1
|
Ruscica M, Loh WJ, Sirtori CR, Watts GF. Phytosterols and phytostanols in context: From physiology and pathophysiology to food supplementation and clinical practice. Pharmacol Res 2025; 214:107681. [PMID: 40049428 DOI: 10.1016/j.phrs.2025.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Phytosterols and phytostanols are two classes of sterol derivatives naturally synthesised in plants, but not in humans. Structurally, phytosterols and phytostanols have a sterane ring in common, but phytostanols do not have a double bond between carbons 5 and 6. The therapeutic potential of phytosterols and phytostanols supplementation in cholesterol reduction is the main reason for its wide usage in an expansive food matrix, including milk, yoghurt, margarine, mayonnaise, chocolate, tartare, chips, esterification with omega-3, and recently, as a successful nutraceutical among athletes is its fortification with whey protein. The heterogeneous effect of phytosterols and phytostanols in cholesterol lowering appears to be related to whether the individuals' inherent physiologic tendencies to "hyper-synthesise" cholesterol in the liver or "hyperabsorb" cholesterol via the small intestine. Individuals who are 'hypersynthesizers" of cholesterol tend to have a good reduction in plasma low-density lipoprotein cholesterol (LDLc) in response to statin therapy. Conversely, "hyper-absorbers" of cholesterol show a greater LDLc lowering in response to phytosterols or phytostanols. The ratios of cholestanol to cholesterol and lathosterol to cholesterol are good biomarkers of intestinal absorption of cholesterol and hepatic cholesterol synthesis. Animal data and human observational data suggest that phytosterols and phytostanols may have anti-atherosclerotic activities, e.g. reduction of the formation of nitric oxide, antagonism to the formation of LDL aggregates and plaque formation. The absence of cardiovascular outcome trials using phytosterol or phytostanol supplementation, makes it difficult to confirm a wider use in clinical practice, especially with the rapidly expanding list of effective and safe lipid-lowering medications.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Wann Jia Loh
- School of Medicine, University of Western Australia, Australia; Department of Endocrinology, Changi General Hospital, Changi, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Australia; Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Begcevic Brkovic I, Reinicke M, Chey S, Bechmann I, Ceglarek U. Characterization of Non-Cholesterol Sterols in Microglia Cell Membranes Using Targeted Mass Spectrometry. Cells 2023; 12:cells12070974. [PMID: 37048046 PMCID: PMC10093698 DOI: 10.3390/cells12070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Non-cholesterol sterols, as well as plant sterols, cross the blood-brain barrier and, thus, can be incorporated into cell membranes, affecting the cell's inflammatory response. The aim of our work was to develop an analytical protocol for a quantitative assessment of the sterol composition within the membrane microdomains of microglia. METHODS A protocol for cell membrane isolation using OptiPrepTM gradient ultracentrifugation, in combination with a targeted mass spectrometry (LC-MS/MS)-based assay, was developed and validated for the quantitative analysis of free sterols in microglia cell membranes. RESULTS Utilizing an established LC-MS/MS assay, cholesterol and seven non-cholesterol sterols were analyzed with a limit of detection from 0.001 to 0.05 mg/L. Applying the detergent-free isolation of SIM-A9 microglia cell membranes, cholesterol (CH), desmosterol (DE), lanosterol (LA) stigmasterol (ST), beta-sitosterol (SI) and campesterol (CA) were quantified with coefficients of variations between 6 and 29% (fractions 4-6, n = 5). The highest concentrations of non-CH sterols within the microglia plasma membranes were found in the microdomain region (DE>LA>SI>ST>CA), with ratios to CH ranging from 2.3 to 435 lower abundancies. CONCLUSION By applying our newly developed and validated analytical protocol, we show that the non-CH sterol concentration is about 38% of the total sterol content in microglia membrane microdomains. Further investigations must clarify how changes in the non-sterol composition influence membrane fluidity and cell signaling.
