotein (apo) A-I complexed with phospholipid has been shown to rapidly reduce plaque size in both animal models and humans. Short synthetic amphipathic peptides can mimic the antiatherogenic properties of apoA-I and have been proposed as alternative therapeutic agents. In this study, we investigated the atheroprotective effect of the 5A peptide, a bihelical amphipathic peptide that specifically effluxes cholesterol from cells by ATP-binding cassette transporter 1 (ABCA1). 5A stimulated a 3.5-fold increase in ABCA1-mediated efflux from cells and an additional 2.5-fold increase after complexing it with phospholipid (1:7 mol/mol). 5A-palmitoyl oleoyl phosphatidyl choline (POPC), but not free 5A, was also found to promote cholesterol efflux by ABCG1. When incubated with human serum, 5A-POPC bound primarily to high-density lipoprotein (HDL) but also to low-density lipoprotein (LDL) and promoted the transfer of cholesterol from LDL to HDL. Twenty-four hours after intravenous injection of 5A-POPC (30 mg/kg) into apoE-knockout (KO) mice, both the cholesterol (181%) and phospholipid (219%) content of HDL significantly increased. By an in vivo cholesterol isotope dilution study and monitoring of the flux of cholesterol from radiolabeled macrophages to stool, 5A-POPC treatment was observed to increase reverse cholesterol transport. In three separate studies, 5A when complexed with various phospholipids reduced aortic plaque surface area by 29 to 53% (n = 8 per group; p < 0.02) in apoE-KO mice. No signs of toxicity from the treatment were observed during these studies. In summary, 5A promotes cholesterol efflux both in vitro and in vivo and reduces atherosclerosis in apoE-KO mice, indicating that it may be a useful alternative to apoA-I for HDL therapy.
Collapse
Affiliation(s)
- Marcelo J A Amar
- Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
D’Souza W, Stonik JA, Murphy A, Demosky SJ, Sethi AA, Moore XL, Chin-Dusting J, Remaley AT, Sviridov D. Structure/function relationships of apolipoprotein a-I mimetic peptides: implications for antiatherogenic activities of high-density lipoprotein. Circ Res 2010; 107:217-27. [PMID: 20508181 PMCID: PMC2943235 DOI: 10.1161/circresaha.110.216507] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Apolipoprotein (apoA)-I mimetic peptides are a promising type of anti-atherosclerosis therapy, but how the structural features of these peptides relate to the multiple antiatherogenic functions of HDL is poorly understood. OBJECTIVE To establish structure/function relationships of apoA-I mimetic peptides with their antiatherogenic functions. METHODS AND RESULTS Twenty-two bihelical apoA-I mimetic peptides were investigated in vitro for the capacity and specificity of cholesterol efflux, inhibition of inflammatory response of monocytes and endothelial cells, and inhibition of low-density lipoprotein (LDL) oxidation. It was found that mean hydrophobicity, charge, size of hydrophobic face, and angle of the link between the helices are the major factors determining the efficiency and specificity of cholesterol efflux. The peptide with optimal parameters was more effective and specific toward cholesterol efflux than human apoA-I. Charge and size of hydrophobic face were also the major factors affecting antiinflammatory properties, and the presence of cysteine and histidine residues was the main factor determining antioxidant properties. There was no significant correlation between capacities of the peptides to support individual functions; each function had its own optimal set of features. CONCLUSIONS None of the peptides was equally effective in all the antiatherogenic functions tested, suggesting that different functions of HDL may have different mechanisms and different structural requirements. The results do suggest, however, that rationalizing the design of apoA-I mimetic peptides may improve their therapeutic value and may lead to a better understanding of mechanisms of various antiatherogenic functions of HDL.
Collapse
Affiliation(s)
| | - John A. Stonik
- Lipoprotein Section, National Heart, Lung and Blood Institute, NIH, Bethesda, USA
| | - Andrew Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Steven J. Demosky
- Lipoprotein Section, National Heart, Lung and Blood Institute, NIH, Bethesda, USA
| | - Amar A. Sethi
- Lipoprotein Section, National Heart, Lung and Blood Institute, NIH, Bethesda, USA
| | - Xiao L. Moore
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Alan T. Remaley
- Lipoprotein Section, National Heart, Lung and Blood Institute, NIH, Bethesda, USA
| | | |
Collapse
|
27
|
Dai L, Datta G, Zhang Z, Gupta H, Patel R, Honavar J, Modi S, Wyss JM, Palgunachari M, Anantharamaiah GM, White CR. The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats. J Lipid Res 2010; 51:2695-705. [PMID: 20495214 DOI: 10.1194/jlr.m008086] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
High density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) reduce inflammatory responses to lipopolysaccharide (LPS). We tested the hypothesis that the apoA-I mimetic peptide 4F prevents LPS-induced defects in blood pressure and vascular reactivity. Systolic blood pressure (SBP) was measured in rats at baseline and 6 h after injection of LPS (10 mg/kg) or saline vehicle. Subgroups of LPS-treated rats also received 4F (10 mg/kg) or scrambled 4F (Sc-4F). LPS administration reduced SBP by 35% compared with baseline. 4F attenuated the reduction in SBP in LPS-treated rats (17% reduction), while Sc-4F was without effect. Ex vivo studies showed a reduced contractile response to phenylephrine (PE) in aortae of LPS-treated rats (ED(50) = 459 +/- 83 nM) compared with controls (ED(50) = 57 +/- 6 nM). This was associated with nitric oxide synthase 2 (NOS2) upregulation. 4F administration improved vascular contractility (ED(50) = 60 +/- 9 nM), reduced aortic NOS2 protein, normalized plasma levels of NO metabolites, and reduced mortality in LPS-treated rats. These changes were associated with a reduction in plasma endotoxin activity. In vivo administration of (14)C-4F and Bodipy-LPS resulted in their colocalization and retention in the HDL fraction. It is proposed that 4F promotes the localization of LPS to the HDL fraction, resulting in endotoxin neutralization. 4F may thus prevent LPS-induced hemodynamic changes associated with NOS2 induction.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Apolipoprotein A-I (apoA-I) mimetic peptides resemble the physiochemical properties of the helices of apoA-I and show promise for the treatment of atherosclerotic vascular diseases and other chronic inflammatory disorders. These peptides have numerous properties, such as the ability to remodel high-density lipoprotein, sequester oxidized lipids, promote cholesterol efflux, and activate an anti-inflammatory process in macrophages, any or all of which may contribute to their antiatherogenic properties. In murine models, the 4F peptide attenuates early atherosclerosis but seems to require the addition of statins to influence more mature lesions. A recently developed method for the oral delivery of the peptides that protects them from proteolysis will facilitate further research on the mechanism of action of these peptides. This review focuses on the properties of the 4F peptide, although numerous apoA-I mimetics are under investigation and a single "best" peptide that mimics all of the properties of the antiatherogenic protein apoA-I has not been identified.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, The University of Chicago, IL 60637, USA.
