1
|
Szukiewicz D. Potential Therapeutic Exploitation of G Protein-Coupled Receptor 120 (GPR120/FFAR4) Signaling in Obesity-Related Metabolic Disorders. Int J Mol Sci 2025; 26:2501. [PMID: 40141148 PMCID: PMC11941992 DOI: 10.3390/ijms26062501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The increasing prevalence of overweight and obesity not only in adults but also among children and adolescents has become one of the most alarming health problems worldwide. Metabolic disorders accompanying fat accumulation during pathological weight gain induce chronic low-grade inflammation, which, in a vicious cycle, increases the immune response through pro-inflammatory changes in the cytokine (adipokine) profile. Obesity decreases life expectancy, largely because obese individuals are at an increased risk of many medical complications, often referred to as metabolic syndrome, which refers to the co-occurrence of insulin resistance (IR), impaired glucose tolerance, type 2 diabetes (T2D), atherogenic dyslipidemia, hypertension, and premature ischemic heart disease. Metabotropic G protein-coupled receptors (GPCRs) constitute the most numerous and diverse group of cell surface transmembrane receptors in eukaryotes. Among the GPCRs, researchers are focusing on the connection of G protein-coupled receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), with signaling pathways regulating the inflammatory response and insulin sensitivity. This review presents the current state of knowledge concerning the involvement of GPR120 in anti-inflammatory and metabolic signaling. Since both inflammation in adipose tissue and insulin resistance are key problems in obesity, there is a rationale for the development of novel, GPR120-based therapies for overweight and obese individuals. The main problems associated with introducing this type of treatment into clinical practice are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Muthuswamy K, Vasanthakumar K, Panneerselvan P, Thangamani L, Krishnan V, Piramanayagam S, Subramaniam S. FAHFA promotes intracellular calcium signaling via activating the fat taste receptor, CD36 and Src protein kinases in mice taste bud cells. Biochim Biophys Acta Gen Subj 2024; 1868:130722. [PMID: 39426759 DOI: 10.1016/j.bbagen.2024.130722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Two lipid sensors, CD36 and GPR120, are crucial for the orosensory detection of fat taste and for mediating fat preference. However, the mechanism by which endogenous lipid (FAHFA) binds to CD36 to initiate intracellular signaling remains unexplained. Hence, the primary objective of this study is to investigate the binding mechanism of FAHFA to CD36 and its role in isolated mouse taste bud cells (mTBCs). The Schrodinger platform was used to assess the molecular dynamics of protein and ligand interactions, and an in vitro experiment was used to validate the findings. Based on the docking score of the ligand, the molecular mechanistic activities of the targeted complexes, CD36-5-POHSA (-8.2 kcal/mol), were investigated using the dynamic simulation. In comparison to linoleic acid (LA), POHSA rapidly increased [Ca2+]i via acting on CD36, and 5-POHSA treatment in mTBCs activated src-kinase at 20 μM. CD36 siRNA transfection in TBCs downregulate the CD36 protein expression as well as [Ca2+]i flux. This study suggests that 5-POHSA may help combat taste abnormalities and the adverse effects of obesity by binding to the lingual CD36 receptor and activating the tongue-brain axis.
Collapse
Affiliation(s)
- Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India; Men's Health Research Unit, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India.