Collapse
Affiliation(s)
- Ilijana Begcevic Brkovic
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Soroth Chey
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Ouyang M, Li C, Hu D, Peng D, Yu B. Mechanisms of unusual response to lipid-lowering therapy: PCSK9 inhibition. Clin Chim Acta 2023; 538:113-123. [PMID: 36403664 DOI: 10.1016/j.cca.2022.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The efficacy of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition has broadened lipid-lowering therapy thus providing decreased risk in atherosclerotic cardiovascular disease. Unfortunately, the widespread use of PCSK9 inhibitors (PCSK9i), ie, monoclonal antibodies, has led to the findings of unusual responsiveness, ie, a phenomenon defined as an LDL-C reduction of <30% vs the average LDL-C reduction efficacy of 50-60%. This unusual responsiveness to PCSK9i is attributable to several factors, ie, lack of adherence, impaired absorption, poor distribution or early elimination as well as abnormal effects of PCSK9i in the presence of anti-antibodies or mutations in PCSK9 and LDLR. Unexpectedly increased lipoprotein (Lp)(a) also appear to contribute to the unusual responsiveness scenario. Identification of these responses and mechanisms underlying them are essential for effective management of LDL-C and cardiovascular risk. In this review, we describe plausible reasons underlying this phenomenon supported by findings of clinical trials. We also elaborate on the need for education and regular follow-up to improve adherence. Collectively, the review provides a summary of the past, present, and future of mechanisms and countermeasures revolving around unusual responses to PCSK9i therapy.
Collapse
Affiliation(s)
- Mingqi Ouyang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Tricò D, Raggi F, Distaso M, Ferrannini E, Solini A. Effect of empagliflozin on plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) in patients with type 2 diabetes. Diabetes Res Clin Pract 2022; 190:109983. [PMID: 35803317 DOI: 10.1016/j.diabres.2022.109983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
AIM Cardiovascular benefits of sodium-glucose cotrasporter-2 (SGLT2) inhibitors occur despite a modest increase in low-density lipoprotein cholesterol (LDL-c). We tested whether the effects of chronic SGLT2 inhibition on lipid profile composition are mediated by elevation in plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels inhibiting LDL clearance. METHODS 78 patients with type 2 diabetes (T2D) received empagliflozin 25 mg/d in an open-label design. At enrollment and after 4-week therapy, fasting blood samples were collected for the measurement of plasma PCSK9, glucose, total and fractional cholesterol, and triglycerides. RESULTS Plasma PCSK9 was not significantly affected by empagliflozin (-10.7 [-24.1, 2.7] ng/mL). The treatment induced a mild increase in high-density lipoprotein cholesterol (+1.7 [0.5, 3.0] mg/dL), without significant LDL-c alterations (+1.0 [-4.1, 6.0] mg/dl). Changes in LDL-c were associated with changes in fasting glucose levels (β = 0.320, p = 0.017), but not with plasma PCSK9 (β = 0.010, p = 0.800), after adjustment for age, sex, baseline LDL-c, and body weight change. CONCLUSION In patients with T2D, chronic SGLT2 inhibition with empagliflozin has no potentially harmful effects on circulating PCSK9 levels. This finding does not support a pathogenetic role of plasma PCSK9 in the mild plasma lipid alterations observed during SGLT2i treatment.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Raggi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Mariarosaria Distaso
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Anna Solini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
6
|
Xiao X, Luo Y, Peng D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front Cardiovasc Med 2022; 9:879355. [PMID: 35571202 PMCID: PMC9098828 DOI: 10.3389/fcvm.2022.879355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose and cholesterol engage in almost all human physiological activities. As the primary energy substance, glucose can be assimilated and converted into diverse essential substances, including cholesterol. Cholesterol is mainly derived from de novo biosynthesis and the intestinal absorption of diets. It is evidenced that glucose/insulin promotes cholesterol biosynthesis and uptake, which have been targeted by several drugs for lipid-lowering, e.g., bempedoic acid, statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Inversely, these lipid-lowering drugs may also interfere with glucose metabolism. This review would briefly summarize the mechanisms of glucose/insulin-stimulated cholesterol biosynthesis and uptake, and discuss the effect and mechanisms of lipid-lowering drugs and genetic mutations on glucose homeostasis, aiming to help better understand the intricate relationship between glucose and cholesterol metabolism.