| | | | | |
Collapse
|
29
|
Navab M, Shechter I, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM. Structure and function of HDL mimetics. Arterioscler Thromb Vasc Biol 2010; 30:164-8. [PMID: 19608977 PMCID: PMC2860541 DOI: 10.1161/atvbaha.109.187518] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HDL mimetics have been constructed from a number of peptides and proteins with varying structures, all of which bind lipids found in HDL. HDL mimetics containing a peptide or protein have been constructed with as few as 4 and as many as 243 amino acid residues. Some HDL mimetics have been constructed with lipid but without a peptide or protein component. Some HDL mimetics promote cholesterol efflux, some have been shown to have a remarkable ability to bind oxidized lipids compared to human apolipoprotein A-I (apoA-I). Many of these peptides have been shown to have antiinflammatory properties. Based on studies in a number of animal models and in early human clinical trials, HDL mimetics appear to have promise as diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Getz GS, Wool GD, Reardon CA. HDL apolipoprotein-related peptides in the treatment of atherosclerosis and other inflammatory disorders. Curr Pharm Des 2010; 16:3173-84. [PMID: 20687877 PMCID: PMC3087816 DOI: 10.2174/138161210793292492] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 12/31/2022]
Abstract
Elevations of HDL levels or modifying the inflammatory properties of HDL are being evaluated as possible treatment of atherosclerosis, the underlying mechanism responsible for most cardiovascular diseases. A promising approach is the use of small HDL apoprotein-related mimetic peptides. A number of peptides mimicking the repeating amphipathic α-helical structure in apoA-I, the major apoprotein in HDL, have been examined in vitro and in animal models. Several peptides have been shown to reduce early atherosclerotic lesions, but not more mature lesions unless coadministered with statins. These peptides also influence the vascular biology of the vessel wall and protect against other acute and chronic inflammatory diseases. The biologically active peptides are capable of reducing the pro-inflammatory properties of LDL and HDL, likely due to their high affinity for oxidized lipids. They are also capable of influencing other processes, including ABCA1 mediated activation of JAK-2 in macrophages, which may contribute to their anti-atherogenic function. The initial studies involved monomeric 18 amino acid peptides, but tandem peptides are being investigated for their anti-atherogenic and anti-inflammatory properties as they more closely resemble the repeating structure of apoA-I. Peptides based on other HDL associated proteins such as apoE, apoJ and SAA have also been studied. Their mechanism of action appears to be distinct from the apoA-I based mimetics.
Collapse
Affiliation(s)
- G S Getz
- The University of Chicago, Department of Pathology, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
31
|
Epand RF, Mishra VK, Palgunachari MN, Anantharamaiah GM, Epand RM. Anti-inflammatory peptides grab on to the whiskers of atherogenic oxidized lipids. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1967-75. [PMID: 19559666 PMCID: PMC2768607 DOI: 10.1016/j.bbamem.2009.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/08/2009] [Accepted: 06/16/2009] [Indexed: 01/23/2023]
Abstract
The peptide 4F is known to have potent anti-atherogenic activity. 4F is an 18 residue peptide that has a sequence capable of forming a class A amphipathic helix. Several other class A amphipathic helical, 18 residue peptides with the same polar face but with increasing Phe residues on the nonpolar face have been synthesized with varying degrees of biological activity. In this work we compared the properties of the original 2F peptide, modeled on the consensus sequence of the amphipathic helical segments of the apolipoprotein A-I with the peptide 4F that has two Leu residues replaced with Phe. We demonstrate that the more biologically active 4F peptide has the greatest affinity for binding to several molecular species of oxidized lipids. Lipoprotein particles can be formed by solubilizing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) with peptides. These solubilized lipoprotein particles extract oxidized lipid from liposomes of POPC containing 5 mol% of oxidized lipid. The peptides with the strongest anti-atherogenic activity interact most strongly with the oxidized lipid. The results show that there is a correlation between the biological potency of these peptides and their ability to interact with certain specific cytotoxic lipids, suggesting that this interaction may contribute favourably to their biological properties.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Science Center, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | | | |
Collapse
|