| |
Collapse
|
3
|
Lin F, Masterson E, Gilbertson TA. Adiponectin Signaling Modulates Fat Taste Responsiveness in Mice. Nutrients 2024; 16:3704. [PMID: 39519538 PMCID: PMC11547430 DOI: 10.3390/nu16213704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adiponectin, the most abundant peptide hormone secreted by adipocytes, is a well-known homeostatic factor regulating lipid metabolism and insulin sensitivity. It has been shown that the adiponectin receptor agonist AdipoRon selectively enhances cellular responses to fatty acids in human taste cells, and adiponectin selectively increases taste behavioral responses to intralipid in mice. However, the molecular mechanism underlying the physiological effects of adiponectin on fat taste in mice remains unclear. CONCLUSIONS Here we define AdipoR1 as the mediator responsible for the enhancement role of adiponectin/AdipoRon on fatty acid-induced responses in mouse taste bud cells. METHODS AND RESULTS Calcium imaging data demonstrate that AdipoRon enhances linoleic acid-induced calcium responses in a dose-dependent fashion in mouse taste cells isolated from circumvallate and fungiform papillae. Similar to human taste cells, the enhancement role of AdipoRon on fatty acid-induced responses was impaired by co-administration of an AMPK inhibitor (Compound C) or a CD36 inhibitor (SSO). Utilizing Adipor1-deficient animals, we determined that the enhancement role of AdipoRon/adiponectin is dependent on AdipoR1, since AdipoRon/adiponectin failed to increase fatty acid-induced calcium responses in taste bud cells isolated from these mice. Brief-access taste tests were performed to determine whether AdipoRon's enhancement role was correlated with any differences in taste behavioral responses to fat. Although AdipoRon enhances the cellular responses of taste bud cells to fatty acids, it does not appear to alter fat taste behavior in mice. However, fat-naïve Adipor1-/- animals were indifferent to increasing concentrations of intralipid, suggesting that adiponectin signaling may have profound effects on the ability of mice to detect fatty acids in the absence of previous exposure to fatty acids and fat-containing diets.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Emeline Masterson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A. Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
4
|
Hao S, Guthrie B, Kim SK, Balanda S, Kubicek J, Murtaza B, Khan NA, Khakbaz P, Su J, Goddard WA. Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments. Commun Chem 2024; 7:236. [PMID: 39424933 PMCID: PMC11489721 DOI: 10.1038/s42004-024-01324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the Gα protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Brian Guthrie
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sergej Balanda
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Jan Kubicek
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Babar Murtaza
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Naim A Khan
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Pouyan Khakbaz
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Patient G, Bedart C, Khan NA, Renault N, Farce A. Distinct binding hotspots for natural and synthetic agonists of FFA4 from in silico approaches. Mol Inform 2024; 43:e202400046. [PMID: 39046372 DOI: 10.1002/minf.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/25/2024]
Abstract
FFA4 has gained interest in recent years since its deorphanization in 2005 and the characterization of the Free Fatty Acids receptors family for their therapeutic potential in metabolic disorders. The expression of FFA4 (also known as GPR120) in numerous organs throughout the human body makes this receptor a highly potent target, particularly in fat sensing and diet preference. This offers an attractive approach to tackle obesity and related metabolic diseases. Recent cryo-EM structures of the receptor have provided valuable information for a potential active state although the previous studies of FFA4 presented diverging information. We performed molecular docking and molecular dynamics simulations of four agonist ligands, TUG-891, Linoleic acid, α-Linolenic acid, and Oleic acid, based on a homology model. Our simulations, which accumulated a total of 2 μs of simulation, highlighted two binding hotspots at Arg992.64 and Lys293 (ECL3). The results indicate that the residues are located in separate areas of the binding pocket and interact with various types of ligands, implying different potential active states of FFA4 and a highly adaptable binding intra-receptor pocket. This article proposes additional structural characteristics and mechanisms for agonist binding that complement the experimental structures.