Collapse
|
7
|
Liang J, Li W, Liu H, Li X, Yuan C, Zou W, Qu L. Di’ao Xinxuekang Capsule Improves the Anti-Atherosclerotic Effect of Atorvastatin by Downregulating the SREBP2/PCSK9 Signalling Pathway. Front Pharmacol 2022; 13:857092. [PMID: 35571088 PMCID: PMC9096164 DOI: 10.3389/fphar.2022.857092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Statins are the first choice for lowering low-density lipoprotein cholesterol (LDL-C) and preventing atherosclerotic cardiovascular disease (ASCVD). However, statins can also upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which in turn might limits the cholesterol-lowering effect of statins through the degradation of LDL receptors (LDLR). Di’ao Xinxuekang (DXXK) capsule, as a well-known traditional Chinese herbal medicine for the prevention and treatment of coronary heart disease, can alleviate lipid disorders and ameliorate atherosclerosis in atherosclerosis model mice and downregulate the expression of PCSK9. In this study, we further explored whether DXXK has a synergistic effect with atorvastatin (ATO) and its underlying molecular mechanism. The results showed that both ATO monotherapy (1.3 mg/kg) and ATO combined with DXXK therapy significantly lowered serum lipid levels and reduced the formation of atherosclerotic plaques and the liver lipid accumulation. Moreover, compared with ATO monotherapy, the addition of DXXK (160 mg/kg) to the combination therapy further lowered LDL-C by 15.55% and further reduced the atherosclerotic plaque area by 25.98%. In addition, the expression of SREBP2, PCSK9 and IDOL showed a significant increase in the model group, and the expression of LDLR was significantly reduced; however, there were no significant differences between the ATO (1.3 mg/kg) and the model groups. When ATO was combined with DXXK, the expression of LDLR was significantly increased and was higher than that of the model group and the expression of SREBP2 and PCSK9 in the liver was also significantly inhibited. Moreover, it can be seen that the expression of SREBP2 and PCSK9 in the combination treatment group was significantly lower than that in the ATO monotherapy group (1.3 mg/kg). Besides, the expression of IDOL mRNA in each treatment group was not significantly different from that of the model group. Our study suggests that DXXK might have a synergistic effect on the LDL-C lowering and antiatherosclerosis effects of ATO through the SREBP2/PCSK9 pathway. This indicates that a combination of DXXK and ATO may be a new treatment for atherosclerosis.
Collapse
Affiliation(s)
- Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofen Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuqiao Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| |
Collapse
|
8
|
Metzner T, Leitner DR, Mellitzer K, Beck A, Sourij H, Stojakovic T, Reishofer G, März W, Landmesser U, Scharnagl H, Toplak H, Silbernagel G. Effects of Alirocumab on Triglyceride Metabolism: A Fat-Tolerance Test and Nuclear Magnetic Resonance Spectroscopy Study. Biomedicines 2022; 10:biomedicines10010193. [PMID: 35052871 PMCID: PMC8774139 DOI: 10.3390/biomedicines10010193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background: PCSK9 antibodies strongly reduce LDL cholesterol. The effects of PCSK9 antibodies on triglyceride metabolism are less pronounced. The present study aimed to investigate in detail the effects of alirocumab on triglycerides, triglyceride-rich lipoproteins, and lipase regulators. Methods: A total of 24 patients with an indication for treatment with PCSK9 antibodies were recruited. There were two visits at the study site: the first before initiation of treatment with alirocumab and the second after 10 weeks of treatment. Fat-tolerance tests, nuclear magnetic resonance spectroscopy, and enzyme-linked immunosorbent assays were performed to analyze lipid metabolism. Results: A total of 21 participants underwent the first and second investigation. Among these, two participants only received alirocumab twice and 19 patients completed the trial per protocol. All of them had atherosclerotic vascular disease. There was no significant effect of alirocumab treatment on fasting triglycerides, post-prandial triglycerides, or lipoprotein-lipase regulating proteins. Total, large, and small LDL particle concentrations decreased, while the HDL particle concentration increased (all p < 0.001). Mean total circulating PCSK9 markedly increased in response to alirocumab treatment (p < 0.001). Whereas PCSK9 increased more than three-fold in all 19 compliant patients, it remained unchanged in those two patients with two injections only. Conclusion: Significant effects of alirocumab on triglyceride metabolism were not detectable in the ALIROCKS trial. The total circulating PCSK9 concentration might be a useful biomarker to differentiate non-adherence from non-response to PCSK9 antibodies.