Collapse
Affiliation(s)
- Guillaume Patient
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE-Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Corentin Bedart
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE-Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Naim A Khan
- U1231 Inserm, Equipe NuTox, AgroSup, Université de Bourgogne, Dijon, France
| | - Nicolas Renault
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE-Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Amaury Farce
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE-Institute for Translational Research in Inflammation, F-59000, Lille, France
| |
Collapse
|
6
|
Zhang X, Zhang H, Li S, Fang F, Yin Y, Wang Q. Recent progresses in gut microbiome mediates obstructive sleep apnea-induced cardiovascular diseases. FASEB Bioadv 2024; 6:118-130. [PMID: 38585431 PMCID: PMC10995711 DOI: 10.1096/fba.2023-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Haifen Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Shuai Li
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Fan Fang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yanran Yin
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Qiang Wang
- Department of Infectious Disease, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
7
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
8
|
Kitajima S, Sakamoto K, Kuroda M. Effects of TUG-891, a potent GPR120 agonist, on the physical and oral lipid- coating properties, and secretion of saliva. Physiol Behav 2023; 265:114160. [PMID: 36934827 DOI: 10.1016/j.physbeh.2023.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
GPR120 agonists were recently shown to enhance the fatty orosensation in humans when added to vegetable oil or a low-fat food system, but did not evoke it by themselves. Furthermore, an emulsion prepared from vegetable oil had a stronger fatty orosensation than that prepared from mineral oil even though the physical properties of both emulsions were similar. To clarify the mechanisms underlying the enhancement of the fatty orosensation by GPR120 agonists, the present study investigated the effects of TUG-891, a potent GPR120 agonist, on physical and oral lipid-coating properties and the secretion of saliva. The addition of TUG-891 to a vegetable oil emulsion did not significantly change its physical properties, such as viscosity, particle distribution, interfacial tension, contact angle, frictional load, and ζ-electric potential, or the amount of the lipid coating remaining in the oral cavity. These results indicate that TUG-891 enhanced the fatty orosensation without changing the physical or oral lipid-coating properties of the emulsion. The addition of TUG-891 to a vegetable oil emulsion and whipped cream significantly increased the amount of saliva secreted. Therefore, TUG-891, a potent GPR120 agonist, may enhance the fatty orosensation by increasing the amount of saliva secreted.
Collapse
Affiliation(s)
- Seiji Kitajima
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Kazuhiro Sakamoto
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Motonaka Kuroda
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan.
| |
Collapse
|
9
|
Immune regulation of poly unsaturated fatty acids and free fatty acid receptor 4. J Nutr Biochem 2023; 112:109222. [PMID: 36402250 DOI: 10.1016/j.jnutbio.2022.109222] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/24/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Fatty acid metabolism contributes to energy supply and plays an important role in regulating immunity. Free fatty acids (FFAs) bind to free fatty acid receptors (FFARs) on the cell surface and mediate effects through the intra-cellular FFAR signaling pathways. FFAR4, also known as G-protein coupled receptor 120 (GPR120), has been identified as the primary receptor of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). FFAR4 is a promising target for treating metabolic and inflammatory disorders due to its immune regulatory functions and the discovery of highly selective and efficient agonists. This review summarizes the reported immune regulatory functions of ω-3 PUFAs and FFAR4 in immune cells and immune-related diseases. We also speculate possible involvements of ω-3 PUFAs and FFAR4 in other types of inflammatory disorders.
Collapse
|
10
|
Khan AS, Hichami A, Murtaza B, Louillat-Habermeyer ML, Ramseyer C, Azadi M, Yesylevskyy S, Mangin F, Lirussi F, Leemput J, Merlin JF, Schmitt A, Suliman M, Bayardon J, Semnanian S, Jugé S, Khan NA. Novel Fat Taste Receptor Agonists Curtail Progressive Weight Gain in Obese Male Mice. Cell Mol Gastroenterol Hepatol 2023; 15:633-663. [PMID: 36410709 PMCID: PMC9871744 DOI: 10.1016/j.jcmgh.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS The spontaneous preference for dietary lipids is principally regulated by 2 lingual fat taste receptors, CD36 and GPR120. Obese animals and most of human subjects exhibit low orosensory perception of dietary fat because of malfunctioning of these taste receptors. Our aim was to target the 2 fat taste receptors by newly synthesized high affinity fatty acid agonists to decrease fat-rich food intake and obesity. METHODS We synthesized 2 fat taste receptor agonists (FTA), NKS-3 (CD36 agonist) and NKS-5 (CD36 and GPR120 agonist). We determined their molecular dynamic interactions with fat taste receptors and the effect on Ca2+ signaling in mouse and human taste bud cells (TBC). In C57Bl/6 male mice, we assessed their gustatory perception and effects of their lingual application on activation of tongue-gut loop. We elucidated their effects on obesity and its related parameters in male mice fed a high-fat diet. RESULTS The two FTA, NKS-3 and NKS-5, triggered higher Ca2+ signaling than a dietary long-chain fatty acid in human and mouse TBC. Mice exhibited a gustatory attraction for these compounds. In conscious mice, the application of FTA onto the tongue papillae induced activation of tongue-gut loop, marked by the release of pancreato-bile juice into collecting duct and cholecystokinin and peptide YY into blood stream. Daily intake of NKS-3 or NKS-5 via feeding bottles decreased food intake and progressive weight gain in obese mice but not in control mice. CONCLUSIONS Our results show that targeting fat sensors in the tongue by novel chemical fat taste agonists might represent a new strategy to reduce obesity.
Collapse
Affiliation(s)
- Amira Sayed Khan
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Aziz Hichami
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Babar Murtaza
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | | | - Christophe Ramseyer
- Laboratoire ChronoEnvironnement, UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Semen Yesylevskyy
- Laboratoire ChronoEnvironnement, UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), Besançon, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Floriane Mangin
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Frederic Lirussi
- HSP-pathies, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Julia Leemput
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Jean-Francois Merlin
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Antonin Schmitt
- HSP-pathies, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Muhtadi Suliman
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Jérôme Bayardon
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sylvain Jugé
- ICMUB-OCS, UMR CNRS 6302, Université de Bourgogne-Franche Comté (UBFC), Dijon, France
| | - Naim Akhtar Khan
- NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France.
| |
Collapse
|
11
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
12
|
Karmous I, Doggui R, Sayed Khan A, Ben Amor N, Khan NA, Jamoussi H. Is fat taste associated with diet quality? A cross-sectional study conducted among Tunisian adults. Appetite 2022; 176:106138. [PMID: 35718309 DOI: 10.1016/j.appet.2022.106138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
The Tunisian population has experienced a nutrition transition with an increase in the incidence of obesity. As obesity has been associated with a poor orosensory detection of fat. We hypothesized that poor fat detection could be a driver of poor diet quality. This study examined the association between linoleic acid (LA) detection and adherence to a healthy diet among adult participants. A total of 104 LA taster participants were recruited for this study. Dietary assessment was conducted using the 24 h dietary recall method. Diet quality was assessed by determining the Mediterranean diet (MD) score and Health diet indicator (HDI). The relationship between diet quality and log LA detection threshold was done using adjusted linear regression for age, sex, and daily energy intake (only in the fully adjusted model). The predictive margins model (interaction: anthropometric status x LA threshold) was used to assess the difference between non-obese and subjects with obesity adherence to MD across LA detection values. We have observed that the increase in the concentration of linoleic acid detection by 1 log(mmol/L) is associated with an increase of HDI score by 0.12-point [95% CI: 0.02-0.21] and a decrease of the MD score by -0.14-point [-0.25 to -0.03] in the partially adjusted model. However, only the MD score remained negatively associated with LA detection threshold in the fully adjusted model. The subjects with obesity adherence to the Mediterranean diet was lower than subjects with normal weight for LA concentration less than 0 log(mmol/L). The present study suggests that poor orosensory detection of dietary lipids might be a driver for worsening diet quality. Hence, These subjects might be at risk for obesity and, consequently, exposed cumulatively to the harmful effects of excess adiposity and an unhealthy diet.