Collapse
Affiliation(s)
- Thomas Metzner
- Department of Internal Medicine, Division of Angiology, Medical University of Graz, 8036 Graz, Austria
- Department of Medical Affairs, Sanofi-Aventis GmbH, 1100 Vienna, Austria
| | - Deborah R Leitner
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Karin Mellitzer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Beck
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, 8036 Graz, Austria
| | - Gernot Reishofer
- Department of Radiology, Clinical Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, 8036 Graz, Austria
| | - Winfried März
- Department of Internal Medicine 5 (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany
- Synlab Academy, Synlab Holding Germany GmbH, 86156 Augsburg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Ulf Landmesser
- German Center for Cardiovascular Research (DZHK)-Partner Site Berlin, Department of Cardiology, Berlin Institute of Health, Charité University Medicine Berlin, 12200 Berlin, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Hermann Toplak
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Günther Silbernagel
- Department of Internal Medicine, Division of Angiology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
9
|
OUP accepted manuscript. Eur J Prev Cardiol 2022; 29:1731-1739. [DOI: 10.1093/eurjpc/zwac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/12/2022]
|
10
|
The Effects of Anthocyanin-Rich Bilberry Extract on Transintestinal Cholesterol Excretion. Foods 2021; 10:foods10112852. [PMID: 34829135 PMCID: PMC8624570 DOI: 10.3390/foods10112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Hypercholesterolemia is one of the modifiable and primary risk factors for cardiovascular diseases (CVD). Emerging evidence suggests the stimulation of transintestinal cholesterol excretion (TICE), the nonbiliary cholesterol excretion, using natural products can be an effective way to reduce CVD. Bilberry (Vaccinium myrtillus L.) has been reported to have cardioprotective effects by ameliorating oxidative stress, inflammation, and dyslipidemia. However, the role of bilberry in intestinal cholesterol metabolism is not well understood. To examine the effects of bilberry in intestinal cholesterol metabolism, we measured the genes for cholesterol flux and de novo synthesis in anthocyanin-rich bilberry extract (BE)-treated Caco-2 cells. BE significantly decreased the genes for cholesterol absorption, i.e., Niemann-Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, BE significantly upregulated ABCG8, the apical transporter for cholesterol. There was a significant induction of low-density lipoprotein receptors, with a concomitant increase in cellular uptake of cholesterol in BE-treated cells. The expression of genes for lipogenesis and sirtuins was altered by BE treatment. In the present study, BE altered the genes for cholesterol flux from basolateral to the apical membrane of enterocytes, potentially stimulating TICE. These results support the potential of BE in the prevention of hypercholesterolemia.
Collapse
|
11
|
The Differential Metabolomes in Cumulus and Mural Granulosa Cells from Human Preovulatory Follicles. Reprod Sci 2021; 29:1343-1356. [PMID: 34374964 PMCID: PMC8907092 DOI: 10.1007/s43032-021-00691-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/04/2021] [Indexed: 01/11/2023]
Abstract
This study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.
Collapse
|
12
|
Hu D, Guo Y, Wu R, Shao T, Long J, Yu B, Wang H, Luo Y, Lu H, Zhang J, Chen YE, Peng D. New Insight Into Metformin-Induced Cholesterol-Lowering Effect Crosstalk Between Glucose and Cholesterol Homeostasis via ChREBP (Carbohydrate-Responsive Element-Binding Protein)-Mediated PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Regulation. Arterioscler Thromb Vasc Biol 2021; 41:e208-e223. [PMID: 33535788 DOI: 10.1161/atvbaha.120.315708] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Renrong Wu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China (R.W., T.S.)
| | - Tiannan Shao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China (R.W., T.S.)
| | - Junke Long
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
| | - Bilian Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
| | - Huilun Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Yonghong Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Haocheng Lu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Jifeng Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Y Eugene Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
| |
Collapse
|
13
|
Lütjohann D, Stellaard F, Bölükbasi B, Kerksiek A, Parhofer KG, Laufs U. Anti-PCSK 9 antibodies increase the ratios of the brain-specific oxysterol 24S-hydroxycholesterol to cholesterol and to 27-hydroxycholesterol in the serum. Br J Clin Pharmacol 2021; 87:4252-4261. [PMID: 33792095 DOI: 10.1111/bcp.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS The serum ratios of the brain-specific oxysterol 24S-hydroxycholesterol (24S-OHC) to cholesterol and to 27-OHC reflect brain cholesterol turnover. We studied the effect of proprotein convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9ab) that enhance low-density lipoprotein receptor activity on serum cholesterol and oxysterol concentrations. METHODS Twenty-eight hypercholesterolaemic patients (15 males and 13 females) responding insufficiently to maximally tolerated statin and/or ezetimibe therapy were additionally subcutanously treated biweekly with either the PCSK9ab alirocumab (150 mg, n = 13) or evolocumab (140 mg, n = 15). Fasting serum cholesterol was measured by gas chromatography and the oxysterols 24S-OHC and 27-OHC using gas chromatography-mass spectrometry before, after 1-month (n = 28) and after 3-month (n = 13) treatment. RESULTS As expected, PCSK9ab treatment lowered serum cholesterol and oxysterol levels after 1 month. The serum ratio of 24S-OHC to cholesterol increased after 1 month by 17 ± 28% (mean ± standard deviation; 95% confidence interval [CI]: 5.8 to 28%; P < .01) and 24S-OHC to 27-OHC by 15 ± 39% (95% CI: 0.2 to 30%; P < .01). Within 3 months, 24S-OHC to cholesterol increased by 2.8 μg g-1 mo-1 (95% CI: 2.1 to 3.6; P < .01) and 24S-OHC to 27-OHC by 0.019 mo-1 (95% CI: 0.007 to 0.032; P < .01). CONCLUSION The serum ratios of 24S-OHC to cholesterol and to 27-OHC increased after treatment with PCSK9ab. We hypothesize that this is caused by a reduced entrance of 27-OHC into the brain, increased synthesis of brain cholesterol, increased production of 24S-OHC and its secretion across the blood-brain barrier.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Frans Stellaard