Collapse
Affiliation(s)
- Inchirah Karmous
- Obesity: Etiopathogenesis, Pathophysiology and Treatment Research Unit (UR18ES01), National Institute of Nutrition and Food Technology, 11 Rue Jebel Lakhdar 1007, BebSaadoun, 1007, Tunis, Tunisia; Centre de Recherche Inserm, U1231 INSERM/UB/AgroSup, Team-Physiologie de La Nutrition & Toxicologie, Université de Bourgogne Franche-Comté (UBFC), Faculté des Sciences de La Vie, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Radhouene Doggui
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Centre de Formation Médicale du Nouveau - Brunswick, Moncton, NB E1A 3E9, Canada.
| | - Amira Sayed Khan
- Centre de Recherche Inserm, U1231 INSERM/UB/AgroSup, Team-Physiologie de La Nutrition & Toxicologie, Université de Bourgogne Franche-Comté (UBFC), Faculté des Sciences de La Vie, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Nadia Ben Amor
- Obesity: Etiopathogenesis, Pathophysiology and Treatment Research Unit (UR18ES01), National Institute of Nutrition and Food Technology, 11 Rue Jebel Lakhdar 1007, BebSaadoun, 1007, Tunis, Tunisia
| | - Naim Akhtar Khan
- Centre de Recherche Inserm, U1231 INSERM/UB/AgroSup, Team-Physiologie de La Nutrition & Toxicologie, Université de Bourgogne Franche-Comté (UBFC), Faculté des Sciences de La Vie, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Henda Jamoussi
- Obesity: Etiopathogenesis, Pathophysiology and Treatment Research Unit (UR18ES01), National Institute of Nutrition and Food Technology, 11 Rue Jebel Lakhdar 1007, BebSaadoun, 1007, Tunis, Tunisia
| |
Collapse
|
13
|
Peiris M, Aktar R, Reed D, Cibert-Goton V, Zdanaviciene A, Halder W, Robinow A, Corke S, Dogra H, Knowles CH, Blackshaw A. Decoy bypass for appetite suppression in obese adults: role of synergistic nutrient sensing receptors GPR84 and FFAR4 on colonic endocrine cells. Gut 2022; 71:928-937. [PMID: 34083384 PMCID: PMC8995825 DOI: 10.1136/gutjnl-2020-323219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Colonic enteroendocrine cells (EECs) store and release potent anorectic hormones that are key regulators of satiety. EECs express multiple nutrient sensing receptors, particularly for medium-chain fatty acids (MCFAs): GPR84 and FFAR4. Here we show a non-surgical approach with targeted colonic delivery of MCFA, which induces EEC and neuronal activation leading to anorectic effects. DESIGN A randomised, double-blind, placebo-controlled, cross-over study was performed in obese adults given combined GPR84 and FFAR4 agonists in colonic release capsules before meals. We measured serum hormones, energy intake and appetite perception. Cell type, activation by agonists and hormone/serotonin release were determined in human colonic explants. Mouse colonic afferent nerve responses to nutrients/mediators were recorded electrophysiologically. RESULTS Subjects receiving GPR84 and FFAR4 agonists had reduced overall calorific intake and increased postprandial levels of PYY versus placebo. Receptors including GPR84 and FFAR4 were coexpressed on human colonic EEC. Activation of GPR84 exclusively induced intracellular pERK, whereas FFAR4 selectively activated pCaMKII. Coactivation of GPR84 and FFAR4 induced both phosphoproteins, and superadditive release of GLP-1 and PYY. Nutrients and hormones convergently activated murine colonic afterent nerves via GLP-1, Y2 and 5-HT3 receptors. CONCLUSIONS Colonic GPR84 and FFAR4 agonists reduce energy intake and increase postprandial PYY in obese adults. Human colonic EECs coexpress these receptors, which activate cells via parallel intracellular pathways and synergistically evoke hormone release. Further synergism occurs in sensory nerve responses to MCFA and EEC mediators. Thus, synergistic activation of colonic endocrine cells via nutrient receptors is an important target for metabolic regulation. TRAIL REGISTRATION NUMBER NCT04292236.