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Bediha Bölükbasi
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Anja Kerksiek
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Klaus G Parhofer
- Medizinische Klinik IV-Campus Großhadern, Klinikum der Universität München, Munich, Germany
| | - Ulrich Laufs
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg, Germany.,Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Katzmann JL, Gouni-Berthold I, Laufs U. PCSK9 Inhibition: Insights From Clinical Trials and Future Prospects. Front Physiol 2020; 11:595819. [PMID: 33304274 PMCID: PMC7701092 DOI: 10.3389/fphys.2020.595819] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
In 2003, clinical observations led to the discovery of the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipid metabolism. Functional studies demonstrated that PCSK9 binds to the low-density lipoprotein (LDL) receptor directing it to its lysosomal degradation. Therefore, carriers of gain-of-function mutations in PCSK9 exhibit decreased expression of LDL receptors on the hepatocyte surface and have higher LDL cholesterol (LDL-C) levels. On the contrary, loss-of-function mutations in PCSK9 are associated with low LDL-C concentrations and significantly reduced lifetime risk of cardiovascular disease. These insights motivated the search for strategies to pharmacologically inhibit PCSK9. In an exemplary rapid development, fully human monoclonal antibodies against PCSK9 were developed and found to effectively reduce LDL-C. Administered subcutaneously every 2-4 weeks, the PCSK9 antibodies evolocumab and alirocumab reduce LDL-C by up to 60% in a broad range of populations either as monotherapy or in addition to statins. Two large cardiovascular outcome trials involving a total of ∼46,000 cardiovascular high-risk patients on guideline-recommended lipid-lowering therapy showed that treatment with evolocumab and alirocumab led to a relative reduction of cardiovascular risk by 15% after 2.2 and 2.8 years of treatment, respectively. These findings expanded the armamentarium of pharmacological approaches to address residual cardiovascular risk associated with LDL-C. Furthermore, the unprecedented low LDL-C concentrations achieved (e.g., 30 mg/dL in the FOURIER study) suggest that the relationship between LDL-C and cardiovascular risk is without a lower threshold, and without associated adverse events during the timeframe of the studies. The side effect profile of PCSK9 antibodies is favorable with few patients exhibiting injection-site reactions. Currently, the access to PCSK9 antibodies is limited by high treatment costs. The development of novel approaches to inhibit PCSK9 such as the use of small interfering RNA to inhibit PCSK9 synthesis seems promising and may soon become available.
Collapse
Affiliation(s)
| | - Ioanna Gouni-Berthold
- Polyclinic for Endocrinology, Diabetes, and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Laufs
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Quintão ECR. Plasma Non-cholesterol Sterols as Markers of Cholesterol Synthesis and Intestinal Absorption: A Critical Review. Curr Pharm Des 2020; 26:5152-5162. [PMID: 32744960 DOI: 10.2174/1381612826666200730220230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022]
Abstract
Plasma concentrations of phytosterols and non-cholesterol sterol precursors of cholesterol synthesis have been used as markers of intestinal cholesterol absorption and synthesis in inherited and secondary dyslipidemias and in population-based investigations to evaluate the risk for cardiovascular disease, respectively. The method aims at replacing initial research procedures such as the use of stable isotopes associated with fecal steroid balance, which are limited by the high cost and tedious procedures. However, we show in this review that numerous results obtained with serum sterol measurements are contradictory. In this regard, the following points are discussed: 1) how phytosterols relate to atherosclerosis considering that defects in biliary output or in the transport of phytosterols from the intestinal mucosa back into the intestinal lumen provide increased content of phytosterols and other sterols in plasma and tissues, thus not allowing to conclude that their presence in arteries and atheromas represents the etiology of atherosclerosis; 2) serum non-cholesterol sterols as markers of cholesterol synthesis and absorption, such as cholestanol, present discrepant results, rendering them often inadequate to identify cases of coronary artery disease as well as alterations in the whole body cholesterol metabolism; 3) such methods of measurement of cholesterol metabolism are confounded by factors like diabetes mellitus, body weight and other pathologies including considerable hereditary hyperlipidemias biological variabilities that influence the efficiency of synthesis and intestinal absorption of cholesterol.