Collapse
Affiliation(s)
- Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Reed
- Gastrointestinal Diseases Research, Queen's University, Kingston, Queensland, Canada
| | - Vincent Cibert-Goton
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ausra Zdanaviciene
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Writaja Halder
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adam Robinow
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Simon Corke
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harween Dogra
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charles H Knowles
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ashley Blackshaw
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Abstract
During the last couples of years, a number of studies have increasingly accumulated on the gustatory perception of dietary fatty acids in rodent models and human beings in health and disease. There is still a debate to coin a specific term for the gustatory perception of dietary fatty acids either as the sixth basic taste quality or as an alimentary taste. Indeed, the psycho-physical cues of orosensory detection of dietary lipids are not as distinctly perceived as other taste qualities like sweet or bitter. The cellular and molecular pharmacological mechanisms, triggered by the binding of dietary long-chain fatty acids (LCFAs) to tongue taste bud lipid receptors like CD36 and GPR120, involve Ca2+ signaling as other five basic taste qualities. We have not only elucidated the role of Ca2+ signaling but also identified different components of the second messenger cascade like STIM1 and MAP kinases, implicated in fat taste perception. We have also demonstrated the implication of Calhm1 voltage-gated channels and store-operated Ca2+ (SOC) channels like Orai1, Orai1/3, and TRPC3 in gustatory perception of dietary fatty acids. We have not only employed siRNA technology in vitro and ex vivo on tissues but also used animal models of genetic invalidation of STIM1, ERK1, Orai1, Calhm1 genes to explore their implications in fat taste signal transduction. Moreover, our laboratory has also demonstrated the importance of LCFAs detection dysfunction in obesity in animal models and human beings.
Collapse
Affiliation(s)
- Aziz Hichami
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Amira Sayed Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France.
| |
Collapse
|
15
|
Huang Q, Meng L, Li H, Xiong N, Zeng L, Wang G, Zhang P, Zhao H, Liu D. Huoxue Jiangtang Decoction Alleviates Type 2 Diabetes Mellitus by Regulating the Oral Microbiota and Food Preferences. Diabetes Metab Syndr Obes 2022; 15:3739-3751. [PMID: 36474726 PMCID: PMC9719691 DOI: 10.2147/dmso.s391226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE As a formula of traditional Chinese medicine (TCM), Huoxue Jiangtang Decoction (HJD) has positive effects on diabetes mellitus (DM) through improving of the metabolism of glycolipid and the function of β-cell. Hence, this research aims to explore the potential therapeutic effects of HJD on diabetes and reveal its underlying mechanisms. METHODS Diabetic rat models induced by high-fat diet (HFD) and streptozotocin (STZ) were included in this study. Following successful modeling, diabetic rats were treated with HJD, and then its therapeutic effects in eight weeks were evaluated. In addition to biochemical indicators, two-bottle preference tests were carried out to examine the rats' preferences for fat and sugar, and 16S rRNA gene sequencing was performed to disclose the differences of oral microbiota among groups. Finally, Pearson correlation coefficient was used to explore the correlation between oral microbiota and the preferences for fat and sugar. RESULTS It was found that HJD significantly improved the levels of fasting blood glucose (FBG), glucose tolerance, and dyslipidemia. Additionally, HJD contributed to decreasing preferences for fat and sugar in diabetic rats, which plays an important role in food intake. Furthermore, HJD regulated the abundance, distribution, and structure of oral microbiota in diabetic rats, serving as one of the underlying mechanisms of its antidiabetic effects. CONCLUSION Taken with other formulas, HJD functions to improve the metabolism of glycolipid and the function of β-cell by inhibiting preferences for fat and sugar, as well as regulating the oral microbiota of diabetic rats. Furthermore, a potential correlation between the oral micro-environment and preferences for fat and sugar in STZ-induced diabetic rats is likely to exist.