Collapse
|
16
|
Heterozygous Ldlr-Deficient Hamster as a Model to Evaluate the Efficacy of PCSK9 Antibody in Hyperlipidemia and Atherosclerosis. Int J Mol Sci 2019; 20:ijms20235936. [PMID: 31779098 PMCID: PMC6929182 DOI: 10.3390/ijms20235936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis and atherogenesis. However, there are only limited rodent models, with a functional low-density lipoprotein receptor (LDLR) pathway and cholesteryl ester transfer protein (CETP) to evaluate the drug candidates targeting the PCSK9/LDLR pathway, that are translatable to humans. Here, by using our recently generated LDLR heterozygote (Ldlr+/−) hamster model with functional LDLR pathway and CETP function, we seek to evaluate the effect of a PCSK9 antibody, evolocumab, on dyslipidemia and atherosclerosis compared with ezetimibe, an effective inhibitor of cholesterol absorption, as a positive therapeutic control. We show that the plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were significantly increased in Ldlr+/− hamsters fed a high-fat high-cholesterol (HFHC) diet; therefore, areas of atherosclerotic lesion in the aorta were obviously increased and positively correlated with plasma LDL-C and TC. Circulating free PCSK9 was downregulated by the HFHC diet and was undetectable in the evolocumab treated group, as expected. Most importantly, either evolocumab or ezetimibe treatment prevented HFHC diet-induced hyperlipidemia and subsequent atherosclerotic plaque formation. The results indicate that Ldlr+/− hamsters fed an HFHC diet represent an ideal rodent model to evaluate drug candidates that affect LDLR pathways.
Collapse
|
17
|
Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol 2019; 26:930-949. [PMID: 30776916 DOI: 10.1177/2047487319831500] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of pro-protein convertase subtilisin/kexin type 9 (PCSK9) by drugs has led to the development of a still small number of agents with powerful activity on low-density lipoprotein cholesterol levels, associated with a significant reduction of cardiovascular events in patients in secondary prevention. The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) and Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab (ODYSSEY OUTCOMES) studies, with the two available PCSK9 antagonists, i.e. evolocumab and alirocumab, both reported a 15% reduction in major adverse cardiovascular events. Regulation of PCSK9 expression is dependent upon a number of factors, partly genetic and partly associated to a complex transcriptional system, mainly controlled by sterol regulatory element binding proteins. PCSK9 is further regulated by concomitant drug treatments, particularly by statins, enhancing PCSK9 secretion but decreasing its stimulatory phosphorylated form (S688). These complex transcriptional mechanisms lead to variable circulating levels making clinical measurements of plasma PCSK9 for cardiovascular risk assessment a debated matter. Determination of total PCSK9 levels may provide a diagnostic tool for explaining an apparent resistance to PCSK9 inhibitors, thus indicating the need for other approaches. Newer agents targeting PCSK9 are in clinical development with a major interest in those with a longer duration of action, e.g. RNA silencing, allowing optimal patient compliance. Interest has been expanded to areas not only limited to low-density lipoprotein cholesterol reduction but also investigating other non-lipid pathways raising cardiovascular risk, in particular inflammation associated to raised high-sensitivity C-reactive protein levels, not significantly affected by the present PCSK9 antagonists.
Collapse
Affiliation(s)
- C Macchi
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - M Banach
- 2 Department of Hypertension, Medical University of Lodz, Poland.,3 Polish Mother's Memorial Hospital Research Institute (PMMHRI), Poland.,4 Cardiovascular Research Centre, University of Zielona Gora, Poland
| | - A Corsini
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy.,5 Multimedica IRCCS, Italy
| | - C R Sirtori
- 6 Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Italy
| | - N Ferri
- 7 Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - M Ruscica
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|