Collapse
Affiliation(s)
- Qian Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Lu Meng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Ni Xiong
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Lin Zeng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Gaoxiang Wang
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Pengxiang Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Hengxia Zhao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
- Correspondence: Deliang Liu, Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, 1# Fuhua Road, Futian District, Shenzhen, 518033, People’s Republic of China, Tel +86 13924610289, Fax +86 755-88358328-3319, Email
| |
Collapse
|
16
|
GPR120 agonists enhance the fatty orosensation when added to fat-containing system, but do not evoke it by themselves in humans. Physiol Behav 2021; 234:113383. [PMID: 33676959 DOI: 10.1016/j.physbeh.2021.113383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/20/2022]
Abstract
Dietary fat, an important macronutrient, has been considered to be perceived by texture and olfaction. Recently, fatty acid transporter, CD36, and fatty acid receptor, GPR120 are considered to be involved in human gustatory fatty acids perception in humans. However, limited information is currently available to show that agonists of CD36 and GPR120 evoke fatty oral sensations regarding to dietary fat in humans. Therefore, the role of GPR120 agonists in dietary fat perception in humans was investigated herein. An emulsion prepared from vegetable oil had a stronger fatty orosensation, an orosensation similar to an oily mouth-coating sensed 5 - 10 s after tasting, than that prepared from mineral oil; however, the physical properties of both emulsions, such as viscosity, particle distribution, interfacial tension, contact angle, frictional load, and ζ-electric potential were similar. The potent GPR120 agonist, TUG-891 enhanced the fatty orosensation when added to the emulsion prepared from vegetable oil, but not to that from mineral oil. All GPR120 agonists tested enhanced the fatty orosensation when added to a low-fat food system whereas they did not evoke any fatty sensation in aqueous solution at the concentrations tested in food system, and sensory activity positively correlated with GPR120 activity. These results suggest that GPR120 agonists enhance the fatty orosensation in humans when added to vegetable oil or a low-fat food system, but do not evoke it by themselves.
Collapse
|
17
|
Murtaza B, Hichami A, Khan AS, Plesnik J, Sery O, Dietrich A, Birnbaumer L, Khan NA. Implication of TRPC3 channel in gustatory perception of dietary lipids. Acta Physiol (Oxf) 2021; 231:e13554. [PMID: 32882106 DOI: 10.1111/apha.13554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
AIM The pathogenesis of obesity has been associated with high intake of dietary fat, and some recent studies have explored the cellular mechanisms of oro-sensory detection of dietary fatty acids. We further assessed the role of transient receptor potential canonical (TRPC) channels in oro-sensory perception of dietary lipids. METHODS We determined by RT-qPCR and western blotting the expression of TRPC3/6/7 channels in mouse fungiform taste bud cells (mTBC). Immunocytochemistry was used to explore whether TRPC3 channels were co-expressed with fatty acid receptors. We employed wild-type (WT) mTBC, and those transfected with small interfering RNAs (siRNAs) against TRPC3 or STIM1. Ca2+ signalling was studied in TBC from TRPC3-/- mice and their WT littermates. RESULTS We demonstrate that mouse fungiform taste bud cells (mTBC) express TRPC3, but not TRPC6 or TRPC7 channels, and their inactivation by siRNA or experiments on TBC from TRPC3-/- mice brought about a decrease in fatty acid-induced gustatory Ca2+ signalling, coupled with taste bud CD36 lipid sensor. TRPC3 channel activation was found to be under the control of STIM1 in lingual mTBC. Behavioural studies showed that spontaneous preference for a dietary long-chain fatty acid was abolished in TRPC3-/- mice, and in mice wherein lingual TRPC3 expression was silenced by employing siRNA. CONCLUSION We report that lingual TRPC3 channels are critically involved in fat taste perception.
Collapse
Affiliation(s)
- Babar Murtaza
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| | - Aziz Hichami
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| | - Amira S. Khan
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| | - Jiri Plesnik
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
- Laboratory of Neurobiology and Molecular Psychiatry Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
| | - Omar Sery
- Laboratory of Neurobiology and Molecular Psychiatry Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
- Laboratory of Neurobiology and Pathological Physiology Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Brno Czech Republic
| | - Alexander Dietrich
- Walther‐Straub‐Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL) LMU Munich Munich Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory National Institute of Environmental Health Sciences Research Triangle Park NC USA
- Institute of Biomedical Research (BIOMED) Catholic University of Argentina Buenos Aires Argentina
| | - Naim A. Khan
- U1231 INSERM/UB/AgroSup Physiologie de la Nutrition & Toxicologie Université de Bourgogne‐Franche Comté (UBFC) Dijon France
| |
Collapse
|
18
|
Son SE, Kim NJ, Im DS. Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science. Biomol Ther (Seoul) 2021; 29:22-30. [PMID: 33372166 PMCID: PMC7771848 DOI: 10.4062/biomolther.2020.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Till the 21st century, fatty acids were considered as merely building blocks for triglycerides, phospholipids, or cholesteryl esters. However, the discovery of G protein-coupled receptors (GPCRs) for free fatty acids at the beginning of the 21st century challenged that idea and paved way for a new field of research, merged into the field of receptor pharmacology for intercellular lipid mediators. Among the GPCRs for free fatty acids, free fatty acid receptor 4 (FFA4, also known as GPR120) recognizes long-chain polyunsaturated fatty acids such as DHA and EPA. It is significant in drug discovery because it regulates obesity-induced metaflammation and GLP-1 secretion. Our study reviews information on newly developed FFA4 agonists and their application in pathophysiologic studies and drug discovery. It also offers a potency comparison of the FFA4 agonists in an AP-TGF-α shedding assay.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
19
|
Zhao YF, Li XC, Liang XY, Zhao YY, Xie R, Zhang LJ, Zhang XC, Chen C. GPR120 Regulates Pancreatic Polypeptide Secretion From Male Mouse Islets via PLC-Mediated Calcium Mobilization. Endocrinology 2020; 161:5900686. [PMID: 32877513 DOI: 10.1210/endocr/bqaa157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023]
Abstract
The free fatty acid receptor G protein-coupled receptor 120 (GPR120) is expressed in pancreatic islets, but its specific cell distribution and function have not been fully established. In this study, a GPR120-IRES-EGFP knockin (KI) mouse was generated to identify GPR120-expressing cells with enhanced green fluorescence proteins (EGFP). EGFP-positive cells collected from KI mouse islets by flow cytometry had a significantly higher expression of pancreatic polypeptide (PP) evidenced by reverse transcriptase (RT)-quantitative polymerase chain reaction (qPCR). Single-cell RT-PCR and immunocytochemical double staining also demonstrated the coexpression of GPR120 with PP in mouse islets. The GPR120-specific agonist TUG-891 significantly increased plasma PP levels in mice. TUG-891 significantly increased PP levels in islet medium in vitro, which was markedly attenuated by GPR120 small interfering RNA treatment. TUG-891-stimulated PP secretion in islets was fully blocked by pretreatment with YM-254890 (a Gq protein inhibitor), U73122 (a phospholipase C inhibitor), or thapsigargin (an inducer of endoplasmic reticulum Ca2+ depletion), respectively. TUG-891 triggered the increase in intracellular free Ca2+ concentrations ([Ca2+]i) in PP cells, which was also eliminated by YM-254890, U73122, or thapsigargin. GPR120 gene expression was significantly reduced in islets of high-fat diet (HFD)-induced obese mice. TUG-891-stimulated PP secretion was also significantly diminished in vivo and in vitro in HFD-induced obese mice compared with that in normal-chow diet control mice. In summary, this study demonstrated that GPR120 is expressed in mouse islet PP cells and GPR120 activation stimulated PP secretion via the Gq/PLC-Ca2+ signaling pathway in normal-chow diet mice but with diminished effects in HFD-induced obese mice.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiao-Cheng Li
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiang-Yan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yan-Yan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Rong Xie
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Li-Jun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiao-Chun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Fat taste signal transduction and its possible negative modulator components. Prog Lipid Res 2020; 79:101035. [DOI: 10.1016/j.plipres.2020.101035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|